
1

Tiffany Q. Liu

March 28, 2011

CSC 270

Lab #8

Lab #8: Introduction to the 6811 Microprocessor Kit

Introduction
 The purpose of this lab was to become familiar with the 6811 microprocessor kit, by

examining what is under the hood of the processor cartridge and by writing, inputting, and

running programs on the 6811.

Materials

Figure 1. 6811 Microprocessor Kit (Taken from D.Thiebaut).

Engineering/Exploration
 In order to see what the 6811 processor cartridge in the kit (Fig. 2) was actually

composed of, we removed the cartridge and opened it up using a Phillips screwdriver. We were

able to identify the following parts on the circuit board (Fig. 3):

 6811 processor

 oscillator (crystal)

 memory (ROM – the operating system)

 surface mount logic gates

 buses

 transistors

 capacitor

 resistors

 static RAM (D43256C)

2

Figure 2. 6811 Processor Cartridge.

Figure 3. 6811 Circuit Board.

Inputting First Program in the Kit
 After putting the cartridge back together, we tried inputting the following prewritten and

assembled program in the kit:

 ADDR BYTES

 0000 CC 00 18

 0003 BD C0 1B

 0006 BD C0 27

 0009 CC 00 27

 000C BD C0 1B

 000F BD C0 27

 0012 BD C0 27

 0015 BD C0 00

 0018 50 72 6F 67 72 61 6D 6D 69 6E 67 20 69 73

 0026 00

 0027 0D

 0028 45 61 73 79 20 61 6E 64 20 46 75 6E 21 21 21

 0037 00

When entering the program, we used the following table, which contained descriptions of each

key on the kit, as reference:

3

To start, we pressed F followed by 0000 to insert starting at address 0000. Then we followed the

assembled program and entered it byte-by-byte (2 digit values). Using the – and + keys allows

the user to go up and down in memory one address at a time to review what was entered. If a

mistake was made, although it is possible to change it while in insert mode, when a value gets re-

entered, the addresses that come after the one that just got changed will be overwritten. Instead,

press NMI, press 1 to enter examine memory mode and change the values there. Again, using the

– and + keys will allow the user to go up and down in memory one address at a time. Once we

finished examining our memory, we pressed NMI again. At this point, we were ready to make

4

the processor start running the program. To do this, we pressed 3 followed by 0000 to tell the

processor to go to run program in memory starting at address 0000. When the program ran, two

strings appeared in the LCD display:

Programming is

Easy and Fun!!!

Figure 4. LCD Display Screen Showing Output of Entered Program.

These strings appeared one line at a time (the first string appeared first at the bottom of the LCD

display screen, then the first string moved up to the top of the LCD display screen when the

second string took the first string’s former position). After a few seconds, the strings disappear.

Writing Own Program
 Next we wrote our own program to assemble by hand and enter into the kit. The

assembly code was written as follows:

 ORG 0000 ; specifies starting address 0

a FCB 2 ; 2 is stored at 0000

b FCB 3 ; 3 is stored at 0001

result FCB 0 ; 0 is stored as placeholder at 0002

 ORG 0010 ; specifies starting address 10

 LDAA 00 ; get Mem[0000] in ACCA (direct addressing)

 LDAB 01 ; get Mem[0001] in ACCB

 ABA ; ACCA <- ACCA + ACCB

 STAA 02 ; Mem[0002] <- ACCA

Using the 68HC11 Instruction Set, we were able to assemble the code into the corresponding

instruction bytes (made up of the opcode and operand). When we did this, we got the following:

 ADDR BYTES

 0000 02

 0001 01

 0002 00

 ...

 0010 96 00

 0012 D6 01

 0014 1B

 0015 97 02

5

We entered the above assembled program into the kit as in the previous section.

Running Written Program
 After we entered our program into the kit, we ran our program. To do this we first

initialized ACCA and ACCB to 0 by pressing 2 to enter examine register mode and using – and

+ to get to registers ACCA and ACCB. When at the correct registers, we set the values to 00.

Then we pressed NMI. Instead of launching the program using the Go key as before, we single-

stepped our program, starting at address 0010. If we were to use Go, our program would have

crashed since the values stored in memory at addresses 0003 through 00ff contain code that does

not belong to our program. To single-step, we pressed 0 followed by 0010. The display showed

the next instruction that the kit is about to execute:

 0010 96 00

 LDAA 00

Then we pressed 0 continuously to single step until the kit was about to execute the ABA

instruction, ie. the following appeared on the screen:

 0014 1B

 ABA

We then took a look at the registers by pressing 2 and using the + and – to navigate the through

the list of registers. When we looked at registers ACCA and ACCB, they had changed from 0 to

2 and 3 respectively, which is what our program was written to do. We then went back to single-

stepping through our program by pressing RPO to return to previous operation and then 0 to keep

single-stepping. When the screen displayed SUBB #1B, we knew that our program had reached

its end since the display was showing the instruction of the next address, which contained

random code. We then pressed 2 to examine registers ACCA and ACCB again. ACCA now

contained 5, which is the sum of its old value plus the value in ACCB, which was still 3. After

pressing RPO, we then pressed 1 to check if ACCA was stored correctly in memory. Using the –

and + keys, we found that [0000] = 2, [0001] = 3, and [0002] = 5, which suggested that the value

in ACCA was stored correctly in memory.

Endless Loop
 We then added a jump instruction at the end of our program to create an endless loop

such that the jump would always take us back to the beginning of our program:

 ORG 0000 ; specifies starting address 0

a FCB 2 ; 2 is stored at 0000

b FCB 3 ; 3 is stored at 0001

result FCB 0 ; 0 is stored as placeholder at 0002

 ORG 0010 ; specifies starting address 10

 LDAA 00 ; get Mem[0000] in ACCA (direct addressing)

 LDAB 01 ; get Mem[0001] in ACCB

 ABA ; ACCA <- ACCA + ACCB

 STAA 02 ; Mem[0002] <- ACCA

 JMP 0010 ; jump to beginning of program

6

 ADDR BYTES

 0000 02

 0001 01

 0002 00

 ...

 0010 96 00

 0012 D6 01

 0014 1B

 0015 97 02

 0017 7E 00 10

When we single-stepped our program as before, when we got to the point where the screen

displayed that the kit was about to execute the jump instruction, we pressed 0 again and the

screen displayed that it was going to execute the load to register A instruction at address 0010,

which is the beginning of the program, verifying that the jump took us back to the start of the

program.

Five Fibonacci’s
For this part of the lab, we wrote a program that computes the first 5 fibonacci’s using the

following algorithm:

 1. fib[1] = 1

 2. fib[2] = 1

 3. fib[3] = fib[2] + fib[1]

 4. fib[4] = fib[3] + fib[2]

 5. fib[5] = fib[4] + fib[3]

We wrote the following and entered it into the kit:

; Compute the first 5 fibonacci values and store them in an array.

 ;--- data section ---

 ORG 0000

 0000 01 fib FCB 1,1,0,0,0 ; create an array of 5 bytes

 0001 01

 0002 00

 0003 00

 0004 00

 ;--- code section ---

 ORG 0010

 0010 CE 00 00 START: LDX #0000 ; IX = 0, addr 1st byte of array

 0013 A6 00 LDAA 0,X ; ACCA = mem[0]

 0015 AB 01 ADDA 1,X ; ACCA = ACCA + mem[1]

 0017 97 02 STAA 02 ; mem[2] = ACCA

 0019 AB 01 ADDA 1,X ; ACCA = ACCA + mem[1]

 001B 97 03 STAA 03 ; mem[3] = ACCA

 001D AB 02 ADDA 2,X ; ACCA = ACCA + mem[2]

 001F 97 04 STAA 04 ; mem[4] = ACCA

Note that our code only works with arrays starting at memory address 0000. After we entered our

program into the kit, we single stepped it starting at 0010 as before. After we executed the last

line of our program, we pressed 1 to examine the contents of memory. When we did this we

7

found: [0000] = 1, [0001] = 1, [0002] = 2, [0003] = 3, and [0004] = 5, which verified that our

program correctly computed the first five Fibonacci values.

Preparation for Next Lab
 In preparation for the next lab, we wrote a small program as an endless loop that reads a

byte from memory address 0, increments it by 1, and stores the result back at that address:

; An endless loop that reads a byte from memory address 0, increments it by

; 1, and stores the result back at that address.

 ;--- data section ---

 ORG 0000

 0000 00 cnt FCB 0 ; start cnt at 0

 ;--- code section ---

 ORG 0010

 0010 96 00 START: LDAA cnt ; ACCA <- cnt

 0012 4C LOOP: INCA ; ACCA <- ACCA + 1

 0013 97 00 STAA cnt ; cnt <- ACCA

 0015 7E 00 12 JMP LOOP ; jump to 0012

This program will have a loop that takes a total of 8 cycles: 2 cycles for INCA, 3 cycles for

STAA cnt, and 3 cycles for JMP LOOP.

