
mith College

Computer Science

Dominique Thiébaut 
dthiebaut@smith.edu

Fixed-Point & 
Floating-Point 

Number Formats
CSC231—Assembly Language 

Week #13



D. Thiebaut, Computer Science, Smith College

Reference
http://cs.smith.edu/dftwiki/index.php/

CSC231_An_Introduction_to_Fixed-_and_Floating-
Point_Numbers

http://cs.smith.edu/dftwiki/index.php/CSC231_An_Introduction_to_Fixed-_and_Floating-Point_Numbers


D. Thiebaut, Computer Science, Smith College

public static void main(String[] args) {

int n = 10;
int k = -20;

float x = 1.50;
double y = 6.02e23;

         
}



D. Thiebaut, Computer Science, Smith College

public static void main(String[] args) {

int n = 10;
int k = -20;

float x = 1.50;
double y = 6.02e23;

         
}



D. Thiebaut, Computer Science, Smith College

public static void main(String[] args) {

int n = 10;
int k = -20;

float x = 1.50;
double y = 6.02e23;

         
}

?



D. Thiebaut, Computer Science, Smith College

Nasm knows  
what 1.5 is!



D. Thiebaut, Computer Science, Smith College

        section   .data  
 
x       dd      1.5

             in memory, x is represented by 
 

 00111111 11000000 00000000 00000000 
or 0x3FC00000

Nasm know
s  

what 1.
5 is!



D. Thiebaut, Computer Science, Smith College

•  Fixed-Point Format

•  Floating-Point Format



D. Thiebaut, Computer Science, Smith College

Fixed-Point Format
• Used in very few applications, but programmers 

know about it. 

• Some micro controllers (e.g. Arduino Uno) do not 
have Floating Point Units (FPU), and must rely on 
libraries to perform Floating Point operations (VERY 
SLOW) 

• Can be used when storage is at a premium (can 
use small quantity of bits to represent a real 
number)



D. Thiebaut, Computer Science, Smith College

Review Decimal System

123.45 = 1x102 + 2x101 + 3x100 + 4x10-1 + 5x10-2

Decimal Point



D. Thiebaut, Computer Science, Smith College

Can we do the same 
in binary?  

• Let's do it with unsigned numbers first: 

1101.11 = 1x23 + 1x22 + 0x21 + 1x20 + 1x2-1 + 1x2-2

Binary Point



D. Thiebaut, Computer Science, Smith College

Can we do the same 
in binary?  

• Let's do it with unsigned numbers first: 

1101.11 = 1x23 + 1x22 + 0x21 + 1x20 + 1x2-1 + 1x2-2 
 
                     = 8      + 4                  + 1      + 0.5    + 0.25  

              = 13.75 



D. Thiebaut, Computer Science, Smith College

• If we know where the binary point is, we do not 
need to "store" it anywhere.  (Remember we used a 
bit to represent the +/- sign in 2’s complement.) 

• A format where the binary/decimal point is fixed 
between 2 groups of bits is called a fixed-point 
format.

Observations



D. Thiebaut, Computer Science, Smith College

Definition
• A number format where the numbers are unsigned 

and where we have a integer bits (on the left of the 
decimal point) and b fractional bits (on the right of 
the decimal point) is referred to as a U(a,b) fixed-
point format. 

• Value of an N-bit binary number in U(a,b):



D. Thiebaut, Computer Science, Smith College

Exercise 1

                 x = 1011 1111 = 0xBF 

• What is the value represented by x in U(4,4) 

• What is the value represented by x in U(7,3)

typical final exam 

question!



D. Thiebaut, Computer Science, Smith College

Exercise 2
• z = 00000001 00000000  

• y = 00000010 00000000  

• v = 00000010 10000000  

• What values do z, y, and v represent in a 
U(8,8) format?

typical final exam 

question!



D. Thiebaut, Computer Science, Smith College

• What is 12.25 in U(4,4)?   In U(8,8)?

Exercise 3
typical final exam 

question!



D. Thiebaut, Computer Science, Smith College

What about Signed 
Numbers?



D. Thiebaut, Computer Science, Smith College

Observation #1

• In an N-bit, unsigned integer format, the weight of 
the MSB is 2N-1



D. Thiebaut, Computer Science, Smith College

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 

1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111

+0 
+1 
+2 
+3 
+4 
+5 
+6 
+7 

+8 
+9 
+10 
+11 
+12 
+13 
+14 
+15

nybble Unsigned

N = 4 
2N-1 = 23 = 8 



D. Thiebaut, Computer Science, Smith College

Observation #2

• In an N-bit signed 2's complement, integer format, 
the weight of the MSB is -2N-1



D. Thiebaut, Computer Science, Smith College

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 

1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111

+0 
+1 
+2 
+3 
+4 
+5 
+6 
+7 

-8 
-7 
-6 
-5 
-4 
-3 
-2 
-1

nybble 2's complement

N=4 
-2N-1= -23 = -8 
 



D. Thiebaut, Computer Science, Smith College

Fixed-Point Signed Format
• Fixed-Point signed format = sign bit + a integer bits + 

b fractional bits = N bits = A(a, b) 

• N = number of bits = 1 + a + b 

• Format of an N-bit A(a, b) number:



D. Thiebaut, Computer Science, Smith College

Examples in A(7,8)
• 000000001 00000000 = 00000001 . 00000000 = ? 

• 100000001 00000000 = 10000001 . 00000000 = ? 

• 00000010 00000000 = 0000010 . 00000000 = ? 

• 10000010 00000000 = 1000010 . 00000000 = ? 

• 00000010 10000000 = 00000010 . 10000000 = ? 

• 10000010 10000000 = 10000010 . 10000000 = ?



D. Thiebaut, Computer Science, Smith College

Examples in A(7,8)
• 000000001 00000000 = 00000001 . 00000000 = 1d 

• 100000001 00000000 = 10000001 . 00000000 = -128 + 1 = -127d 

• 00000010 00000000 = 0000010 . 00000000 = 2d  

• 10000010 00000000 = 1000010 . 00000000 = -128 + 2 = -126d 

• 00000010 10000000 = 00000010 . 10000000 = 2.5d 

• 10000010 10000000 = 10000010 . 10000000 = -128 + 2.5 = -125.5d



D. Thiebaut, Computer Science, Smith College

Exercises
• What is -1 in A(7,8)? 

• What is -1 in A(3,4)? 

• What is 0 in A(7,8)? 

• What is the smallest number one can represent in 
A(7,8)? 

• The largest in A(7,8)?



D. Thiebaut, Computer Science, Smith College

Exercises
• What is the largest number  

representable in U(a, b)? 

• What is the smallest number  
representable in U(a, b)? 

• What is the largest positive number representable 
in A(a, b)? 

• What is the smallest negative number 
representable in A(a, b)?



D. Thiebaut, Computer Science, Smith College

We Stopped Here
Last Time…

http://i.imgur.com/doh3mlZ.jpg

http://i.imgur.com/doh3mlZ.jpg


D. Thiebaut, Computer Science, Smith College

•  Fixed-Point Format

• Definitions

• Range

• Precision

• Accuracy

• Resolution

•  Floating-Point Format



D. Thiebaut, Computer Science, Smith College

Range

• Range = difference between most positive and 
most negative numbers. 

• Unsigned Range:  
The range of U(a, b) is   0 ≤  x  ≤ 2a − 2−b 

• Signed Range:  
The range of A(a, b) is   −2a ≤  x  ≤ 2a − 2−b



D. Thiebaut, Computer Science, Smith College

Precision

• Precision = b, the number of fractional bits  
 

• Precision = N, the total number of bits

https://en.wikibooks.org/wiki/Floating_Point/Fixed-Point_Numbers

http://www.digitalsignallabs.com/fp.pdf
Randy Yates, Fixed Point Arithmetic: An Introduction, Digital Signal Labs, July 2009.

2 dif
feren

t 

defin
ition

s

https://en.wikibooks.org/wiki/Floating_Point/Fixed-Point_Numbers
http://www.digitalsignallabs.com/fp.pdf


D. Thiebaut, Computer Science, Smith College

Resolution

• The resolution is the smallest non-zero magnitude 
representable. 

• The resolution is the size of the intervals between 
numbers represented by the format 

• Example: A(13, 2) has a resolution of 0.25.



D. Thiebaut, Computer Science, Smith College

A(13, 2) —>   sbbb bbbb bbbb bb . bb
2-2 =0.25 
2-1 =0.5 

0 0.25 0.5-0.25-0.5



D. Thiebaut, Computer Science, Smith College

A(13, 2) —>   sbbb bbbb bbbb bb . bb
2-2 =0.25 
2-1 =0.5 

0 0.25 0.5-0.25-0.5

Resolution



D. Thiebaut, Computer Science, Smith College

Accuracy

• The accuracy is the largest magnitude of the 
difference between a number and its representation. 

• Accuracy = 1/2 Resolution



D. Thiebaut, Computer Science, Smith College

A(13, 2) —>   sbbb bbbb bbbb bb . bb
2-2 =0.25 
2-1 =0.5 

0 0.25 0.5-0.25-0.5

Real quantity 
we want to 
represent



D. Thiebaut, Computer Science, Smith College

A(13, 2) —>   sbbb bbbb bbbb bb . bb
2-2 =0.25 
2-1 =0.5 

0 0.25 0.5-0.25-0.5

Real quantity 
we want to 
represent

Representation



D. Thiebaut, Computer Science, Smith College

A(13, 2) —>   sbbb bbbb bbbb bb . bb
2-2 =0.25 
2-1 =0.5 

0 0.25 0.5-0.25-0.5

Error



D. Thiebaut, Computer Science, Smith College

A(13, 2) —>   sbbb bbbb bbbb bb . bb
2-2 =0.25 
2-1 =0.5 

0 0.25 0.5-0.25-0.5

Largest Error = Accuracy



D. Thiebaut, Computer Science, Smith College

Questions in search 
of answers…

• What is the accuracy of an U(7,8) number format? 

• How good is U(7,8) at representing small numbers 
versus representing larger numbers?   In other 
words, is the format treating small numbers 
better than large numbers, or the opposite?



D. Thiebaut, Computer Science, Smith College

•  Fixed-Point Format

•  Floating-Point Format



D. Thiebaut, Computer Science, Smith College

IEEE 
Floating-Point 
Number Format



D. Thiebaut, Computer Science, Smith College

A bit of history…

http://datacenterpost.com/wp-content/uploads/2014/09/Data-Center-History.png

http://datacenterpost.com/wp-content/uploads/2014/09/Data-Center-History.png


D. Thiebaut, Computer Science, Smith College

• 1960s, 1970s: many different ways for computers 
to represent and process real numbers.  Large 
variation in way real numbers were operated on 

• 1976: Intel starts design of first hardware floating-
point co-processor for 8086.  Wants to define a 
standard 

• 1977: Second meeting under umbrella of Institute 
for Electrical and Electronics Engineers (IEEE).  
Mostly microprocessor makers (IBM is observer) 

• Intel first to put whole math library in a processor 



D. Thiebaut, Computer Science, Smith College

IBM PC MotherboardIBM PC Motherboard

http://commons.wikimedia.org/wiki/File:IBM_PC_Motherboard_(1981).jpg

http://commons.wikimedia.org/wiki/File:IBM_PC_Motherboard_(1981).jpg


D. Thiebaut, Computer Science, Smith College

Intel Coprocessors



D. Thiebaut, Computer Science, Smith College

Integrated
Coprocessor

(Early) 
Intel Pentium

ht
tp

://
se

m
ia

cc
ur

at
e.

co
m

/a
ss

et
s/

up
lo

ad
s/

20
12

/0
6/

19
93

_i
nt

el
_p

en
tiu

m
_l

ar
ge

.jp
g

http://semiaccurate.com/assets/uploads/2012/06/1993_intel_pentium_large.jpg
http://semiaccurate.com/assets/uploads/2012/06/1993_intel_pentium_large.jpg
http://semiaccurate.com/assets/uploads/2012/06/1993_intel_pentium_large.jpg
http://semiaccurate.com/assets/uploads/2012/06/1993_intel_pentium_large.jpg
http://semiaccurate.com/assets/uploads/2012/06/1993_intel_pentium_large.jpg
http://semiaccurate.com/assets/uploads/2012/06/1993_intel_pentium_large.jpg
http://semiaccurate.com/assets/uploads/2012/06/1993_intel_pentium_large.jpg
http://semiaccurate.com/assets/uploads/2012/06/1993_intel_pentium_large.jpg
http://semiaccurate.com/assets/uploads/2012/06/1993_intel_pentium_large.jpg
http://semiaccurate.com/assets/uploads/2012/06/1993_intel_pentium_large.jpg
http://semiaccurate.com/assets/uploads/2012/06/1993_intel_pentium_large.jpg
http://semiaccurate.com/assets/uploads/2012/06/1993_intel_pentium_large.jpg
http://semiaccurate.com/assets/uploads/2012/06/1993_intel_pentium_large.jpg
http://semiaccurate.com/assets/uploads/2012/06/1993_intel_pentium_large.jpg
http://semiaccurate.com/assets/uploads/2012/06/1993_intel_pentium_large.jpg


D. Thiebaut, Computer Science, Smith College

Some Processors that do not 
contain FPUs

• Some ARM processors 

• Arduino Uno 

• Others



D. Thiebaut, Computer Science, Smith College

Some Processors that do not 
contain FPUs

Few people have heard of ARM Holdings, even though 
sales of devices containing its flavor of chips are 
projected to be 25 times that of Intel. The chips found in 
99 percent of the world’s smartphones and tablets are 
ARM designs. About 4.3 billion people, 60 percent of 
the world’s population, touch a device carrying an 
ARM chip each day.

Ashlee Vance, Bloomberg, Feb 2014



D. Thiebaut, Computer Science, Smith College

How Much Slower 
is Library vs FPU operations?
• Cristina Iordache and Ping Tak Peter Tang, "An Overview 

of Floating-Point Support and Math Library on the Intel 
XScale Architecture", In Proceedings IEEE Symposium 
on Computer Arithmetic, pages 122-128, 2003  

• http://stackoverflow.com/questions/15174105/
performance-comparison-of-fpu-with-software-emulation 

Library-emulated FP operations = 10 to 100 times slower 
than hardware FP operations executed by FPU

http://stackoverflow.com/questions/15174105/performance-comparison-of-fpu-with-software-emulation


D. Thiebaut, Computer Science, Smith College

Floating 
Point 

Numbers 
Are 

Weird…



—  D.T.

“0.1 decimal does not exist” 



D. Thiebaut, Computer Science, Smith College



D. Thiebaut, Computer Science, Smith College

231b@aurora ~/handout $ java SomeFloats 

x = 6.02E23
y = -1.0E-6
z = 1.2345678E-19
t = -1.0
u = 8.0E9



D. Thiebaut, Computer Science, Smith College

    1.230 

= 12.30 10-1 

= 123.0 10-2 

= 0.123 101



D. Thiebaut, Computer Science, Smith College

IEEE Format
• 32 bits, single precision (floats in Java) 

• 64 bits, double precision (doubles in Java) 

• 80 bits*, extended precision (C, C++) 

x = +/- 1.bbbbbb....bbb x 2bbb...bb

*80 bits in assembly = 1 Tenbyte



D. Thiebaut, Computer Science, Smith College

  10110.01 

 



D. Thiebaut, Computer Science, Smith College

  10110.01 

  1.011001 x 24  

 



D. Thiebaut, Computer Science, Smith College

  10110.01 

  1.011001 x 24  

  1.011001 x 2100 



D. Thiebaut, Computer Science, Smith College

  10110.01 

  1.011001 x 24  

  1.011001 x 2100 +



D. Thiebaut, Computer Science, Smith College

  10110.01 

  1.011001 x 24  

  1.011001 x 2100 

0    011001    100

+



D. Thiebaut, Computer Science, Smith College

    

0    011001    100



D. Thiebaut, Computer Science, Smith College

    

0    011001    100

10110.01



D. Thiebaut, Computer Science, Smith College

Observations

• +/- is the sign. It is represented by a bit, equal to 0 if the number 
is positive, 1 if negative. 

• the part 1.bbbbbb....bbb is called the mantissa 

• the part bbb...bb is called the exponent 

• 2 is the base for the exponent (could be different!) 

• the number is normalized so that its binary point is moved to 
the right of the leading 1.  

• because the leading bit will always be 1, we don't need to store 
it. This bit will be an implied bit.

x = +/- 1.bbbbbb....bbb x 2bbb...bb



D. Thiebaut, Computer Science, Smith College

http://www.h-schmidt.net/FloatConverter/IEEE754.html

http://www.h-schmidt.net/FloatConverter/IEEE754.html


D. Thiebaut, Computer Science, Smith College

Interlude…

for ( double d = 0; d != 0.3; d += 0.1 )
System.out.println( d );



D. Thiebaut, Computer Science, Smith College

Normalization  
(in decimal)

y = 123.456

y = 1.23456 x 102 

y = 1.000100111 x 1011

(normal = standard form)



D. Thiebaut, Computer Science, Smith College

Normalization 
(in binary)

y = 1000.100111   (8.609375d)

y = 1.000100111 x 23 

y = 1.000100111 x 1011



D. Thiebaut, Computer Science, Smith College

Normalization 
(in binary)

y = 1000.100111

y = 1.000100111 x 23 

 

decimal



D. Thiebaut, Computer Science, Smith College

Normalization 
(in binary)

y = 1000.100111

y = 1.000100111 x 23 

y = 1.000100111 x 1011

decimal

binary



D. Thiebaut, Computer Science, Smith College

+1.000100111 x 1011

0 1000100111 11
sign mantissa exponent



D. Thiebaut, Computer Science, Smith College

But, remember, 
all* numbers have  

a leading 1, so, we can pack 
the bits even more 

efficiently! 

*really?



D. Thiebaut, Computer Science, Smith College

+1.000100111 x 1011

0 0001001110 11
sign mantissa exponent

implied bit!



D. Thiebaut, Computer Science, Smith College

IEEE Format

31   30            23 22                                          0

S    Exponent (8)              Mantissa (23)

24 bits stored in 23 bits!



D. Thiebaut, Computer Science, Smith College

y = 1000.100111

31   30            23 22                                          0

0     bbbbbbbb    0001001110000……………0

y = 1.000100111 23

y = 1.000100111 1011



D. Thiebaut, Computer Science, Smith College

y = 1.000100111 x 1011

31   30            23 22                                          0

0     bbbbbbbb    0001001110000……………0

Why not 00000011 ?



D. Thiebaut, Computer Science, Smith College

How is the exponent 
coded?



D. Thiebaut, Computer Science, Smith College

bbbbbbbb

bias of 127



D. Thiebaut, Computer Science, Smith College

bbbbbbbb



D. Thiebaut, Computer Science, Smith College

y = 1.000100111 x 1011

31   30            23 22                                          0

0     10000010     0001001110000……………0

Ah!  3 represented by 
130 = 128 + 2

1.0761719 * 2^3
= 8.6093752



D. Thiebaut, Computer Science, Smith College

Verification 
8.6093752 in IEEE FP?

http://www.h-schmidt.net/FloatConverter/IEEE754.html

http://www.h-schmidt.net/FloatConverter/IEEE754.html


D. Thiebaut, Computer Science, Smith College

Exercises
• How is 1.0 coded as a 32-bit floating point number? 

• What about 0.5? 

• 1.5? 

• -1.5? 

• what floating-point value is stored in the 32-bit number 
below? 

1 | 1000 0011 | 111 1000 0000 0000 0000 0000



D. Thiebaut, Computer Science, Smith College

what about 0.1?



D. Thiebaut, Computer Science, Smith College

0   01111011  10011001100110011001101

0.1 decimal, in 32-bit precision, IEEE Format:



D. Thiebaut, Computer Science, Smith College

0   01111011  10011001100110011001101

0.1 decimal, in 32-bit precision, IEEE Format:

 Value in double-precision:  0.10000000149011612



D. Thiebaut, Computer Science, Smith College

NEVER 

NEVER 

COMPARE FLOATS  

OR DOUBLEs FOR 

EQUALITY! 

N-E-V-E-R !



D. Thiebaut, Computer Science, Smith College

for ( double d = 0; d != 0.3; d += 0.1 )
System.out.println( d );



D. Thiebaut, Computer Science, Smith College

bbbbbbbb Special 
Cases



D. Thiebaut, Computer Science, Smith College

Zero

• Why is it special? 

• 0.0 = 0 00000000 0000000000000000000000



D. Thiebaut, Computer Science, Smith College

bbbbbbbb {if mantissa is 0:  
number = 0.0



D. Thiebaut, Computer Science, Smith College

Very Small Numbers

• Smallest numbers have stored exponent of 0.  

• In this case, the implied 1 is omitted, and the 
exponent is -126 (not -127!)



D. Thiebaut, Computer Science, Smith College

bbbbbbbb {if mantissa is 0:  
number = 0.0

if mantissa is !0: 
  no hidden 1



D. Thiebaut, Computer Science, Smith College

Very Small Numbers

• Example: 0 00000000 00100000000000000000000  
 
 
             0 | 00000000 | 001000…000  
 
             +  (2-126)  x  ( 0.001 )  
 
             + (2-126)  x  ( 0.125 )             = 1.469 10-39

binary



D. Thiebaut, Computer Science, Smith College

bbbbbbbb Special 
Cases

?



D. Thiebaut, Computer Science, Smith College

Very large numbers

• stored exponent = 1111 1111 

• if the mantissa is = 0 ==>   +/- ∞ 



D. Thiebaut, Computer Science, Smith College

Very large numbers

• stored exponent = 1111 1111 

• if the mantissa is = 0 ==>   +/- ∞ 



D. Thiebaut, Computer Science, Smith College

Very large numbers

• stored exponent = 1111 1111 

• if the mantissa is = 0 ==>   +/- ∞ 

• if the mantissa is != 0 ==>  NaN 



D. Thiebaut, Computer Science, Smith College

Very large numbers

• stored exponent = 1111 1111 

• if the mantissa is = 0 ==>   +/- ∞ 

• if the mantissa is != 0 ==>  NaN = Not-a-Number 



D. Thiebaut, Computer Science, Smith College

Very large numbers

• stored exponent = 1111 1111 

• if the mantissa is = 0 ==>   +/- ∞ 

• if the mantissa is != 0 ==>  NaN  



D. Thiebaut, Computer Science, Smith College

NaN is sticky!



D. Thiebaut, Computer Science, Smith College

• 0 11111111 00000000000000000000000 = + ∞  

• 1 11111111 00000000000000000000000 = - ∞ 

• 0 11111111 10000010000000000000000 = NaN



D. Thiebaut, Computer Science, Smith College

Operations that create NaNs (http://en.wikipedia.org/wiki/NaN): 

• The divisions 0/0 and ±∞/±∞ 

• The multiplications 0×±∞ and ±∞×0 

• The additions ∞ + (−∞), (−∞) + ∞ and equivalent 
subtractions 

• The square root of a negative number. 

• The logarithm of a negative number 

• The inverse sine or cosine of a number that is less 
than −1 or greater than +1

http://en.wikipedia.org/wiki/NaN


D. Thiebaut, Computer Science, Smith College

// http://stackoverflow.com/questions/2887131/when-can-java-produce-a-nan
import java.util.*;
import static java.lang.Double.NaN;
import static java.lang.Double.POSITIVE_INFINITY;
import static java.lang.Double.NEGATIVE_INFINITY;

public class GenerateNaN {
public static void main(String args[]) {

double[] allNaNs = { 0D / 0D, 
POSITIVE_INFINITY / POSITIVE_INFINITY,
POSITIVE_INFINITY / NEGATIVE_INFINITY,
NEGATIVE_INFINITY / POSITIVE_INFINITY,
NEGATIVE_INFINITY / NEGATIVE_INFINITY, 
0 * POSITIVE_INFINITY,
0 * NEGATIVE_INFINITY, 
Math.pow(1, POSITIVE_INFINITY),
POSITIVE_INFINITY + NEGATIVE_INFINITY,
NEGATIVE_INFINITY + POSITIVE_INFINITY,
POSITIVE_INFINITY - POSITIVE_INFINITY,
NEGATIVE_INFINITY - NEGATIVE_INFINITY, 
Math.sqrt(-1),
Math.log(-1), 
Math.asin(-2), 
Math.acos(+2), };

System.out.println(Arrays.toString(allNaNs));
System.out.println(NaN == NaN);
System.out.println(Double.isNaN(NaN));

}
}

Generating 
NaNs

[NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN]
false
true



D. Thiebaut, Computer Science, Smith College

Range of Floating-Point 
Numbers



D. Thiebaut, Computer Science, Smith College

Range of Floating-Point 
Numbers

Remember that!



D. Thiebaut, Computer Science, Smith College

Resolution
of a Floating-Point 

Format
Check out table here: http://tinyurl.com/FPResol

http://preview.tinyurl.com/FPResol


D. Thiebaut, Computer Science, Smith College

Resolution
Another way to look at it

http://jasss.soc.surrey.ac.uk/9/4/4.html

http://jasss.soc.surrey.ac.uk/9/4/4.html


D. Thiebaut, Computer Science, Smith College

• Rosetta 
Landing on 
Comet 

• 10-year 
trajectory



D. Thiebaut, Computer Science, Smith College

Why not using 2’s Complement 
for the Exponent?

0.00000005  = 0 01100110 10101101011111110010101 
1                    = 0 01111111 00000000000000000000000 
65536.5           = 0 10001111 00000000000000001000000 
65536.25       = 0 10001111 00000000000000000100000 



D. Thiebaut, Computer Science, Smith College

END OF THE 
SEMESTER!



D. Thiebaut, Computer Science, Smith College

http://www.h-schmidt.net/FloatConverter/IEEE754.html

• Does this converter support NaN, and ∞? 

• Are there several different representations of +∞?  

• What is the largest float representable with the 32-bit format?  

• What is the smallest normalized float (i.e. a float which has an implied leading 1. bit)? 

Exercises

http://www.h-schmidt.net/FloatConverter/IEEE754.html
http://www.h-schmidt.net/FloatConverter/IEEE754.html


D. Thiebaut, Computer Science, Smith College

How do we 
 add 2 FP numbers?



D. Thiebaut, Computer Science, Smith College

• fp1 = s1 m1 e1  
fp2 = s2 m2 e2 
fp1 + fp2 = ? 

• denormalize both numbers (restore hidden 1) 

• assume fp1 has largest exponent e1: make e2 equal to 
e1 and shift decimal point in m2 —> m2’ 

• compute sum m1 + m2’ 

• truncate & round result 

• renormalize result (after checking for special cases)



D. Thiebaut, Computer Science, Smith College

1.111 x 25 + 1.110 x 28 

    1.11000000  x 28 
 + 0.00111100  x 28  
 
      1.11111100 x 28 

    1.11111100 x 28 

 = 10.000 x 28 

 = 1.000 x 29 

 
       

after expansion

locate largest number
shift mantissa of smaller

compute sum

round & truncate

normalize

1.111 x 25 + 1.110 x 28



D. Thiebaut, Computer Science, Smith College

How do we 
 multiply 2 FP numbers?



D. Thiebaut, Computer Science, Smith College

• fp1 = s1 m1 e1  
fp2 = s2 m2 e2  
fp1 x fp2 = ?  

• Test for multiplication by special numbers (0, NaN, ∞)  

• denormalize both numbers (restore hidden 1) 

• compute product of m1 x m2 

• compute sum e1 + e2 

• truncate & round m1 x m2 

• adjust e1+e2 and normalize. 



D. Thiebaut, Computer Science, Smith College

How do we compare 
two FP numbers?



D. Thiebaut, Computer Science, Smith College

As unsigned integers! 
No unpacking necessary!



D. Thiebaut, Computer Science, Smith College

Programming FP 
Operations in 
Assembly…



D. Thiebaut, Computer Science, Smith College

Pentium
EAX

EBX

ECX

EDX
ALU



D. Thiebaut, Computer Science, Smith College

Pentium
EAX

EBX

ECX

EDX
ALU

Cannot do FP computation



D. Thiebaut, Computer Science, Smith College

http://chip-architect.com/news/2003_04_20_looking_at_intels_prescott_part2.html



D. Thiebaut, Computer Science, Smith College

 
FLOATING POINT 

UNIT

 

 

 

 

 

 

 

SP0

SP1

SP2

SP3

SP4

SP5

SP6

SP7



D. Thiebaut, Computer Science, Smith College

 

 

 

 

 

 

 

 
FLOATING POINT 

UNIT

SP0

SP1

SP2

SP3

SP4

SP5

SP6

SP7

Operation: (7+10)/9



D. Thiebaut, Computer Science, Smith College

7

 

 

 

 

 

 

 

 
FLOATING POINT 

UNIT

SP0

SP1

SP2

SP3

SP4

SP5

SP6

SP7

Operation: (7+10)/9

fpush 7
 



D. Thiebaut, Computer Science, Smith College

10

7

 

 

 

 

 

 

 
FLOATING POINT 

UNIT

SP0

SP1

SP2

SP3

SP4

SP5

SP6

SP7

Operation: (7+10)/9

fpush 7
fpush 10



D. Thiebaut, Computer Science, Smith College

 

 

 

 

 

 

 

 

 
FLOATING POINT 

UNIT

SP0

SP1

SP2

SP3

SP4

SP5

SP6

SP7

Operation: (7+10)/9

fpush 7
fpush 10
fadd10

7



D. Thiebaut, Computer Science, Smith College

17

 

 

 

 

 

 

 

 
FLOATING POINT 

UNIT

SP0

SP1

SP2

SP3

SP4

SP5

SP6

SP7

Operation: (7+10)/9

fpush 7
fpush 10
fadd



D. Thiebaut, Computer Science, Smith College

9

17

 

 

 

 

 

 

 
FLOATING POINT 

UNIT

SP0

SP1

SP2

SP3

SP4

SP5

SP6

SP7

Operation: (7+10)/9

fpush 7
fpush 10
fadd
fpush 9



D. Thiebaut, Computer Science, Smith College

 

 

 

 

 

 

 

 

 
FLOATING POINT 

UNIT

SP0

SP1

SP2

SP3

SP4

SP5

SP6

SP7

Operation: (7+10)/9

fpush 7
fpush 10
fadd
fpush 9
fdiv

9
17



D. Thiebaut, Computer Science, Smith College

1.88889

 

 

 

 

 

 

 

 
FLOATING POINT 

UNIT

SP0

SP1

SP2

SP3

SP4

SP5

SP6

SP7

Operation: (7+10)/9

fpush 7
fpush 10
fadd
fpush 9
fdiv



D. Thiebaut, Computer Science, Smith College

The Pentium computes 
FP expressions  

using RPN!



D. Thiebaut, Computer Science, Smith College

The Pentium computes 
FP expressions  

using RPN!
Reverse Polish Notation



D. Thiebaut, Computer Science, Smith College

Nasm Example: z = x+y

        SECTION .data 

x       dd      1.5
y       dd      2.5
z       dd      0
       
; compute z = x + y
        SECTION .text            

       
        fld     dword [x]        
        fld     dword [y]
        fadd
        fstp    dword [z]        



D. Thiebaut, Computer Science, Smith College

Printing floats in C
#include "stdio.h"

int main() {
   float z = 1.2345e10;
   printf( "z = %e\n\n", z );
   return 0;
}



D. Thiebaut, Computer Science, Smith College

#include "stdio.h"

int main() {
   float z = 1.2345e10;
   printf( "z = %e\n\n", z );
   return 0;
}

gcc -m32 -o printFloat printFloat.c
./printFloat
z = 1.234500e+10

works only

on Linux 

with 32-bit 

Libraries

Printing floats in C



D. Thiebaut, Computer Science, Smith College

Printing floats in Assembly?
asm

program

call printf

C stdio.h
library
(printf)

object
file

nasm
executable

gcc



D. Thiebaut, Computer Science, Smith College

        extern printf                   ; the C function to be called

        SECTION .data                   ; Data section

msg     db      "sum = %e",0x0a,0x00
x       dd      1.5
y       dd      2.5
z       dd      0
temp    dq      0
        
        SECTION .text                   ; Code section.
        global  main                    ; "C" main program 
main:                                   ; label, start of main program
        fld     dword [x]               ; need to convert 32-bit to 64-bit
        fld     dword [y]
        fadd
        fstp    dword [z]               ; store sum in z

        fld     dword [z]               ; transform z to 64-bit by pushing in stack
        fstp    qword [temp]            ; and popping it back as 64-bit quadword
                 
        push    dword [temp+4]          ; push temp as 2 32-bit words
        push    dword [temp]
        push    dword msg               ; address of format string
        call    printf                  ; Call C function
        add     esp, 12                 ; pop stack 3*4 bytes

        mov     eax, 1                  ; exit code, 0=normal
        mov     ebx, 0
        int     0x80                    ;



D. Thiebaut, Computer Science, Smith College

dthiebaut@hadoop:~/temp$ nasm -f elf addFloats.asm  
dthiebaut@hadoop:~/temp$ gcc -m32 -o addFloats addFloats.o 
dthiebaut@hadoop:~/temp$ ./addFloats  
sum = 4.000000e+00 
dthiebaut@hadoop:~/temp$  



D. Thiebaut, Computer Science, Smith College

More code examples here: 
 

http://cs.smith.edu/dftwiki/index.php/
CSC231_An_Introduction_to_Fixed-_and_Floating-
Point_Numbers#Assembly_Language_Programs

http://cs.smith.edu/dftwiki/index.php/CSC231_An_Introduction_to_Fixed-_and_Floating-Point_Numbers#Assembly_Language_Programs

