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• wait()/notify()

• Thread-Safe Data Structures

• Processing Lab
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The Basics

• Threads

• run()/start()

•yield()

•sleep()

•join()

• wait() and notify(), and also notifyAll() 
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States of a Thread

running

blocked

New thread Terminated

waiting on an object
sleeping
blocking on I/O
blocked on a lock
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How to get the state?

• NEW

• RUNNABLE

• BLOCKED

• WAITING

• TIME_WAITING

• TERMINATED

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Thread.State.html

getState()  
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Thread Scheduling 

• What is the policy?

• Java doc says: Implemented in the JVM, preemptive, based on 
priority. (No mention of time-slices.)

• 1= low priority, 5 = main, 10 = high priority

• getPriority() & setPriority()

• However, most OS implement time-slices (quanta), roughly 1ms, 
preemptive, and round-robin ==> JVMs do the same
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Threads good not only for speedup

App

T1

T2

time

time

7Thursday, September 19, 13



Threads good not only for speedup
But also to simplify code 

App

T1

I/O I/O

time
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Important Concepts

• CPU Bound Processes/Threads

• I/O Bound Processes/Threads
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Time Scale

• Why I/O recognizing I/O-bound process is important

• CPU cycle:  1 ns

• RAM cycle: 100-500 ns

• Disk access =  seek + latency

• seek = 1 ms

• latency = 1/2 rotation, at 7,000 RPM

• Question: How long does the processor wait for data from disk?
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Wait/Notify Example
(Producer-Consumer)

// producer code
synchronized( lock ) {
	 while ( !container.isEmpty() ) {

	 try {
	 	 	 lock.wait();
	 	 } catch (InterruptedException e)

{}
	 }

container.put( newItem );
}

//consumer code
synchronized( lock ) {
	 if ( !container.isEmpty() ) {

item = container.getItem();
consume( item );

	 	 lock.notify(); 
	 }
}

Container
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• The Dining-Philosophers Problem
http://en.wikipedia.org/wiki/Dining_philosophers_problem

• The Applet
http://elvis.rowan.edu/~hartley/ConcProgJava/Applets/diningPhilosophers.html

Beware of Deadlocks!
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Rule #1 for Preventing Deadlocks

• Grab all the data-structures that you need first

• If you can’t, release them all

• Wait a random amount of time and try again
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                              Blocking Queues

Thread-Safe Data Structures

Non-Blocking
Queues

ConcurrentLinkedQueues

ArrayBlockingQueues
DelayQueues
LinkedBlockingQueues
LinkedBlockingDeques
PriorityBlockingQueues
SynchronousQueues
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ConcurrentLinkedQueue
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ArrayBlockingQueue
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ArrayBlockingQueue (cont’d)
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Processing Lab

Processing
App

setup()

draw()

1/framerate
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Processing Lab: Version 1

Processing
App

setup()

draw()
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Processing Lab: Version 1

setup()

draw()
Consumer

Producer

object object object object
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Processing Lab: Version 2

setup()

draw()
Consumer

Producer
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