- - - - — —_ —_ _ —-— - - - — - — — - - - - - - - - - = = -

8-Bit Microprocessor Interfacing

and Applications
EB-6820-40 WORKOOK

595-4060-04

11=1 Technology

E=HEATHKIT

EDUCATIONATL S YSTEMS

Prepare to succeed.”

Experiment 1

EXPERIMENT 1

ADDRESS DECODING

PURPOSE

1. To demonsirate the difference between full and partial address
decoding.

2. To show how an address decoding chart is assembled.

3. Todemonstrate how an address can be decoded using various types
of logic circuits.

Materials Required

1 ETW-3800 Microprocessor Trainer

2 74LS27 integrated circuit (#443-800)
1 74LS30 integrated circuit (#443-732)

1 74L542 integrated circuit (#443-807)

Hookup wire

Introduction

Many different combinational logic circuits can be used to decode binary bit
patterns. In this experiment, you will observe both the use of SSIand MSI logic
devices to decode addresses generated by the MPU.

10 I STUDENT WORKBOOK

TTL POWER:

PIN 14:45v
PIN 7: GND

TRAINER CONNECTOR BLOCK SIGNALS

Af
ay 10
asg U

as 2
A4
a3 13

az 3
a1 2
ao 2

At A10
A2 5
A9 8 5
1
9

Procedure

1. Turn the Trainer power off and construct the circuit shown in Figure E-1.
Notice that the output of one-third of the 2nd 74LS27 (pin 12) is connected
to the logic probe input connector on the Trainer, NOTE: Make sure you
hook-up power and ground to each IC—the pin numbers are shown in the
schematic. Future experiments will assume that you remember to do this.

E(cLK) —22]
12 (TRAINER) —

LPiIN
(TRAINER}
"CE"

6
8

Figure E-1
An address decoder to completely decode address B400.

2. Tum the Traincr power on and verify that the logic probe is indicating a
logic 1 output from the circuit. This is indicated by the red light in the
lower left-hand comer of the Trainer and a high pitch tone emitting from
the Trainer speaker. If you do not get a logic 1 indication, tamn the Trainer
power off and check your circuit.

3. Examine memory location B400,4. The logic probe should momentarily
indicate a logic O via the green light and a lower pitch sound from the
speaker. Do it again if you missed the action!

4. Press RESET and examine memory address B3FF;s. Was therc any
change in the logic output of the circuit?

5. Press RESET and examine memory address B401,,. Was there any
change in the logic output of the circuit this time?

F W W W YRS W O Er YW O Wr O Wr W mr W e W wme e e e e

Experiment 1 I 1 1

Discussion

The circuit in Figure E-1 completely decodes address B400 . In other words,
this circuit will only respond to this address. A decoding chart for the circuit is
provided in Figure E-2. Comparing this chart to the schematic diagram in Figure
E-1, you will find that the logic 0 address lines are being decoded by the NOR
gates. Remember that the only time a NOR gate will generate a logic 1 is when
all of its inputs arc Q. Thus, when address B400,, appears on the address bus

each NOR gate gencrates a logic 1, since all of the NOR gate inputs are 0.

Lifofs]+] [ofr]efo] {o]ofoof {ofofo]o]
L S L N,

Figure E-2
An address decoding chart for the circuit in Figure E-1

Now, recall that the only time 2a NAND gate produces a logic 0 is when all of its
inputs are 1. From Figure E-1, you see that the NAND gate decodes address lines
Al5, Al3, A12, and AI0 as well as the outputs from the NOR gates. From the
decoding chart you see that these four address lines are high (logic 1) when ad-
dress B400, appears on the address bus. In addition, each NOR gate produces a
logic 1 for this address. As a result, the output of the NAND gate goes low (logic
0) for address B400,,. Although at this point (the output of the NAND) the ad-
dress bus is actually decoded, the generation of the final chip enable pulse re-
quires the decoded address signal to be gated together with the ECLK (timer)
signal of the 68HC11. This is done with the remaining two NOR gates. Notice
that the last NOR gate is used simply as an inverter.* While many decoding cir-
cuits are possible, the circuit in Figure E-1 docs the job of decoding the address
B400 and providing a timed "chip-enable” or "CE" pulse, in this case to the logic
probe, quite well.

In step 3, you examined address B400,, and observed a logic O output for this
address. The examine operation causes the MPU to place address B400,, on the

address bus. The address decoder recognizes this address and generates a logic 0
output. In steps 4 and 5 you examined addresses B3FF,q and B401,, respec-

tively. The dccoder did not respond to these addresses, since it fully decodes
address B400,¢. In other words, the only address the decoder will respond to is

address B400,, Try examining any other address and you will not observe any
response from the decoder.

*NOTE: While it is possiblc to construct a NOR-inverter by simply tieing all
inputs together, good design practice is 1o, instead, tie all but the used input to
ground. This is especially true with timer and clock signals, where race condi-
tions can cause unstable operation.

12 l STUDENT WORKBOOK

Procedure (continued)

6.

Tum the Trainer power off and remove the wire from pin 6 of the
74LS27(#2) to pin 12 of the 74L.830. Tie pin 12 of the 741530 10 +5V.
This eliminates the contribution of address lines AQ, Al, and A2 to the

decoder.

Tum the Trainer power on and examine memory address B400,,. Again
the logic probe will indicate a logic 0 output from the decoder circuit
when address B400,; appears on the bus.

Examine addresses B401,, through B407,, and the logic probe should
indicate that the decoder is responding to any addresses within this range,

(Why?)

Press RESET and examine any address ouiside of the B400,, - B407,,
range and the decoder will not respond. (Why?)

Discussion

By removing address lines AQ, Al, and A2, you are only decoding part of the
address bus as can be segen from the address decoding chart in Figure E-3, The
chart shows that address lines A0, A7, and A2 are not being decoded, and there-
fore are indicated as "don’t cares" on the chart. Thus, the lowest address decoded
is B400, . when these three address lines are 000. The highest address decoded is
B407,5 when these three address lines are 111. Of course, any address between
these two extremes is also decoded.,

A1S Ai2 AN AB AT Al A3 A0

Llol]} [o]+TeJe] [efefoTo] [ofx[xTx]

N N N ..
Figure E-3

An address decoding chart for the circuit in Figure E-1 with 74L527 #2 removed.

Procedure (continued)

10,

Tum the Trainer power off and construct the circuit shown in Figurc E-4.
Notice that one of the 3-input NOR gates on the 2nd 74L.S27 is eliminated

and address lines A0, A1, and A2 are left unconnected. The input to pin 12
of the 741830 is still tied to +5V. put (o pin

- W IR W W W W WS W W W W W

—_ e e e we W

Experiment 1 I 13

TRAINER CONNECTOR BLOCK SIGNALS

TTL POWER

74LS30,74LS27
PIN 14: +SV
PN 7: GND

T4LSS2
PIN 16: +5V
PIN 8: GND

m 1
T4LS42 YD
b]
2P
&
3
S
‘. 1]
A7 :: sk
‘S—Tr -}
AS-T— 7
Al — 8
9

An address decoder which employs & 74L.542 1-of-10 decoder IC.

DEC BCD INPUT

7ALS27
#1

Figure E-4

12

OUTPUT LINES

NO. D C B A ¢ 12 3 45 67 8 9
0 0 0 0 O 01 1 1 1 1 1 1 11
1 0 0 o 1 10 1 % 11 1 1 1 1
2 0 0o 1 0 11 01 11 1 1 1 1
a 0 0 1 1 11 10 1 1 1 111
4 0 1 0 © 171 1t 1.0 1 1 1 1 1
5 o 1 0 1 1T 111 101 1 1 1
6 0 1t 170 1711 1 11 0 1 1 1t
7 0 1 1 1 1 11 1 11 10¢ 1t 1
[} 1 0 0 O 1111 11 1101
9 1t 9 0 1 Tt 1 11 11 1 1 1 0
>9 INVALID CODES 1 11 1 1 1 1 1 1 1

Figure E-5

Logic truth table for the 741542 1-of-10 decoder IC.

*CE"

14

STUDENT WORKBOOK

11. Using the schematic in Figure E-4 and the truth table for the 741542
shown in Figure E-5, fill in the address decoding chart in Figure E-6.

A1S A12 Al11 AB A7 A4 A3
EEEElERENEEEN [IED
Figure E-6
A blank decoding chart.

12. Is the address bus fully or partially decoded? (Why?)

13. Now that you have determined the address range being decoded, examine
all addresses within this range and verify that the decoder responds. Also
examine addresses outside of the decoded range and verify that the

decodcr does not respond.

Discussion

The decoding chart for this circuit is shown in Figure E-7. Here, you see that the
range of addresses being decoded is B400,, through B407,¢, since the lower

three address lines are not being decoded.

L fo]]} Inlflolol l l [o I°I I [x]x JXJ
N N N N
Figure E-7

An address decoding chant for the circuit in Figure E-4.

The 741542 IC decodes address lines A7 through A4. Notice from the circuit that
output line 0 is employed as the 74L.S42 output line. From the truth table in Fig-
ure E-5 you see that this output line is a logic 0 when the decoder inputs (A7 -
A4) are 0000. This logic 0 output is inverted by the NOR gate and applied as a
Iogic 1 to one of the input lines of the 75L.830 NAND gate. As a result, the cir-
cuit responds to address B400, - B407,4.

Now, suppose you were to reconnect the 74L.S42 output from line O to line 1?7
Will this change the address range being decoded? Of course it will, since output
line 1 of the 74L342 only responds to a 0001 input. When this happens, the
decoded address range becomes B410,, through B417,, right? What range
would you get if you reconnected the 74LS42 output to line 2? You’re right if
you thought B420,, through B427,,. Get the idea? In other words, the 74L.542
determines the second least significant hex digit within the decoded address

range.

Experiment 1 I 15

Procedure (continued)

i4. Reconnect the 741.842 output from output line O (pin 1) to output line 1
(pin 2).

15. Verify that the decoded address range is now B410,, - B417,, and not

16. Reconncct the 74LS42 output from output line 1 (pin 2) to output line 2
(pin 3).

17. Verily that the decoded range is now B420,, - B427, and not any of the
previous ranges.

How many dilfcrent address ranges could be decoded with this circuit? What are
they?

1 6 I STUDENT WORKBOOK

EXPERIMENT 2
DATA INPUT

PURPOSE

1. To show how to construct a circuit for writing data to the micro-
processor.

2. To demonstrate various methods for programming the micropro-
cessor Lo accept externally applied data.

3. To demonstrate a software routine for debouncing a switch,

4. To show how to select a debounce routine to fit a specific system.

Materials Required

1

4

ETW-3800 Microprocessor Trainer

SPST pushbutton switches (#64-910)

Black pushbutton switch cover-cap (#462-1144)
Whilte pushbutton switch cover-cap (#462-1145)
Red pushbutton switch cover-cap (#462-1146)
Blue pushbutton switch cover-cap (#462-1147)
74L.S125 integrated circuit (#443-811)

74LS30 integraled circuits (#443-732)

74L.527 integrated circuit (#443-800)

Hookup wire

Experiment 2

Introduction

In this experiment, you will learn how to input data. While many devices can be
used to transfer data to a microprocessor (keyboard, tape reader, modem,
transducer, etc.), they all accomplish their task in basically the same manner.
You will use the Trainer binary data switches and four external pushbutton
switches for data entry.

Procedure

1. In the first part of this experiment, you will interface four binary data
switches to the data bus of the MPU. Make sure the Trainer power is
switched off. Then construct the circuit shown in Figure E-8. Locate the
three ICs next to each other at the extreme lefi-hand side of the connector
block.

2. Make sure all of the binary data switches are down (logic 0). Then posi-
tion switch O up to logic 1.

TTL POWER
7LS125
74LS27 TO MPU DATA LINES D0-D3
74LS30 {CONNECTOR BLOCK ON TAINER)

PIN 14: +5V TRAINER SIGNALS

PIN 7: GND Lps D2 D1t Do l

Ats—1

A12_3 11 8 6 3
. Mo-% 7aLs30 102 1
A)
A4 D. L X y X \QJ \
: R M PA DA A

13

7418125

[+ 12 9| 5 2

I 3 2 1 [} |
BINARY DATA SWITCHES

(8 POSITION DIP SWITCH
CONNECTOR BLOCK ON TRAINER)

Figure E-8
Circuit diagram for the first part of the input experiment.

17

18 | sTupenT workBooOK

3. Switch Trainer power on and enter the program listed in Figure E-9. Then
execute the program beginning at address 0000,

[T HEX HEX MNEMONICS/

ADDRESS | CONTENTS| CONTENTS COMMENTS
0000 Fé& LDB$$ Read binary switch
0001 BS B5 data at address B500,¢
0002 00 00
0003 F7 STBSS .

0004 01 o1 :‘:’mmﬂ
0005 00 00
0006 CF sTOP Stop

Figure E-9

Program for inputting data from binary data switches.
4. Examine address 0100, What is the contents? __ _.

5. Position binary data switch 0 down to logic 0. Then position binary data
switch 1 up to logic 1.

6. Execute the program. Then examine address 01004 What is the contents?

— ¢
7. Position binary data switches 0 through 3 up to logic 1.

8. Execute the program. Then examine address 0100,,. What is the contents?

— 16"

9. Enter the program listed in Figure E-10.

HEX HEX MNEMONICS/

ADDRESS | CONTENTS| CONTENTS COMMENTS
0000 F6 LDBS$ Read swilch data
0001 BS B5 ataddress BS00 g
0002 00 00
0003 BD JSR3$S Store value
0004 co co to the display
0005 15 15
0006 c6 LDB#

0007 oD 0D Store a cartiage
0008 BD JSR$$ return o the display
0009 co co
000A 06 06
0008 20 BRA .
000G F3 F3 Do it again

Figure E-10

Program to read and display binary switch data.

Experiment 2 I 1 9

10. Position the data switches to their logic 0 position. Execute the program
beginning at address 0000,,. You should observe the hex value FO being

displayed in the upper left-hand comer of the Trainer display.

Now, move binary data switch 0 from its logic 0 position up to its logic 1
position. The display shouid now reflect the change by displaying the hex
valuve F1.

Change the lower four binary data switches to any arbitrary logic patten
and the display should reflect the hex equivalent of the binary setting. Of
course, only the least significant hex digit is affected since only the lower
four MPU data lines are being employed.

Discussion

Refer again 1o the circuit in Figure E-8. It operates like read only memory, with
its data being influenced by extemal sources, (the "outside world").

The circuit is partially decoded as shown in Figure E-11. When any of the speci-
fied addresses are sclected, the 74LS125 three state buffer is enabled via the
address decoder. This allows the data switch logic to be coupled to the Trainer
data bus.

A15 A12 A1t AB A7 A4 A3 A0

[xfof+fr]) fofe]olv] [xix]x]x] I*I*l*'!*]

N s Nk o
Figure E-11

Decoding chart for the first input circuit,

Notice that the R/W and ECLK signals arc also used in the decoding. The R/W is
being decoded so that the three state buffers are only enabled during a read
operation. The ECLK is included to ensure consistent data transfer timing.

Both programs in this experiment have used address B500, as an input port. The
first retrieves data from B500, and stores it at 0100,

The second program also retrieves data from B500, . But this time, it jumps to a
display subroutine at address C015,4. The display subroutine displays the hex
contents of accumulator B, which contains the binary switch data. The program
continuously branches back and retrieves switch data immediately after display-
ing the previous data. Thus, when you changed the position of data switches, the
display followed the logic value of the changing switch positions.

Next, some additional hardwarc and software features will be added to the
circuit.

20

STUDENT WORKBOOK

Procedure (Continued)

NOTE: Before performing the next step, locate the four SPST pushbutton
switches (64-910) and the four colored (black, white, red, blue) cover-caps. Pre-
pare the switches for use by installing the caps on the switches. Do this by plac-
ing each cap on a switch and pressing it into place.

11.

Refer to Figure E-12 and construct the circuit shown. This circuit inter-
connects with the first circuit you constructed. Remember, the pushbutton
pins are fragile. Press straight down when you install them in the large
connector block, mounted on the Trainer breadboard. Locate the push-
buttons close together, just to the right of the ICs.

T T T ON ETW.3800 TRAINER TO DIP SWITCH
Dt; ETV:;:aoo mAmm:m _, CONNECTOR BLOCK ON TRAINER
ONE-HALF OF | \ \
ot B B B e e . e e v
ON TRAINER : WIRED AS sEFoasy y " 5,
To 71O To 7O
- 74
PINTI PIN8 PING PIN23 (:‘;"Se‘:gu) LS125 . L L & .
ONE-HALF OF 4 4 4 ‘ 1 LT '
DIP SWITCH | q a ":7 a
CONNECTOR | R
BLOCK i GND§ hiied cfiee oo el

ON TRAINER

ol [PV MU WU P

BAEADBOARD

- Figure E-12
Added circuitry for the data input experiment.

12. Position all of the Trainer binary data switches up to logic 1.

13. Execute the program beginning at address 0000,5. The display should
display the hex value FF,,

14, Press one of the four pushbuttons and note the displayed resuit.

15. Simultaneously press any two pushbuttons and note the result.

16. Simultancously press any three pushbuttons and note the result.

17. Simultancously press all four pushbuttons and note the result.

Discussion

The four pushbutions that you added in Figure E-12 simply provide a convenicent
substitute for the four Trainer data swiiches. You could obtain the same rcsult by
manipulating the data switches. However, the pushbuttons will be needed in the
next portion of the experiment.

Experiment 2 l 21

The program simply rcads the pushbutton data at address B500,4 and repeatedly
displays the hex equivalent of the data. The four pushbutton switches are con-
nected in a pull up configuration. Thus, when a switch is depressed a ground
potential (logic 0) is placed on the corresponding data bus line. Of course, the
upper four data bus lines are not being affected by the circuit and are seen as
logic 1’s.

Try depressing any combination of the pushbutton switches while the program is
running and observe the display. Write the binary equivalent of the hex display
value and you should find logic 0's in the bit positions corresponding to the de-
pressed pushbuttons.

Procedure (Continued)

18. Switch the Traincr power off. Then refer to Figure E-13 and add the cir-
cuit shown to the circuit already wired to the Trainer. There should be
enough room near the right end of the large connector block "on board"
the Trainer to hold the additional 74LS30. Notice that the inputs to the
74LS30 are connected in parallel with the data lines leaving the four push-
button switches. The NOR gate is obtaincd from the 74LS27 IC already in
the circuit. Make sure the NOR gate output (pin 12) is connected to the

XIRQ interrupt input on the Trainer.

TOPINS 1186 3

ON 74LS125 & § & f
I

L

{AS BEFORE) : !
1/2 BINARY DATA &~ ° o +6V
{DIP) SWITCH 12
BLOCK R e
ON TRAINER b : : e e e ’ .
P el . t s
I 1 8
P =--za) 4 FT 1
' | —1 3 2 XiRG
! o 2] 74LS30 13 (ON TRAINER)
: | i ! 1 -l 74L527
= LOgLog e =
EXTERNAL
8K PUSHBUTTON
SWITCHES

ELEE

—

Figure E-13
Interrupt circuitry for data input expetiment circuit.

19. Switch the Trainer power on. Then refer 10 Figure E-14 and enter the pro-
gram listed beginning at address 0000, .

22

STUDENT WORKBOOK

HEX HEX MNEMONIGS/
ADDRESS | CONTENTS| CONTENTS COMMENTS
0000 CE LDX#
0001 gg gg Store XIAQ interrupt
0002 vectol 69
0003 FF s.rxs r to address 2E1 6
0004 €9 69
0005 2E 2E
0006 OE cLl
0007 CE LDX# Clear|-flag
0008 o 1)}
0009 oo 00 Point o storage and loop
000A 01 NOP until interrupt received.
0008 01 NOP
000C 20 BRA
000D Fo F9
O00E B6 LDASS
000F BS BS
0010 00 00 Get data and compare to
0011 Bl CMPASS previous data.
0012 00 00
0013 32 32
0014 27 BEQ ¥ different, store in memory
0015 o7 o7 location 0032
o016 B7 STASS I not, branch to debounce
0017 00 00 o
0018 32 as routine at address 001D46.
0019 7F CLRS
001A 00 00 Flese‘t counter and retum
001B 23 23 from interrupt
001C aB RTI
001D ce LDB#
$:§ :‘1’ CM;oBSS Debounce routine causes
0020 00 00 switch to be read 64 times
0021 33 23 to eliminale contact bounce
0022 27 BEQ
0023 04 04
0024 7C INCS$
0025 00 00
0026 33 33
0027 3B RM
0028 43 COMA
0029 A7 STAX
002A 00 00
0o2B 7F CLRAtS Complement switch
002C 00 00 logic and store.
002D a3 33
002E 08 INX
002F DF STX$
0030 08 08
0031 aB RT Return from interrupt
Figure E-14

Program to debounce the pushbutton swilches.

Experiment 2

20.

21,

22.

23.

24.

25.

26.

27.

28.
29,

30.

Now enter 00,4 into address 0100 through 0110,,. These addresses are
used as data storage registers.

Execute the program beginning at address 0000,

Strike each pushbutton sequentially in a 4, 3, 2, 1 order. When you strike
each button, use a moderate force, such as you would use when typing
with a mechanical typewriter. The data you entered is stored in memory
and will not be displayed.

Examine address 0009,,. It should contain 04,4 which is the number of
pushbutton contact closures made. Change the contents back to 00,

Examine addresses 0100 through 0103, .. They should contain 08, 04, 02,
and 01,¢ respectively. Change the data in Lhese four locations back to 00,
Note (Figure E-12) that the pushbuttons are connected to data lines D,
D,, D, and D, Therefore, the switchcs will enter the binary values 8, 4, 2,
and 1.

Execute thc program. Then press each pushbutton twice in succession (4,
4,3, 3,2,2,1, 1). Address 0009, now contains 08, representing eight

pushbutton contact closures. Enter 00, at address 0009,

Examinc addresses 0100 through 0107 . They will show the value of each

pushbutton pressed and the sequence it was pressed.. Change the data in
these addresses back to 00,,.

Examine address O01E,q. It should contain data value 40,,. Change the
value to 00,,.

Execute the program. Then press each pushbutton once in sequence.

Examine address 0009, and record the contents. __ —16- This number
should equal 04,,. However, it may be higher,

Record the data in the following addresses. You need only examine the
number of addresses that correspond to the value recorded in step 29.

0100 __ __ 0109 _ __
0101 _ __ 010A __ __
0102 __ __ 010B ____
0103 _ __ 010C __ __
0104 __ __ 010D __ __
0105 _ __ 0I10E __ __
0106 _ __ O010F _ __
0107 _ __ 0110 __ ___

0108 _ __

23

24 ,STUDENT WORKBOOK

Discussion

The additional NAND and NOR gates provide an interface between the four
extemnal pushbuttons and the interrupt request line XIRQ. The remaining cir-
cuitry functions as before. Thus, whenever you attempt to enter data with the
pushbutton switches, a request for program interrupt signal is sent to the
MiCToprocessor.

The program listed in Figure E-14 processes the interrupt and debounces the
keys. The program is actually two programs in one. The first part serves as a
"simulated” program that runs in an endless loop until it is interrupted. The re-
maining program steps actually service the input data pushbuttons during the
interrupt. This is the program we will deal with,

Figure E-15 is a flowchart for the interrupt program.

GET
INPUT
DATA

NPUT STORE

SAME AS NO INPUT IN |
JEMP?, TEMP

YES

counr Mo _| INcREMENT CLEAR

EQUAL COUNT INPUT
407,

YES ‘ ‘

STORE RT: avi
INPUT IN
MEMORY

v

CLEAR
COUNT
THEN INX

v

SAVE INDEX
REGISTER
BEFORE AT

'

RTI

Figure E-15
Flowchart for interrupt routine in the debounce program,

T R W W WE W W W WY W W W W W W W W W W W W e e i WY Y W W W e e - W W e e wie e e -

Experiment 2 I 2 5

When the MPU receives an interrupt request; it completes the instruction it is
presently performing, stores the intemal registers and accumulators into the
stack, sets the interrupt mask in the condition code register, then examines ROM
to find out where the program counter is to be vectored. The vector address in-
struction sends thc program counter to the beginning address of the interrupt

program.

Pushbutton data is loaded and compared to the data in the temporary register
(address 0032,). Since this is the first time data is examined, there can be no

match. Therefore, the pushbutton data is stored in the temporary register, the
counter register (address 0033, is reset, and the MPU returns to the original

program. This is the first time the MPU looks at the pushbuttons during the
debounce routine. The data in the temporary register will serve as the reference
for all future interrupts. If the input data changes, this new data will be entered,
and the counter register will be reset. The counter is used later in the interrupt
program to monitor the number of data examinations performed.

Upon return from the interrupt program, the MPU pulis the accumulator and
register data from the stack. This clears the interrupt mask, and since you still
have the pushbutton pressed, the MPU immediately acknowledges the interrupt
request again. Whereupon, it stores it into the stack, sets the mask, and looks up
the interrupt vector,

Pushbutton data is again compared with the temporary register. This time, it
matches. Thus, allowing a branch to address 001E, ;. Data value 40, is loaded
into the B accumulator and then compared with the count register. Since the
count is zero, there is no match. Therefore, the count is incremented and the
MPU retums to the main program.

Assuming you are still holding the pushbuiton down, the MPU goes through the
interrupt routine 62 more times (63 total). During the 64th cycle, if the data is
still good, the MPU will be satisficd that the data supplied by the pushbutton is
true, and the program is allowed to branch to address 002B, ,.

The contents of accumulator A (pushbutton data) is complemented and stored at
the address pointed to by the index register. This address was loaded into the
index register in the main program. It is the first of 17, addresses you reserved

for data when you performed the experiment.

The counter register is cleared (in case the same pushbutton is again pressed).
The index register is incrementcd and stored at address 0008, . This points to the

next data address, in prcparation for the next pushbutton closure. Finally, the
MPU returns to the main program.

You may have wondercd why the pushbutton data was complemented before
storage (address 0028,). This was necessary since the pushbuttons were wired

using inverse logic. That is, when the #] pushbution was pressed, data 1111
1110, was transferred on the data bus, rather than 0000 0001,. Thus, it was nec-

essary to invert the data for "logical” inlerpretation.

26

STUDENT WORKBOOK

In the second part of this portion of the experiment, you changed the number of
data examinations from 40,4 to 00, (address 001E,,). Then when you entered
four pushbutton closures, you probably found more than four entries stored at
address 0009, This occurred because the contacts of a switch tend to bounce
open and closed a number of times before they stay closed. Since the bounce
period can last many milliseconds, the MPU could treat each bounce as as scpa-

rate entry, as you probably experienced.

Again look at the data you recorded in step 30. As you know, the program is
designed to store one pushbutton closure in each address. A series of two or
more identical entries indicates bounce. You may even have one or two zeroes
recorded. This occurred because the contacts opened after an interrupt request,
but before the data could be tested. Thus, a zero is stored.

Contact bounce can not be tolerated. But, what is a desirable number of switch
samples? This will depend on the type of switch. If the sample is too low,
bounce can occasionally get through. Large samples waste time and may require
long switch hold-down periods. Normally five to eight samples are sufficient for
a program of the type you uised in this experiment. However, some switches will
produce excessive bounce. As a precaution, 64 samples are used in the program.

Your Microprocessor Trainer uses a similar software routine for key debounce.
This is stored in itls ROM. Another method for debouncing a switch is to use
cross-coupled NAND gates. They latch on the first closure and any additional
bouncing is ignored. Regardless of the method used, you must debounce any
mechanical switch used for data entry.

If you experiment with the sample rates in the program you entered, always be
sure to change the data at addresses 0009, and 0100, through 0110, before

you execute the program.

Procedure (Continued)

31. This completes this experiment. Switch the Trainer power off. Then re-
move all of the hookup wire and components from the large connector
block.

- W W W W W W W W W P W w e e W U U P U D U PP DU VUV UV VO PSP WS W

Experiment 3 I 27

EXPERIMENT 3

DATA OUTPUT
PURPOSE

1. To demonstrate microprocessor interfacing to an external data
display.

2. To show how a 7-segment display is connected.

3. To demonstrate the trade-offs between hardware and software
display decoding.

4. To provide an opportunity to write a number of output programs.

Materials Required

1 ETW-3800 Microprocessor Trainer

B 470 Q, 1/4-watl, 5% resistors (#6-471-12)

1 TIL-312 7-segment LED (#411-831) or 5082-7731 7-segment LED (#41 1-875)
2 7475 integrated circuits (#443-13)

1 7447 integrated circuit (#443-36)

1 74LS30 integrated circuit (#443-732)

1 741527 integrated circuit (#443-800)

Hookup wire

28 | sTUDENT WoRKBOOK

Introduction

Until now, you have been using programs that moved data within the Trainer,
with any results displayed by the "on-board” display or binary LEDs. This may
be adequate for your purposes, but other methods are needed if extemnal equip-
ment uses the data. The data may take the form of a visual display for an opera-
tor to read, or a digital control signal to manipulate an electro-mechanical
device. This experiment will present a number of interfacing methods and exam-
ine some of the advantages and disadvantages of each method.

Procedure

1. In this part of the experiment, you will examine how the MPU can be
interfaced to LED’s. Make sure the Trainer power is switched off; then
construct the circuit shown in Figure E-16. Notice that +5 volts and
ground are connected to pins 5 and 12 respectively for the 7475 ICs. The
other ICs use pin 14 for +5 volts and pin 7 for ground.

TTL POWER
74L827.74L830
PIN 14: +5V
PIN 7: GND
7475 DATA LED CONNECTOR BLOCK
PIN 5: +5V (ON TRAINER)
PIN 12: GND y & 5 4 3 2 1 0
a1s = o} 10} 15{ 16 s 10| 15| 18
A13 =2 Q4 Q3Q2 Q1 |4 4104 Q3 Q2 O
At2 = 7475 #1 13] 13| 7475 #2
A10 D4 D3 D2 D1]os 03 D2 D1
2’] 7T 8] 3] 2 7T 6 3] 2
i1 7] 6| 5 4 st 2) 1] o
D7 D6 D5 D4 D3 D2 D160
TRAINER DATA BUS

BrpEZa—0 IMZanD-
+
(1]
-l

t |Nl alwln

Figure E-16
Latching binary data for output.

2. Recheck your wiring; then switch the Trainer power on. The data LED's
on the Trainer will show a random vatue.

- WY S W T WY U W e W W u

Experiment 3 I 29

3.

Figure E-17 is a decoding chart for the circuit you constructed. This shows
that the circuit is partially decoded. A 2-digit hex number can be stored at
any of these decoded addresses.

Ats AtT A10 AS A7 Ad A3 A0

Lrfef+]t] [ol1]o]4]]xlxlx!xl [x!x|x!x|

e NS o o-F
Figure E-17

Decoding chart for the circuit in Figure E-16.

Enter the program listed in Figure E-18. Execute the program beginning at
address 0000,,. The data LEDs indicate ». This is

the binary equivalent of the data the program stored to address B500,.

HEX HEX MNEMONICS/

ADDRESS | CONTENTS| CONTENTS COMMENTS
0000 8s LDA# Load A with the value 551
0001 55 55
0002 87 STASS
0003 Bs BS Store A to data LEDs
0004 00 00
0005 CF STOP Stop

Figure E-18
Program to store data to the LEDs,

What hex value would be required to tum off all of the data LEDs? __
—.1¢ Yerify your answer by placing this value in the program at address
0001, and executing the program.

What hex value would be required to tum on all of the data LEDs __ —i6
Verify your answer by placing this value at address 0001, and executing

the program.

Change the data at address 0001, 2 number of times and verify its value
with the data LEDs. Each time you must re-execute the program.

Write and execute a program that will altemately turn all of the data LEDs
on and off. Use a delay loop in the program so that the on and off cycles
can be recognized. Remember that an MPU cycle takes approximately 1
microsecond in the Trainer,

If you have any difficulty, use the Trainer single-step function to examine
the operation of your program.

30

STUDENT WORKBOOK

Discussion

Refer to Figures E-16 and E-17. Notice that a partial decoding scheme is used. A
fully decoded circuit could have been used by adding more combinational logic.

The circuit you constructed appears as a write-only memory to the microproces-
sor. That is, the MPU can write into the selected address, but it can not read the
data stored. However, since eight data LEDs monitor the stored information, you
can see the data. Thus, the MPU is interfaced in 2 way that produces usable data.

Two bistable quad latch ICs are enabled when one of the eight preselccted ad-
dresses is accessed. They act as an 8-bit memory storage device. Thus, any data
appearing on the data lines is latched into the two devices. Since the output of
each latch is active, the data LED connected to each will follow the data level.
Storing 00, will tun off all the LEDs, while storing FF,¢ will tum each LED on.

Right now, the data LEDs should be switching on and off at a regular interval,
because of the program you wrote and executed. If you had any difficulty with
the program, refer to Figure E-19. It lists a program to flash the data LEDs.
While this program may not match your program, it is one of many ways to ac-
complish the same objective.

HEX HEX | MNEMONICS/
ADDRESS | CONTENTS| CONTENTS COMMENTS

0000 4F CLRA Clear A

0001 87 STASS

0002 B5 B85 Store Ato LEDs

0003 00 00

0004 CE LDX#

0005 55 855

0006 00 00 Delay

0007 09 DEX

0008 26 BNE

0009 FD FD

000A 43 COMA Toggle A

0008 20 BRA ———

000C F4 F4 Do it Again

Figure E-19

Program to flash the data LEDs.

Alternatively, you may display a binary upcount on the eight LED indicators
with the foilowing program:

Experiment 3

HEX HEX MNEMONICS/ | COMMENTS
ADDRESS |CONTENTS | CONTENTS
0000 4F CLRA Clear ACCA
0001 B7 STAA Store ACCA
0co02 BS B5 to LEDs
0003 00 00
0004 CE LDX Delay
0005 40 40
0006 00 00
0007 09 DEX
0008 2E BGT
0009 FD FD
000A 4C INCA Upcount
oooB 81 CMPA
000C FF FF
000D 24 BHS
000E F1 F1
000F 20 BRA Do it again
0010 FO FO

Procedure (Continued)

9.

Write a program to alternately store 1's and 0's to the display LEDs. But
this time, adjust the timing so the LED “on” time is longer than the “off[”

time. Then execute the program.

31

32 | sTupENT WORKBOOK

Discussion

This program required two timing loops to allow for the diffcrence between on
and off time. If your first program containcd two timing loops of equal duration,
it was a simple matter to modify the delay times. Figure E-20 illustrates a
method for accomplishing the task.

HEX HEX MNEMONICS/
ADDRESS | cONTENTS| coNTENTS COMMENTS
0000 4F CLRA
0001 CE LDX#
0002 55 55
m g‘; s?fss s::lr:;ﬁs 1o LEDs
0005 BS BS andcelay
0006 00 00
0007 43 COMA
0008 09 DEX
0009 2 BNE
000A FD FD
0008 CE LDX#
000G FF FF
000D 00 00
o0 g; SL‘;” Store 00,4 to LEDs
; and delay
0010 00 00
0011 43 COMA
0012 09 DEX
0013 2 BNE
0014 FD FD
0015 20 BRA Do it again
0016 EA EA
Figure E-20

Program to {lash LEDs at nonregular intervals.

In the next part of the experiment, you wil! add a decoder-driver and a common
anode 7-segment display to the circuit,

Experiment 3 I 33

Procedure (Continued)

10.

11.

12

13.

14,

15.

16.

Switch the Trainer power off. Then, without disturbing the circuit wired to
the Trainer, add the circuit shown in Figure E-21.

{WIRED AS BEFORE TO 7475--FIGURE E-16)
7447 POWER

. | DATA LED
::: ;G.G:l‘:v 3 2 1 0 |CONNECTOR BLOCK
) (ON TRAINER)

[H

-_
-

lelolal

TIL312 LED

Figure E-21
Additional data display for [irst output circuit. []

Recheck your wiring, then switch the Trainer power on and press RESET.

The lower four bits of your data bytc will determine the digit displayed.
Enter the program back in Figure E-18.

Execute the program. What is the bit pattcrn displayed by lower four dis-
play LED’s? ___

SE——
What is the hex equivalent? __..
What is displayed by the new 7-segment display? __,,.

‘Write a program that will cause the 7-segment display to count from Q to 9
and then continuously repeat. Include a delay loop so that each digit will
remain on long enough to be identified. Execute the program.

34

STUDENT WORKBOOK

Discussion

The circuit you just constructed contains a 4-line-to-7-segment decoder driver
and a 7-segment, common anode display. The 7447 decoder driver contains a
large maze of combinational logic which allows it to decode four data bits and
drive the proper segments in a 7-segment display to produce the corresponding

decimal digit.

The display circuit is a multiple LED array with common anodes. The anodes are
tied to 45V and the decoder driver supplies the necessary grounds to light the

selected LED segments.

If you had any questions concerning the program to increment the display. refer
to Figure E-22. It contains a simple program 10 increment the display from 0 to 9
at a slow rate. Enter the program in Figure E-22 and watch the eight data LED’s.

They show the actual value stored in accumulator A.

HEX HEX | MNEMONICS/
ADDRESS | CONTENTS| coNTENTs | COMMENTS

0000 oF CLRA

0001 81 CMPA#)

0003 27 BEQ

0004 FB FB

0005 B7 STASS

0006 BS 85 Store to display

0007 00 00

0008 4C INCA Addone

0009 CE LDX#

Q00A FF FF

000B FF FF Delay

000C 09 DEX

000D 26 BNE

000k FD FD

000F 20 BRA

0010 Fo FO Repeat

Figure E-22

Program to increment the 7-segment display from 0t 9.

Next, you will see that a decoder driver is not necessary if you are willing to let

the MPU do the decoding.

Experiment 3 I 35

Procedure (Continued)

17.

18.

19,

20.

21.

22.

23.

Switch Trainer power off and remove the decoder driver, and display
package. Leave the 74LS27, 74LS30, and 7475 ICs wired to the Trainer
per Figure E-16,

Refer to Figure E-23 and construct the circuit shown. Since the resistor
leads are too short to reach from the connector block to the data LED con-
nectors, insert the free end of each resistor into an unused comnector
socket. Then run hookup wire to the appropriate LED connector block.

-
»
a3
©
=]
n B

1 0 +5V

Rt-R8
4700

TIL312
DATABIT 7 6 5 4 2 2 1 0
LED SEGMENT a b ¢ d e f g dp

Figure E-23
Additional data display.

Re-examine the circuit to make sure it is properly wired, and the resistor
leads do not touch adjacent resistor leads. Then, switch Trainer power on
and press RESET.

This circuit, Jike the previous circuit, uses the address decoder and latches
initially wired to the Trainer. Data stored at address B500,, will determine
which display segment will light. Enter the program back in Figure E-18.

Change the data at address 0001, to 4. Execute the program. What does the
display indicate? 16°

Tolight a particular segment in the display, the corresponding data bit must
be logic 0. The table below the circuit in Figure E-23 indicates the
segments connected to the data bits. What bit pattern will produce the
number 1 in the display? __ __ __ __ ___ 2

Convert the bit pattern from step 22 to hex and enter it at address 0001,
Although it is possible to display two 1s, the correct 1 is produced when
segments b and ¢ are lit.

36

STUDENT WORKBOOK

24

Load and execute the program listed in Figure E-24.

HEX HEX MNEMONICS/
ADDRESS | CONTENTS| CONTENTS COMMENTS
0000 CE LDX#»
0001 00 00 Load beginning table address
0002 1A 1A
0003 A6 LDA X Load display code
0004 00 00
0005 B7 STASS
0006 BS BS Store display code o display
0007 00 00
0008 86 LDA#
0009 FF FF
O00A Cs LDB#
000B FF FF
000C 5A DECB Delay
000D 26 BNE
000E FD FD
000F 4A DECA
0010 26 BNE
0011 F8 F8
0012 08 INX
0013 8C CPX#
0014 00 00
0015 2A 2A Get next display code
0016 27 BEQ
0037 EB E8
oo1e 20 BRA
0019 ES E9
001A 03 03
0018 oF oF
001C 25 25
001D oo oD
001E 99 29
001F 49 49
0020 41 41
0021 tF 1F .
0022 o1 o1 Display codaes
0023 19 19
0024 11 11
0025 Co co
0026 &3 &3
0027 85 a5
0028 61 61
0029 7i 7t
Figurc E-24

Program for incrementing 7-segment display from O, t0F,.

_— T W WSS W W W W W W W W W W W W WP WP W

Experiment 3 ' 37

Discussion

In this experiment, you have successfully eliminated a decoder driver, but at the
expense of increased software, The program sequentially stores bit patterns to
the display to make it appear as the numbers 0 through F,¢ are being stored.

Addresses 001A 4 through 0029 ¢ contain the sixteen display codes in numerical

scquence. This "look-up” table is then accessed by the index register to obtain
the required code.

You may have noticed that the B, digit had a decimal point lit next to it. This is

sometimes used to indicate it is a B rather than a 6. If you prefer not to have the
decimal point, you can change address 0025, 10 C1,.

