
PushPush is NP-hard in 3DJoseph O'Rourke�and The Smith Problem Solving GroupyNovember 28, 1999AbstractWe prove that a particular pushing-blocks puzzle is intractable in 3D.The puzzle, inspired by the game PushPush, consists of unit square blockson an integer lattice. An agent may push blocks (but never pull them)in attempting to move between given start and goal positions. In thePushPush version, the agent can only push one block at a time, andmoreover, each block, when pushed, slides the maximal extent of its freerange. We prove this version is NP-hard in 3D by reduction from SAT.The corresponding problem in 2D remains open.1 IntroductionThere are a variety of \sliding blocks" puzzles whose time complexity has beenanalyzed. One class, typi�ed by the 15-puzzle so heavily studied in AI, permitsan outside agent to move the blocks. Another class falls more under the guise ofmotion planning. Here a robot or internal agent plans a path in the presence ofmovable obstacles. This line was initiated by a paper of Wilfong [Wil91], whoproved NP-hardness of a particular version in which the robot could pull as wellas push the obstacles, which were not restricted to be squares. Subsequent worksharpened the class of problems by weakening the robot to only push, never pullobstacles, and by restricting all obstacles to be unit squares. Even this versionis NP-hard [DO92].One theme in this research has been to establish stronger degrees of in-tractability, in particular, to distinguish between NP-hardness and PSPACE-completeness, the latter being the stronger claim. The NP-hardness provedin [DO92] was strengthened to PSPACE-completeness in a un�nished manu-script [BOS94]. More �rm are the results on Sokoban, a computer game thatrestricts the pushing robot to only push one block at a time, and requires the�Dept. of Computer Science, Smith College, Northampton, MA 01063, USA. orourke@cs.-smith.edu. Research supported by NSF Grant CCR-9731804.yBeenish Chaudry, Sorina Chircu, Elizabeth Churchill, Sasha Fedorova, Judy Franklin,Biliana Kaneva, Haley Miller, Anton Okmianski, Irena Pashchenko, Ileana Streinu, GeetikaTewari, Dominique Thi�ebaut, Elif Tosun. i



storing of (some or all) blocks into designated \storage locations." This gamewas proved NP-hard in [DZ95], and PSPACE-complete by Culberson [Cul98].Here we emphasize another theme: �nding a nontrivial version of the gamethat is not intractable. To date only the most uninteresting versions are knownto be solvable in polynomial time, for example, where the robot's path mustbe monotonic [DO92]. We explore a di�erent version, again inspired by a com-puter game, PushPush. The key di�erence is that when a block is pushed, itnecessarily slides the full extent of the available empty space in the direction inwhich it was shoved. This further weakens the robot's control, and the resultingpuzzle has certain polynomial characteristics. We prove it is intractable in 3D,but leave the question of whether it is polynomial in 2D an open problem.2 Problem Classi�cationThe variety of pushing- block puzzles may be classi�ed by several characteristics:1. Can the robot pull as well as push?2. Are all blocks unit squares, or may they have di�erent shapes?3. Are all blocks movable, or are some �xed to the board?4. Can the robot push more than one block at a time?5. Is the goal for the robot to move from s to t, or is the goal for the robotto push blocks into storage locations?6. Do blocks move the minimal amount, exactly how far they are pushed, ordo they slide the maximal amount of their free range?7. The dimension of the puzzle: 2D or 3D?If our goal is to �nd the weakest robot and most unconstrained puzzle condi-tions that still lead to intractability, it is reasonable consider robots who can onlypush (1), and to restrict all blocks to be unit squares (2), as in [DO92, DZ95,Cul98], for permitting robots to pull, and permitting blocks of other shapes,makes it relatively easy to construct intractable puzzles. It also makes sense toexplore the goal of simply �nding a path (5) as in [Wil91, DO92], rather thanthe more challenging task of storing the blocks as in Sokoban [DZ95, Cul98].Restricting attention to these choices still leaves a variety of possible problemde�nitions. If the robot can only move one block at a time, then the distinctionbetween all blocks movable and some �xed disappears, because 2x2 clusters ofblocks are e�ectively �xed to a robot who can only push one. If all blocks aremovable and the robot can push more than one at a time, then the blocks shouldbe con�ned to a rectangular frame.The version explored in this paper super�cially seems that it might lenditself to a polynomial-time algorithm: the robot can only push one block (4),all blocks are pushable (3), and �nally, the robot's control over the pushingii



is further weakened by condition (6): once pushed, a block slides (as withoutfriction) the maximal extent of its free range in that direction. We show theproblem is intractable in 3D, and discuss the 2D version in the �nal section.3 Elementary GadgetsFirst we observe, as mentioned above, that any 2x2 cluster of movable blocksis forever frozen to a PushPush robot, for there is no way to chip away at thisunit. This makes it easy to construct \corridors" surrounded by �xed regionsto guide the robot's activities. We will only use corridors of width 1 unit, withorthogonal junctions of degree two, three, or four. We can then view a particularPushPush puzzle as an orthogonal graph, whose edges represent the corridors,understood to be surrounded by su�ciently many 2x2 clusters to render anymovement outside the graph impossible. We will represent movable blocks inthe corridors or at corridor junctions as circles.We start with three elementary gadgets.3.1 One-Way GadgetA \one-way" gadget is shown in Fig. 1a. It has these obvious properties:
(a) (b) (c)

x

yFigure 1: One-Way gadget: permits passage from x to y but not from y to x.Lemma 1 In a One-Way gadget, the robot may travel from point x to pointy, but not from y to x. (After travelling from x to y, however, the robot maysubsequently return from y to x.)Proof: The block at the degree-three junction may be pushed into the storagecorridor when approaching from x, as illustrated in Fig. 1b, but the block maynot be budged when approaching from y (Fig. 1c). 23.2 Fork GadgetThe fork gadget shown in Fig. 2a presents the robot with a binary choice, theproverbial fork in the road: iii



x

y z

A

B

x

y z

AB

x

y z

A

B

(a) (b) (c)

w

Figure 2: Fork gadget: Robot may pass (b) from x to y or (c) from x to z, buteach seals o� the other possibility.Lemma 2 In a Fork gadget, the robot may travel from point x to y, or fromx to z, but if it chooses the former it cannot later move from y to z, and if itchooses the latter it cannot later move from z to y. (In either case, the robotmay reverse its original path.)Proof: Fig. 2b shows the only way for the robot to pass from x to y. Nowthe corridor to z is permanently sealed o�. Fig. 2c shows the only way to movefrom x to z. Here any attempt later to access the corridor leading to y willnecessarily push block B to corner w, sealing o� y. 2Note that in both these gadgets, the robot may reverse its path, a point towhich we will return in Section 7.3.3 3D Crossover GadgetCrossovers are trivial in 3D, as shown in Fig. 3.
Figure 3: 3D crossover. The central small circle is a wire orthogonal to theplane of the �gure.4 Variable-Setting ComponentThe robot �rst travels through a series of variable-setting components, each ofwhich follows the structure shown in Fig. 4: a Fork gadget, followed by twopaths, labeled t and f, each with attached wires exiting to the right, followedby a re-merging of the the t and f paths via One-Way gadgets. 3D crossoversare illustrated in this and subsequent �gures by broken-wire underpasses.iv



xi

a

T

F

bFigure 4: (a) Variable xi component.Lemma 3 The robot may travel from a to b only by choosing either the t-path,or the f-path, but not both. Whichever t/f-path is chosen allows the robot totravel down any wires attached to that path, but down none of the wires attachedto the other path.Proof: The claims follow directly from Lemma 2 and Lemma 1. 25 Clause ComponentThe clause component shown in Fig. 5a cannot be traversed unless one or moreblocks are pushed in from the left along the attached horizontal wires.
Cj

x

y

a

c

b

A

Cj

x

y

a

c

b

A
(a) (b)Figure 5: (a) Clause Cj component.v



Lemma 4 The robot may only pass from x to y of a clause component if atleast one block is pushed into it along an attached wire (a, b, or c in Fig. 5a).Proof: Block A is necessarily pushed by the robot starting at x. This blockwill clog exit at y (Fig. 5b) unless its sliding is stopped by a block pushed in onan attached wire. 26 Complete SAT ReductionThe complete construction for four clauses C1 ^C2 ^C3 ^C4 is shown in Fig. 6.Two versions of the clauses are shown in the �gure: an unsatis�able formula(the dark lines), and a satis�able formula (including the shaded x2 wire):(x1 _ x2) ^ (x1_ � x2) ^ (� x1 _ x3) ^ (� x1_ � x3) (1)(x1 _ x2) ^ (x1_ � x2) ^ (� x1 _ x2 _ x3) ^ (� x1_ � x3) (2)Here we are using � x to represent the negation of the variable x.A path from s to t in the satis�able version is illustrated in Fig. 7.Theorem 1 PushPush is NP-hard in 3D.Proof: The construction clearly ensures, via Lemmas 3 and 4, that if the simu-lated Boolean expression is satis�able, there is a path from s to t, as illustratedin Fig. 7. For the other direction, suppose the expression is unsatis�able. Thenthe robot can reach t only by somehow \shortcutting" the design. The designof the variable components ensures that only one of the t/f paths may be ac-cessed. The crossovers ensure there is no \leakage" between wires. The onlypossible thwarting of the design would occur if the robot could travel from aclause component back to set a variable to the opposite Boolean value. Buteach variable-clause wire contains a block that prevents any such leakage. 27 PushPush in 2DIt is an intriguing question whether the 2D version of this problem is intractable.One result in this direction is easy to obtain:Theorem 2 The storage version of PushPush is NP-hard in 2D.Proof: In the storage version of PushPush,1 the robot must �ll certain storagelocations with blocks, as in Sokoban. It is then easy to obtain an NP-hardnessproof along the lines of the NP-hardness proof of Dor and Zwick [DZ95]. Ratherthan reducing from SAT, reduce from \Planar 3-SAT" [Lic82]. This, togetherwith the storage requirement, removes the need for any crossovers. The con-struction can then follow the design as in Fig. 6. Details are similar to thosein [DZ95] and will not be presented. 21This, incidentally, is the actual design of the computer game.vi



x1

x2

x3

x1 + x2

x1 + ~x2

~ x1 + x3

~x1 + x2 + x3

~x1 + ~x3

s

t

T

F

T

F

T

F

C1

C2

C3

C4

Figure 6: Complete construction for the formulas in Eq. (1) and Eq. (2) (in-cluding the shaded portion). vii



x1

x2

x3

x1 + x2

x1 + ~x2

 ~x1 + x3

~x1 + x2 + x3

~x1 + ~x3

s

t

T

F

T

F

T

F

C1

C2

C3

C4

Figure 7: Solution path for Eq. (2).viii



The reason that Planar 3-SAT does not help for the path version of PushPushis that crossovers are still needed to thread the clause components together intoa single path. And it seems that the PushPush conditions are too weak toconstruct the required crossover gadget:Conjecture 1 No general crossover gadget can be constructed in 2D PushPush.Such a gadget would permit two wires to cross, but would prevent leakage fromone to the other, just as if it were a 3D crossover. One reason this seemsimpossible is this:Conjecture 2 No permanent one-way gadget can be constructed in 2D Push-Push.Note that the the properties of the One-Way gadget in Fig. 1 are destroyed bypassage of the robot, after which it becomes a two-way street.We conclude by summarizing in Table 1 previous work according to theclassi�cation scheme o�ered in Section 2. The �rst four lines show previousresults. The next two are the results from this paper. And the last two linespose two open problems, one raised here, the other in [DO92]: Is PushPush (pathversion) intractable in 2D? And is the problem where all blocks are movable andthe robot can push k blocks, sliding the minimal amount, intractable in 2D?1 2 3 4 5 6 7Push? Blocks Fixed? # Path? Sliding Dim Complexitypull L �xed k path min 2D NP-hard [Wil91]push unit �xed k path min 2D NP-hard [DO92]push unit movable 1 storage min 2D NP-hard [DZ95]push unit movable 1 storage min 2D PSPACE [Cul98]push unit movable 1 path max 3D NP-hardpush unit movable 1 storage max 2D NP-hardpush unit movable 1 path max 2D openpush unit movable k path min 2D open [DO92]Table 1: Pushing block problems.Acknowledgements. We thank Erik Demaine, Marty Demaine, and ThereseBiedl for helpful discussions.References[BOS94] D. Bremner, J. O'Rourke, and T. Shermer. Motion planning amidstmovable square blocks is PSPACE-complete. Draft, June, 1994.ix



[Cul98] J. Culberson. Sokoban is PSPACE-complete. In Proc. Internat. Conf.Fun with Algorithms, pages 65{76, Elba, Italy, June 1998. CareltonScienti�c.[DO92] A. Dhagat and J. O'Rourke. Motion planning amidst movable squareblocks. In Proc. 4th Canad. Conf. Comput. Geom., pages 188{191,1992.[DZ95] D. Dor and U. Zwick. Sokaban and other motion planning problems.http://www.math.tau.ac.il/~ddorit/, 1995.[Lic82] D. Lichtenstein. Planar formulae and their uses. SIAM J. Comput.,11(2):329{343, 1982.[Wil91] G. Wilfong. Motion planning in the presence of movable obstacles.Ann. Math. Artif. Intell., 3:131{150, 1991.

x


