
Building Computational Grids with Apple’s Xgrid Middleware

Baden Hughes

Department of Computer Science and Software Engineering
The University of Melbourne,
Parkville VIC 3010, Australia

Email: badenh@csse.unimelb.edu.au

Abstract

Apple’s release of the Xgrid framework for distributed
computing introduces a new technology solution for
loosely coupled distributed computation. In this pa-
per systematically describe, compare and evaluate the
Apple native Xgrid solution and a range of third
party components which can be substituted for the
native versions. This description and evaluation is
grounded in practical experience of deploying a small
scale, internationally distributed, heterogenous com-
putational infrastructure based on the Xgrid frame-
work.

Keywords: Xgrid, Apple, computational grid, middle-
ware

1 Introduction

The release in 2005 of Apple’s Xgrid framework for
grid introduces a new technology solution for loosely
coupled, distributed computation. Xgrid has been
widely promoted as an extremely usable solution for
less technical user communities and challenges the
systems management paradigm incumbent in many
computational grid solutions currently deployed. As
such, the uptake of grid computing by ad hoc groups
of researchers with non-dedicated infrastructure using
the Xgrid framework has been significant, in numer-
ical terms and in terms of the visibility of the solu-
tion. A particular point to note is that the simple
Xgrid framework has the potential to fundamentally
change the delineation between grid users and grid
maintainers, and as such to promote new types of
research enabled by a self-sustaining model for man-
aging computational grid infrastructure.

For researchers in the grid computing space and for
systems manageers of production grid facilities, Xgrid
has often been viewed as a toy solution. This paper
seeks to counter this perception in two ways: first by
describing the Xgrid architecture and its components
in detail, and secondly by adopting an analysis model
more prevalent in the grid computing domain. A no-
table point here is that this paper does not simply
cover the Apple distributed native Xgrid components
but also considers a range of third party components
which can be used to extend the Xgrid framework in
directions more amenable to the types of production
environments currently occcupied by solutions such
as the widely used Globus toolkit.

Copyright c©2005, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2005), Hobart, Australia. Conferences in
Research and Practice in Information Technology, Vol. 54.
Rajkumar Buyya and Tianchi Ma, Ed. Reproduction for aca-
demic, not-for profit purposes permitted provided this text is
included.

The structure of this paper is as follows. First we
consider the overall positioning of the Apple Xgrid so-
lution, and its high level systems architecture. Next
we review in depth the Xgrid architecture and com-
ponents officially distributed by Apple in Xgrid 1.0.
Following this we will review a range of interopera-
ble third party components that can be used to com-
plement or replace the proprietary Apple components
under certain circumstances. We report experience in
using a heterogenous Xgrid to perform some experi-
ments in natural language processing; and report on a
range of other production uses of Xgrid based on pub-
lished papers and user group surveys. Finally we con-
duct an evaluation of the overall strengths and weak-
nesses of the Xgrid solution and consider the niche(s)
into which Xgrid based solutions may effectively be
deployed and offer some concluding thoughts.

It is worth stating upfront that this paper specif-
ically does not seek to either conduct empirical per-
formance comparisons between Xgrid and alternative
grid computing solutions nor to report the results of
a specific scientific experiment which is enabled by
Xgrid-based infrastructure. Rather the purpose of
this paper is to describe, and where relevant compare
and evaluate the overall Xgrid architecture and its
components from a functional perspective.

2 A Brief History of Xgrid

Xgrid was first introduced by Appple in January 2004
as a Technology Preview (TP1). Xgrid TP1 was con-
sidered as a proof of concept, and was not designed
for production applications owing to reliability, secu-
rity and scalability issues. Rather it was designed to
draw feedback from early adopters as to the viability
of an Apple grid computing product.

Xgrid Technology preview (TP2) was released in
November 2004, retaining most of the functionality
of TP1, but with some underlying CLI and data for-
mat changes. This was a very widely adopted re-
lease, Xgrid based computational environments were
deployed for production use, and third party compo-
nents began to emerge.

Xgrid 1.0 was released with Mac OS X 10.4 ‘Tiger’
in April 2005. 1.0 introduced a significant number of
changes. Perhaps controversially, Xgrid 1.0 included
a dependency on Mac OS X Server (TP1 and TP2 did
not require a server grade operating system), which
allowed Apple to leverage the significant investment
it had made in Mac OS X Tiger Server in the areas of
scalability, single sign on, job specific authorization,
server local and remote administration, server grade
documentation, and the inclusion of a GUI based in-
teraction model (TP1 and TP2 only had a CLI).

3 Solution Architecture

The Apple Xgrid architecture is a standard three tier
architecture consisting of a Client, Controller and
Agent. We will review each of these tiers in turn.
The Controller, Agent and Client can all exist on a
single machine, although in practice, these are more
typically distributed.

3.1 Client

An Xgrid client provides the user interface to an Xgrid
system. The client is responsible for finding a suitable
controller, submitting a jobs, and retrieving the re-
sults. Clients can rely on the controller to mediate all
job submissions; they do not need to be aware of the
actual job execution schedule across available com-
putational agents. It is useful to note that an Xgrid
client is detachable from the network even while jobs
are being executed - completed jobs are retrieved by
the client from the controller once network connectiv-
ity is re-established.

3.2 Controller

The controller, representing the middle tier, is the
centre of the Xgrid framework. A controller typically
runs on a dedicated system (like a cluster head node).
The controller handles receiving jobs from clients, di-
viding them into tasks to execute on various agents,
and collecting and returning the results.

3.3 Agent

The final tier in the Xgrid solution is the Agent. Typ-
ically there is one agent per compute node, not dis-
similar to other grid computing frameworks, although
natively Xgrid agents on dual-CPU nodes default to
accepting one task per CPU (similar policies are often
implemented in a cluster LRMS). In similarity with
other computational grid solutions, Xgrid allows for
a range of agent types ranging from full-time agents,
part-time (cycle stealing) agents, and remote agents
(for distributed computational grids).

4 Xgrid Systems Configuration and Manage-
ment

The client, controller and agent software ships stan-
dard with Apple’s Mac OS X 10.4 (Tiger) operating
system. As such, the systems management task is
largely configuration oriented rather than installation
oriented. A simplified configuration can be setup in
less than 5 minutes, significantly reducing the barrier
to entry for less technical users.

Desktop systems or dedicated cluster nodes can
be configured and enabled as Xgrid agents either lo-
cally through the Sharing pane in their System Pref-
erences application, or remotely via SSH or one of Ap-
ples network-based desktop management tools (Apple
Remote Desktop, NetBoot, or Network Install). For
larger installations als Xgrid supports the Apple Net-
Boot service which allows for nodes to load a stan-
dard configured operating system image from a cen-
tral server (similar to the types of systems typically
used for cluster management).

Mac OS X Server systems are configured and en-
abled as Xgrid agents or controllers through the stan-
dard Server Admin application suite. Server instal-
lations provide the host infrastructure to manage au-
thentication, which can include none, shared pass-
word, or Single Sign On (using a Kerberized service
such as LDAP or Active Directory). Notably in this
area Xgrid does not adopt the X.509 certificate based

authentication prevalent in other computational grid
middleware suites. Service control is also enabled via
the Server Admin environment - in addition, there
is a command line control interface for Xgrid, which
allows service management (with the exception of au-
thentication policies) from a shell environment.

The discovery mechanism in Xgrid is that both
clients and agents natively search for a controller.
The controller is the only Xgrid component that re-
quires an open TCP port for such discovery requests.
All communications between clients, controllers and
agents are able to be strongly encrypted over the net-
work ensuring in transit security across segregated
administrative domains.

Xgrid can automatically discover available re-
sources on a local network via a number of Apple
services including ZeroConf, Rendezvous or Bonjour.
Discovery is recursive within a domain or subdomain
or Xgrid configurations can be created by manually
entering IP addresses or hostnames.

5 Xgrid Job Management

Xgrid jobs are expressed in Apple’s standard plist
format (Apple, 2005a). Further details of the expres-
sion are provided in a later section in the context of
the Xgrid Command Line Interface.

Jobs can be submitted to the Xgrid controller us-
ing a range of client tools (discussed below). In all
cases, an accompanying job specification is used by
the controller to determine whether (and how) to de-
compose a submitted the job, the code and data pay-
loads for a given job, and whether the job submission
is to be synchronous or asynchronous. Xgrid con-
trollers schedule jobs in the order they are received,
assigning each task to the fastest agent available at
that time (determined by active probing of the cur-
rent computational load of each agent). Alternatively,
the job specification allows for dependencies among
jobs and tasks to be expressed to ensure schedul-
ing in the proper order. In most cases, if any job
or task fails, the scheduler will automatically resub-
mit it to the next available agent. Xgrid tasks using
password-based authentication will minimize possible
interactions with the rest of the system by executing
as unprivileged Xgrid users (by default the system
user nobody in the system’s /tmp directory). Tasks
using single sign-on for both clients and agents will
run as the submitting user, allowing appropriate ac-
cess to local files or network services.

Because of the three-tier architecture of Xgrid,
clients can submit jobs to the controller asyn-
chronously, then disconnect from the network as
mentioned earlier. The controller will cache all
the required data, manage scheduling and task-level
failover, then hold and return all the results, includ-
ing standard output and standard error from each
task. If requested, the controller will notify the user
via email that the job has been completed. The user
can then retrieve the results from any authenticated
Xgrid client system using the relevant job ID.

6 Xgrid System Scalability

Apple’s published scalability benchmarks are rela-
tively modest: Xgrid 1.0 has been tested on config-
urations of up to 128 agents; 20,000 queued jobs (or
100,000 tasks per job); 2Gb submitted data per job;
1Gb results per task; 10Gb aggregate results per job.
Most notably, this testing is in a cluster (rather than
distributed) mode.

Some of these benchmarks have been exceeded,
and are discussed further in the section entitled
’Other Use Cases’ elsewhere in this paper.

Figure 1: The Native Xgrid Architecture

7 Xgrid Native Components

Having described the high level architecture of Xgrid,
in this section we review the official Xgrid architec-
ture and components as distributed in Xgrid 1.0. A
diagrammatic representation can be seen in Figure 1.
Here we proceed to describe the Xgrid clients, con-
troller and agents in that order.

7.1 Xgrid Graphical User Interface

Mac OS X ships with a simple GUI based interface to
Xgrid called Xgrid.app, which supports only a few
basic functions: view the Xgrid Agents and some ba-
sic properties for each Agent from a single Controller;
submit single task jobs via a GUI; retrieve job status
and results. This being said, Xgrid.app is a demon-
strator application, and it is not promoted for tasks
more complicated than basic testing. Other interfaces
to be discussed next and in the third party section are
much more fully featured.

7.2 Xgrid Command Line Interface

The Xgrid framework has a well documented Com-
mand Line Interface (CLI) The Xgrid command line
client is simply called xgrid. xgrid takes a num-
ber of parameters vis: executable and the input file
or input file directory and the output file or output
file directory Executables do not have to be supplied
as transfer objects, they can be instantiated from a
locally installed version of the executable. The exe-
cutable (if required) and the file or directory is copied
to the Agent, after which it is executed. Std error and
result streams are returned to the controller after ex-
ecution. Naturally such a simple set of parameters
make it easy to wrap the CLI directly in a language
such as Unix shell.

The CLI can be instantiated in two different ways
depending on whether syncrhonous or asynchronous
execution is required.

For synchronous exection: xgrid -h $HOSTNAME
-job run -in $INPUTFILE -out $OUTPUT where
$HOSTNAME is the fully qualified host name and
domain; $INPUTFILE is the input file or directory
containing the payload data; and $OUTPUTFILE is the
output file or directory for the results.

For asynchronous execution: xgrid -h
FQHOSTNAME -job submit -in $INPUTFILE -out
$OUTPUT where the parameters are the same as for
synchronous, although the command is changed from
run to submit.

The job submission process returns a numerical
job identifier ($ID), which can then be used to query
status of the job on the computational grid, vis:
xgrid -job attributes -id $ID

The output of a status query includes a number of
fields and corresponding values, vis: activeCPUpower
(number of CPU cycles currently consumed by the

job); applicationIdentifier (name of the applica-
tion which instantiated the job); dateNow (current
date and time); dateStarted (date and time job was
started); dateStopped (date and time the job fin-
ished); dateSubmitted (date and time the job was
submitted); jobStatus (either running or finished);
name (the executable name); percentDone (a numer-
ical indicator of progress); taskCount (the number of
tasks done); and undoneTaskCount (the number of
tasks pending).

The results of jobs can be retrieved again using
the job identifier $ID, vis: xgrid -job results -id
$ID.

In addition to singular task jobs, the Xgrid CLI
also supports multitask jobs by virtue of a batch mode
which supports job specification via a plist (prop-
erty list file similar in type to a the more commonly
used plan file in other grid environments) (Apple,
2005a).

An example plist is shown below, this executes
the Unix calendar program to generate the March
2005 output.

{
jobSpecification = {
applicationIdentifier = "com.apple.xgrid.cli";
inputFiles = {};
name = "Calendar";
submissionIdentifier = calendar;
taskSpecifications = {
0 = {arguments = (3, 2005);
command = "/usr/bin/cal";};
};
};

}

The CLI syntax for instantiation is slightly
different with the use of a plist: xgrid -job
batch $PLISTFILE. Likewise, a different status
output from the Xgrid CLI in response to
a query; (xgrid -job specification -id $ID)
is as follows: applicationIdentifier (name
of the application which instantiated the job)
inputFiles (input data files) name (the exe-
cutable name) submissionIdentifier (name of
the plist submission which instantiated the job)
taskSpecifications (a task list consisting of argu-
ments and commands) arguments (any relevant argu-
ments for the executable) command (the executable)

The plist can be extended with multiple arguments
or commands or both as necessary, each task with an
arbitrary identifier.

A plist can also be expressed as XML which adds
a degree of flexibility as to how these job specifications
are created. A plist expressed in XML is shown
below:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC
"-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>jobSpecification</key>
<dict>
<key>applicationIdentifier</key>
<string>com.apple.xgrid.cli</string>
<key>inputFiles</key>
<dict/>
<key>name</key>
<string>Calendar</string>
<key>submissionIdentifier</key>
<string>calendar</string>
<key>taskSpecifications</key>

<dict>
<key>0</key>
<dict>
<key>arguments</key>
<array>
<string>3</string>
<string>2005</string>
</array>
<key>command</key>
<string>/usr/bin/cal</string>
</dict>

</dict>
</dict>
</plist>

7.3 Xgrid Cocoa Framework

In order to support developers building native
Mac OS X GUI based applications, Apple provides
XGridFoundation, a Mac OS X Cocoa frame-
work based on ObjectiveC. XGridFoundation
can be used by any Cocoa application by in-
cluding the relevant header files eg.#import
<XGridFoundation/XGridFoundation.h>.

In order to understand the underlying architecture
of the Xgrid framework, and because such frameworks
are not particularly common among grid computing
middleware suites, we consider in detail the specific
classes exposed by XGridFoundation.

First the classes themselves are described, in ap-
proximately the order they are encountered in a typ-
ical application.

• XGConnection is used to represent a connection
to an Xgrid server. It can be initialized with a
host name, or via Bonjour.

• XGAuthenticator is at connection instantiation,
which requires some form of authentication with
the Xgrid server. XGAuthenticator is an ab-
stract class whose subclasses are used by an XG-
Connection to authenticate.

• XGTwoWayRandomAuthenticator is a subclass of
XGAuthenticator which used to perform pass-
word based authentication.

• XGGSSAuthenticator is a subclass of
XGAuthenticator which authenticates with
Single Sign-On (eg LDAP).

• XGController Instances of this class are proxies
for Xgrid controllers. They are initialized with
an XGConnection, and are used to submit jobs.

• XGActionMonitor is a class used to monitor the
activity of some asynchronous requests, such as
submitting a job via an XGController.

• XGResource is an abstract class which remote-
grid resources, like grids and jobs. Instances of
subclasses of XGResource are proxies for entities
on the Xgrid server.

• XGGrid is a subclass of XGResource which rep-
resents the grids on the Xgrid controller.

• XGJob is a subclass of XGResource which repre-
sents the jobs running on an Xgrid controller.

• XGFile is a file or stream that is stored on the
Xgrid controller.

• XGFileDownload is a class used to retrieve files
and streams from the Xgrid controller after a job
is complete.

A complete description of all Cocoa classes and
methods can be found in (Apple, 2005b). A signifi-
cant point of differentiation between Xgrid and other
grid computing middleware suites is that the pro-
grammatic framework is fully vendor supported by
Apple.

7.4 Xgrid Controller

The Xgrid Controller has the primary task of manag-
ing communications between the various components
of the Xgrid. It interfaces with the Clients (as de-
scribed above) and the Agents (as described later).

The controller interprets the job submissions from
the client, and decomposes them as appropriate, then
instantiates execution by transferrring the job to the
next available Agent. In addition, the Controller
monitors each Agent directly, and determines avail-
ablity to be based on the current CPU consumption
on a given Agent with the lowest CPU consumption
indicating the next available Agent. There can only
be one Controller per logical grid, although each con-
troller can have an arbitrary number of Agents con-
nected to it.

A Controller is typically hosted in a high avail-
ability network location, having a fixed IP address
with access over TCP port 4111 required to be open
for Agent and Client communication. Typically the
Controller is installed on the same subnet as Agents
and Clients, facilitiating discovery using one of the
various Apple resolution protocols.

The Xgrid Controller has a command line admin-
istration tool xgridctl which can be used to start,
stop and restart the Controller instance. This tool is
very similar to the widely used apachectl, and can
also be used to control a local agent via a simple com-
mand line switch.

In addition to the command line administration
of the Controller, Apple distributes the Xgrid Admin
tool, which is a GUI administration tool for Xgrid,
and is usable on any Mac running an Xgrid Client,
Agent or Controller. The Xgrid Admin tool allows a
user to login to a Controller and monitor its activi-
ties, including measuring its CPU capacity, reviewing
pending, active and completed jobs; querying agents
for their status and job progress etc.

7.5 Xgrid Tiger Agent

The Xgrid Agent actually executes the computational
tasks specified by a job. An Agent can belong to one
virtual organisation at a time, by virtue of a relation-
ship with a Controller. By default, an Agent will seek
to bind to the first available Controller on a network,
although this can be overwritten with a manual direc-
tive. The Xgrid Tiger Agent defaults to “part-time”
mode, only accepting jobs if there has been no key-
board activity for 15 minutes on the host on which it
is installed. Alternatively, an Agent can be configured
to act as a dedicated node.

Agent behaviour on an individual machine is sub-
ject to the usual Unix based resource allocation mech-
anisms - they can be jailed or chrooted, have storage,
CPU or memory quotas set, and be monitored via
standard system utilities.

7.6 Xgrid Panther Agent

The Xgrid Panther Agent is identical to the Xgrid
Tiger Agent above, except that it runs on machines
installed with Mac OS X 10.3 (Panther). This solu-
tion is Apple’s advocated solution for enabling legacy
Mac OS X based systems to be utilized in computa-
tional grids.

Figure 2: Xgrid Architecture with Third Party Com-
ponents

7.7 Xgrid Network Communications

The communications protocol in Xgrid is built on
BEEP, the Blocks Extensible Exchange Protocol
(Rose, 2001). BEEP is an IETF standard similar to
HTTP, but designed for two way multiplexed commu-
nication particularly for peer to peer environments.
BEEP uses XML profiles to define multiple channels
over a single socket, reducing negotiation overhead
and thus network utilization.

8 Third Party Components

Next we turn to a discussion of a number of third
party components which are interoperable with the
Apple Xgrid framework. It should be noted that these
third party components can be combined with the na-
tive components described earlier. Diagramatically,
the third party components can be see in Figure 3.
Again we proceed by discussing clients, controllers
and agents in that order.

8.1 GridStuffer

GridStuffer (Parnot, 2005) is a Cocoa application
which allows the submission of multi-task jobs in a
simple manner which closely resembles the xgrid CLI
format. The underlying idea of GridStuffer is em-
ulation of the the batch plist format without the
complexity of working with the plist itself, and is
motivated by the need to to provide a simple GUI
and easy result retrieval. The application uses Ap-
ple’s Core Data framework to store information about
job progress (allowing jobs to be restarted from a
checkpoint). GridStuffer is being used by the Xgrid-
Stanford project to submit large numbers of jobs each
of several days duration, and is hence robustly engi-
neered after significant text cycles.

A notable contribution of GridStuffer is the con-
cept of a “metajob”, a construct which may represent
a number of smaller jobs. A metajob simply consists
of a list of shell commands defined in an input file.
One metajob can consist of thousands of commands
and the status for each individual command can be
monitored independently. Each command can be run
more than once, is validated based on its output and
will be automatically rescheduled in case of job fail-
ures. For each command, GridStuffer keeps track of
the number of successes, the number of failures, and
will consider a command ’Completed’ or ’Dismissed’
based on user-defined thresholds.

Technically, a metajob also consists of one or sev-
eral Xgrid jobs, which themselves are made from one
or several of the commands listed in the input file.
GridStuffer automatically creates new Xgrid jobs as
needed. The number of commands in one job is user
definable. More Xgrid jobs are sent only as needed,
on a regular basis. For instance, a metajob can con-
sist of 1,000,000 commands, but only batches of 1000
are really submitted at a given time to the Xgrid con-
troller. The Xgrid jobs are identified using the indices

of the submitted commands The Xgrid jobs are auto-
matically removed from the grid when they finish or
fail.

The results of each command are automatically
loaded to the local disk of the client instantiating
GridStuffer. GridStuffer can handle this either di-
rectly using the standard Mac OS X Finder style di-
rectory structure; or by using flags in the input file,
can use user preferences about output location.

Unlike the native Xgrid client components, Grid-
Stuffer allows connection to several Controllers at the
same time. Any Controllers found on the local net-
work (via Bonjour; restricted to the host subnet) will
automatically be located and listed. Additionally, the
address of a Controller can be manually provided (for
cases where the Controller is on a different subnet).
All the jobs are randomly sent to only one of the con-
nected Controllers, and all jobs in a metajob are sent
to the same Controller. (The author of GridStuffer
advises that in the next version, jobs will be able to
be submitted to several grids and several controllers
simultaneously - a metajob will simply be divided in
chunks and sent to the different servers, optionally
based on the number of available agents.)

8.2 PyXG

PyXG (Granger, 2005) provides a Python interface to
an Xgrid, allowing users to submit and manage Xgrid
jobs on a cluster from a Python script or within an
interactive Python session. PyXG only works with
Mac OS X 10.4 (Tiger) Clients and requires PyObjC.

The main functions of PyXG are as follows. Xgrid
executions can be instantiated from Python scripts
and Python interactive sessions. Single task and
batch Xgrid jobs can be submitted and managed from
within Python; available grids and their correspond-
ing status can be queried. Active Xgrid jobs can be
listed, their status queried, and administrative ac-
tions such as delete, restart etc can be issued to jobs.

The Python to Xgrid communication in PyXG is
implemented through a set of Python classes that
wrap the Xgrid command line directly. Thus, all
xgrid parameters are available to PyXG. The Co-
coa API is not used in PyXG. (The author of PyXG
advises that a version of PyXg with Cocoa support is
currently under development).

8.3 Gridbus Data Broker Interface

Experimental support for Xgrid instantiation has
been introduced in the Gridbus Data Broker (Venu-
gopal, Buyya and Winton, 2004) since the release of
version 2.2 (Assuncao et al, 2005). In essence this
support equates to an XML job specification transfor-
mation from the internal Gridbus Data Broker’s for-
mat to match the Apple plist format, and a wrapper
around the Xgrid command line interface to facilitate
execution. The interested reader is referred to Assun-
cao et al (2005) for a more detailed treatment of the
implementation and experimental evaluation.

8.4 XgridLite

XgridLite (Baskerville, 2005) is an extension for Mac
OS X 10.4 (Tiger) which emulates a full Controller
on the standard version of Mac OS X Tiger. Hence,
XgridLite is a drop in replacement for Mac OS X 10.4
(Tiger) Server’s Xgrid Controller, albeit with some
feature reduction.

The main features of XgridLite are the ability to
manage the status of the Xgrid Controller directly;
to set passwords for client and agent authentication;
and administratively reset the Controller to default

settings. Unlike the other third party components,
XgridLite is not free, but is nominally priced share-
ware.

8.5 Xgrid Linux Agent

In addition to third party components which provide
alternative client interfaces to the Xgrid Controller,
there is also an Xgrid Linux Agent (Cote, 2004) which
extends the flexibility of an Xgrid-based computa-
tional grid to allow for alternative operating systems
such as Linux. The Xgrid Linux Agent was one of the
first third party components available for Xgrid. The
Xgrid Linux Agent compiles on a range of Linux and
Unix variants including Debian, RedHat, Solaris and
OpenDarwin.

Using the Xgrid Linux Agent, an native Xgrid
Controller is required. Additionally, the application
instances need to be constructed in such a way that
they are either aware of the multi-architecture nature
of the computational grid, or so that they are archi-
tecture independent.

A notable point is also that the Xgrid Linux Agent
only supports operation in the passwordless authen-
tication mode.

8.6 XgridAgent-Java

XgridAgent-Java (Campbell, 2005) is a pure Java
Agent for Xgrid written entirely in Java. The pri-
mary motivation of this project is to provide a plat-
form independent Xgrid agent, allowing for heteroge-
nous Xgrid clusters to be deployed. XgridAgent-Java
utilises a number of open source components includ-
ing JmDNS (van Hoff and Blair, 2005), BEEPCore-
Java (Franklin, 2005) and Base64 (Brower, 2005).
XgridAgent-Java supports dynamic resolution of an
Xgrid cluster controller via a range of Apple sup-
ported resource discovery services (either ZeroConf or
Rendezvous or Bonjour), all via JmDNS. BEEPCore-
Java is used to handle the BEEP layer of the Xgrid
protocol. Base64 is used to handle binary elements in
the Apple XML plist layer of the protocol.

9 Experimental Experience

In evaluating the Xgrid framework, we have deployed
three small scale, al grids. The specifications for each
of the relevant grids is described in the tables below,
along with the location information for each node.

9.1 Infrastructure

In Grid 1 (Figure 3), a small cluster configuration
is the infrastructure model selected, with native Xgrid
components being deployed.

In Grid 2 (Figure 4), we use the same cluster ar-
rangment, hardware and operating system as in Grid
1, except we replace the native Xgrid components
with relevant third-part components.

In Grid 3 (Figure 5), a range of processor archi-
tectures and operating systems are featured on the
Xgrid, demonstrating the considerable flexibility in
building heterogenous Xgrid’s using third-party com-
ponents. Grid 3 is also distributed geographically,
with infrastructure in multiple Australian locations,
in Europe and in the USA.

A point of considerable interest in the specifications
of these test grids is that despite Xgrid being an Ap-
ple product, through the utilisation of 3rd party mid-
dleware bindings, the Xgrid environment can be de-
ployed across multiple hardware and software plat-
forms.

In essence the difference between Grid 1, Grid 2
and Grid 3 is that Grid 1 was deployed using the na-
tive Xgrid components; Grid 2 was deployed using
third party components over the same hardware as
Grid 1, whereas Grid 3 was deployed using a combi-
nation of native and third party Xgrid 1.0 components
over variable hardware and operating systems. More
specifically in Grid 1 we used the native Xgrid Com-
mand Line Interface as the Client; the native Xgrid
Controller as the Controller; and the native Xgrid
Agent for the Agents. Contrastively in Grid 2 we
used GridStuffer as the Client, the XgridLite Con-
troller, and XgridAgent-Java for the Agents. In Grid
3 PyXG was used as the Client; the native Xgrid Con-
troller was used as the Controller; and both Xgrid
Linux Agent and XgridAgent-Java were used for the
Agents.
9.2 Experiments

The experimental grids were used to perform a natu-
ral language processing task. This paper does not in-
tendto report detailed metrics for this particular task,
but rather used it as a method of testing the Xgrid
framework.

For reference the experimental task is to to anno-
tate the English Gigaword Corpus (Graff, 2002) with
Part of Speech (POS) tags. The analysis and anno-
tation is performed using the Python-based Natural
Language Toolkit (Bird and Loper, 2004). The task
is embarassingly parallel in the dimension of the cor-
pus segmentation: 314 individual files with an average
size of 38 Mb per file; the total corpus is 12Gb in size.
The Natural Language Toolkit is installed locally on
each of the agent systems, with the input data and
a processing script transferred from the client to the
controller to the agents, and back at the end of the
experiment.

On Grid 1 (the cluster configuration with native
Xgrid components) processing the entire end to end
task took approximately 380 minutes of wall clock
time to complete (with network transfer overhead be-
ing very low, owing to the Client being on the same
LAN as the Controller and Agents).

On Grid 2 (the cluster configuration with third-
party components) processing the entire end to end
task took approximately 402 minutes of wall clock
time. Again the network transfer overhead being very
low, owing to the Client being on the same LAN as
the Controller and Agents.

On Grid 3 (the larger distributed heterogenous
configuration) processing the entire end to end took
approximately 670 minutes of wall clock time. The
network transfer overhead in this context was con-
siderably higher given the international transfers re-
quired to move data to the nodes in the USA and
Europe). However, because the computational grid
consisted of more nodes, naturally a greater degree of
parallelism was achieved.

It is interesting to note that there is only a statis-
tically insignificant difference between elapsed time
between Grid 1 and Grid 2, despite the substitution
of third party components in place of native Xgrid
components. Detailed instrumentation was not im-
plemented, but anecdotal evidence suggests that the
overall performance of Grid 2 using third party com-
ponents is very comparable to the native Xgrid alter-
native. The distributed nature of the task in Grid
3 increases the overall time required to complete the
task, which is not to be unexpected given the net-
work transfer time for 12Gb of data, some of which is
transferred to locations in the USA and Europe.

While the purpose of this paper is specifically not
to report experimental results, it is important to note
that this scale of task can be robustly completed us-
ing either the native Xgrid components or the third-

Hardware OS Role Software Location
1 x G5 PPC OSX 10.4 Server Controller Xgrid Controller Melbourne - CSSE
4 x G4 PPC OSX 10.4 Agent Xgrid Tiger Agent Melbourne - CSSE
1 x G3 PPC OSX 10.4 Client Xgrid Tiger Client Melbourne - CSSE

Figure 3: Experimental Grid 1

Hardware OS Role Location
1 x G5 PPC OSX 10.4 Server Controller XgridLite Controller Melbourne - CSSE
4 x G4 PPC OSX 10.4 Agent XgridAgent-Java Melbourne - CSSE
1 x G3 PPC OSX 10.4 Client GridStuffer Melbourne - CSSE

Figure 4: Experimental Grid 2

party Xgrid components. Subsequent production ex-
periments in natural language processing (see Hughes
et al 2005) utilise Grids 2 and 3.

10 Other Use Cases

An interesting metric by which to assess the success
or otherwise of the Xgrid framework is the degree to
which it has been adopted. An informal survey on
the xgrid-users list in July 2005 revealed a range of
application domains and infrastructure models, sum-
marised below. For reference there were 11 responses
to the survey which were sent to the list directly,
other private replies to the Xgrid product manager
may have been received.

The majority of users who responded are using
Xgrid 1.0 (63%) with the remainder using Technology
Preview 2 with forward migration plans (37%). The
size of computational grids ranged up to 300 part time
(ie cycle stealing) nodes; for full time nodes the largest
grid had 60 compute nodes. The usage domains in-
cluded graphics rendering, spatial analysis, popula-
tion genetics, natural language processing, bioinfor-
matics, spatial biochemical modeling and sensitivity
analysis, cryptography, and Monte Carlo simulations.
Over two-thirds of respondents indicated that their
grids were in production, rather than development.
The majority of users were using the Apple provided
CLI, although a significant number were evaluating
the GridStuffer and PyXG applications.

A further sample of the types of projects using
Xgrid for scientific computation includes the follow-
ing: modeling of biochemical receptors (Stanford Uni-
versity); nonlinear-system computations for an epi-
demiological model (Center for Advanced Compu-
tation at Reed College); rendering POV-Ray ani-
mations of LDraw models (University of Utah Stu-
dent Computing Labs) finding low autocorrelation
binary sequences (Simon Fraser University); Monte
Carlo simulations of biophotonic tissue analyses (On-
tario Cancer Institute at the University of Toronto).
Additional academic papers which involve the use
of Xgrid in “real science” are also available from
http://www.apple.com/acg/, and cover a range of
scientific domains.

11 Discussion and Conclusion

This paper has offered a range of observations on spe-
cific issues with the Xgrid platform throughout. In
conclusion, it is useful to generalise these observa-
tions into the relative strengths and weaknesses of
the Xgrid platform.

On the positive side, Xgrid represents a very low
barrier to entry for grid computing - with simple setup
and adminstration - allowing for a new range of users
to effectively access the power of distributed, loosely
coupled computational environments. The fact that
Xgrid is already shipped standard with the operating

system is a distinct further advantage. Increasingly
too, native Xgrid support is being offered by applica-
tion vendors (with application domains ranging from
digital image processing to mathematics to bioinfor-
matics), which allows end users to rely on vendor sup-
port directly for embarassingly parallel computations.

This is not to say that the Xgrid framework
does not have some (arguably considerable) disadvan-
tages. Xgrid also introduces another authentication
paradigm, while not incompatible with the well en-
trenched X.509 frameworks given appropriate middle-
ware, are likely to represent problems for the connec-
tion of Xgrid based infrastructure with the broader
grid communities. Another explicit weakness in the
Xgrid framework to date is the lack of a cross plat-
form client implementation - even clients provided by
third parties currently just wrap the existing CLI.
As such, Xgrid, while open at the Agent tier, is not
open at the Client tier, binding users to a Mac OS
X client. For extensibility of the Xgrid framework
into the wider grid computing community, this issue
must be addressed. Furthermore, the lack of any ex-
plicit agent capability specification, while grounded in
Apple’s intention that the Xgrid framework only be
deployed over its own hardware is a significant short-
coming.

While clearly not a of the same level of maturity as
other widely utilised grid middleware such as Globus,
the Apple Xgrid product does provide a number of
advantages (particularly in the area of ease of use),
which we believe will lead to widespread ad-hoc adop-
tion within research communities and as such repre-
sents a significant advance. Typical of Apple’s en-
gagement with a wide range of applications, Xgrid
vastly simplifies the task of building a computational
grid and using a computational grid to execute tasks.

References

Apple Computer Inc, 2005a. Property
List Format. http://developer.apple.
com/documentation/Darwin/Reference/
ManPages/man5/plist.5.html Last visited 21
September 2005.

Apple Computer Inc, 2005b. XgridFoundation
Reference. http://developer.apple.com/
documentation/Performance/Conceptual/
XgridDeveloper/index.html Last visited 21
September 2005.

Apple Computer Inc, 2005. Xgrid. http://www.
apple.com/macosx/features/xgrid/ Last vis-
ited 21 September 2005.

Apple Computer Inc, 2005. Mac OS
X Server Xgrid Administration Guide.
http://images.apple.com/server/pdfs/
Xgrid_Admin_v10.4.pdf Last visited 21
September 2005.

http://www.apple.com/acg/
http://developer.apple.com/documentation/Darwin/Reference/ManPages/man5/plist.5.html
http://developer.apple.com/documentation/Darwin/Reference/ManPages/man5/plist.5.html
http://developer.apple.com/documentation/Darwin/Reference/ManPages/man5/plist.5.html
http://developer.apple.com/documentation/Performance/Conceptual/XgridDeveloper/index.html
http://developer.apple.com/documentation/Performance/Conceptual/XgridDeveloper/index.html
http://developer.apple.com/documentation/Performance/Conceptual/XgridDeveloper/index.html
http://www.apple.com/macosx/features/xgrid/
http://www.apple.com/macosx/features/xgrid/
http://images.apple.com/server/pdfs/Xgrid_Admin_v10.4.pdf
http://images.apple.com/server/pdfs/Xgrid_Admin_v10.4.pdf

Hardware OS Role Location
1 x G5 PPC OSX 10.4 Controller Xgrid Controller Melbourne - CSSE
1 x G3 PPC OSX 10.4 Client PyXG Melbourne - CSSE
4 x G4 PPC OSX 10.4 Agent Xgrid Tiger Agent Melbourne - CSSE
1 x G5 Intel OSX 10.4 Agent Xgrid Tiger Agent Melbourne - MARCC
1 x P4 i386 Linux Agent XgridAgent-Java Melbourne - CSSE
1 x P4 i386 Linux Agent XgridAgent-Java Melbourne - MARCC
2 x P4 i386 Windows XP SP2 Agent XgridAgent-Java Melbourne - CSSE
1 x P4 i386 Linux Agent XgridAgent-Java Brisbane
1 x AMD i386 Linux Agent XgridAgent-Java Houston, USA
1 x P4 i386 Linux Agent XgridAgent-Java Edinburgh, UK
1 x P4 i386 Linux Agent XgridAgent-Java Tuscson, USA
1 x P4 i386 Linux Agent XgridAgent-Java Aarhus, Denmark

Figure 5: Experimental Grid 3

Marcos Dias de Assuncao, Krishna Nadiminti,
Srikumar Venugopal, Tianchi Ma, and Rajku-
mar Buyya, 2005. An Integration of Global and
Enterprise Grid Computing: Gridbus Broker
and Xgrid Perspective. Proceedings of the 4th
International Conference on Grid and Cooper-
ative Computing. Lecture Notes on Computer
Science XXXX. Springer-Verlag. pp. XX–YY.

Robert Brower, 2005. Base64 Encode/Decode
Utility. http://sourceforge.net/projects/
base64 Last visited 21 September 2005.

Ed Baskerville, 2005. XgridLite. http:
//edbaskerville.com/software/xgridlite/
Last visited 21 September 2005.

Huston Franklin, 2005. BeepCore-Java. http://
sourceforge.net/projects/beepcore-java
Last visited 21 September 2005.

Steven Bird and Edward Loper, 2004. NLTK:
The Natural Language Toolkit. Proceedings of
the ACL 2004 Demonstration Session. Associa-
tion for Computational Linguistics. pp. 214–217.

Marshall Rose, 2001. The Blocks Extensible
Exchange Protocol (BEEP). IETF RFC 3080.
http://www.faqs.org/rfcs/rfc3080.html

Curtis Campbell, 2005. XgridAgent-Java.
http://www.apple.com/downloads/macosx/
unix_open_source/xgridagentforjava.html
Last visited 21 September 2005.

Daniel Cote, 2004. XgridAgent for Unix Archi-
tectures. http://www.novajo.ca/xgridagent/
Last Visited 21 September 2005.

David Graff, 2003. English Gigaword. Linguistic
Data Consortium at the University of Pennsyl-
vania. LDC2003T05.

Brian Granger, 2005. PyXG. http://hammonds.
scu.edu/~classes/pyxg.html Last visited 21
September 2005.

Baden Hughes, James Curran, James Hag-
gerty, Saritha Manickam and Joel Nothman,
2005. A Distributed Architecture for Interac-
tive Parse Annotation Proceedings of the Aus-
tralasian Language Technology Workshop 2005.
Australasian Language Technology Association.
pp. XX–YY.

Arthur van Hoff and Rick Blair, 2005.
JmDNS. http://sourceforge.net/projects/
jmdns/ Last visited 21 September 2005.

Drew McCormack, 2005. Distributed
Tiger: Xgrid comes of Age. http:
//www.macdevcenter.com/pub/a/mac/2005/
08/23/xgrid.html Last visited 21 September
2005.

Drew McCormack, 2005. Sweetening Your Xgrid
with Cocoa. http://www.macdevcenter.com/
pub/a/mac/2005/09/13/xgrid.html Last vis-
ited 21 September 2005.

Charles Parnot, 2005. GridStuffer.
http://cmgm.stanford.edu/~cparnot/
xgrid-stanford/html/goodies/
GridStuffer-info.html Last visited 21
September 2005.

Srikumar Venugopal and Rajkumar Buyya and
Lyle Winton, 2004. A grid service broker for
scheduling distributed data-oriented applica-
tions on global grids. Proceedings of the 2nd
Workshop on Middleware for Grid Computing.
ACM Press. pp. 75–80.

Acknowledgements

The research in this paper has been supported by
Apple Computer Inc, through the Apple University
Consortium and the Apple University Development
Fund.

I am grateful to Ernest Prabakhar and Richard
Crandall from Apple comments on an earlier version
of this paper.

Additionally I wish to thank my colleagues who
facilitated the availability of remote systems to use
in testing the Xgrid framework: Ewan Klein at the
University of Edinburgh; Terry Langendoen at the
University of Arizona; Kaja Christiansen at the Uni-
versity of Aarhus; Paul Edwards at The University of
Melbourne; and Andrew Smith at the University of
Queensland.

http://sourceforge.net/projects/base64
http://sourceforge.net/projects/base64
http://edbaskerville.com/software/xgridlite/
http://edbaskerville.com/software/xgridlite/
http://sourceforge.net/projects/beepcore-java
http://sourceforge.net/projects/beepcore-java
http://www.faqs.org/rfcs/rfc3080.html
http://www.apple.com/downloads/macosx/unix_open_source/xgridagentforjava.html
http://www.apple.com/downloads/macosx/unix_open_source/xgridagentforjava.html
http://www.novajo.ca/xgridagent/
http://hammonds.scu.edu/~classes/pyxg.html
http://hammonds.scu.edu/~classes/pyxg.html
http://sourceforge.net/projects/jmdns/
http://sourceforge.net/projects/jmdns/
http://www.macdevcenter.com/pub/a/mac/2005/08/23/xgrid.html
http://www.macdevcenter.com/pub/a/mac/2005/08/23/xgrid.html
http://www.macdevcenter.com/pub/a/mac/2005/08/23/xgrid.html
http://www.macdevcenter.com/pub/a/mac/2005/09/13/xgrid.html
http://www.macdevcenter.com/pub/a/mac/2005/09/13/xgrid.html
http://cmgm.stanford.edu/~cparnot/xgrid-stanford/html/goodies/GridStuffer-info.html
http://cmgm.stanford.edu/~cparnot/xgrid-stanford/html/goodies/GridStuffer-info.html
http://cmgm.stanford.edu/~cparnot/xgrid-stanford/html/goodies/GridStuffer-info.html

	Introduction
	A Brief History of Xgrid
	Solution Architecture
	Client
	Controller
	Agent

	Xgrid Systems Configuration and Management
	Xgrid Job Management
	Xgrid System Scalability
	Xgrid Native Components
	Xgrid Graphical User Interface
	Xgrid Command Line Interface
	Xgrid Cocoa Framework
	Xgrid Controller
	Xgrid Tiger Agent
	Xgrid Panther Agent
	Xgrid Network Communications

	Third Party Components
	GridStuffer
	PyXG
	Gridbus Data Broker Interface
	XgridLite
	Xgrid Linux Agent
	XgridAgent-Java

	Experimental Experience
	Infrastructure
	Experiments

	Other Use Cases
	Discussion and Conclusion

