
More on
Java Synchronization

D. Thiebaut
CSC352 Fall 2013

1Thursday, September 19, 13

Outline• Basics of Thread Operations (new stuff)

• Thread States

• Thread Scheduling

• Threads and I/O

• Producer/Consumer Pattern

• wait()/notify()

• Thread-Safe Data Structures

• Processing Lab

2Thursday, September 19, 13

The Basics

• Threads

• run()/start()

•yield()

•sleep()

•join()

• wait() and notify(), and also notifyAll()

3Thursday, September 19, 13

States of a Thread

running

blocked

New thread Terminated

waiting on an object
sleeping
blocking on I/O
blocked on a lock

4Thursday, September 19, 13

How to get the state?

• NEW

• RUNNABLE

• BLOCKED

• WAITING

• TIME_WAITING

• TERMINATED

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Thread.State.html

getState()

5Thursday, September 19, 13

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Thread.State.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Thread.State.html

Thread Scheduling

• What is the policy?

• Java doc says: Implemented in the JVM, preemptive, based on
priority. (No mention of time-slices.)

• 1= low priority, 5 = main, 10 = high priority

• getPriority() & setPriority()

• However, most OS implement time-slices (quanta), roughly 1ms,
preemptive, and round-robin ==> JVMs do the same

6Thursday, September 19, 13

Threads good not only for speedup

App

T1

T2

time

time

7Thursday, September 19, 13

Threads good not only for speedup
But also to simplify code

App

T1

I/O I/O

time

8Thursday, September 19, 13

Important Concepts

• CPU Bound Processes/Threads

• I/O Bound Processes/Threads

9Thursday, September 19, 13

Time Scale

• Why I/O recognizing I/O-bound process is important

• CPU cycle: 1 ns

• RAM cycle: 100-500 ns

• Disk access = seek + latency

• seek = 1 ms

• latency = 1/2 rotation, at 7,000 RPM

• Question: How long does the processor wait for data from disk?
10Thursday, September 19, 13

Wait/Notify Example
(Producer-Consumer)

// producer code
synchronized(lock) {
	 while (!container.isEmpty()) {

	 try {
	 	 	 lock.wait();
	 	 } catch (InterruptedException e)

{}
	 }

container.put(newItem);
}

//consumer code
synchronized(lock) {
	 if (!container.isEmpty()) {

item = container.getItem();
consume(item);

	 	 lock.notify();
	 }
}

Container

11Thursday, September 19, 13

• The Dining-Philosophers Problem
http://en.wikipedia.org/wiki/Dining_philosophers_problem

• The Applet
http://elvis.rowan.edu/~hartley/ConcProgJava/Applets/diningPhilosophers.html

Beware of Deadlocks!

12Thursday, September 19, 13

http://en.wikipedia.org/wiki/Dining_philosophers_problem
http://en.wikipedia.org/wiki/Dining_philosophers_problem
http://elvis.rowan.edu/~hartley/ConcProgJava/Applets/diningPhilosophers.html
http://elvis.rowan.edu/~hartley/ConcProgJava/Applets/diningPhilosophers.html

Rule #1 for Preventing Deadlocks

• Grab all the data-structures that you need first

• If you can’t, release them all

• Wait a random amount of time and try again

13Thursday, September 19, 13

 Blocking Queues

Thread-Safe Data Structures

Non-Blocking
Queues

ConcurrentLinkedQueues

ArrayBlockingQueues
DelayQueues
LinkedBlockingQueues
LinkedBlockingDeques
PriorityBlockingQueues
SynchronousQueues

14Thursday, September 19, 13

ConcurrentLinkedQueue

15Thursday, September 19, 13

ArrayBlockingQueue

16Thursday, September 19, 13

ArrayBlockingQueue (cont’d)

17Thursday, September 19, 13

Processing Lab

Processing
App

setup()

draw()

1/framerate

18Thursday, September 19, 13

Processing Lab: Version 1

Processing
App

setup()

draw()

19Thursday, September 19, 13

Processing Lab: Version 1

setup()

draw()
Consumer

Producer

object object object object

20Thursday, September 19, 13

Processing Lab: Version 2

setup()

draw()
Consumer

Producer

21Thursday, September 19, 13

