
mith College

Computer Science

Dominique Thiébaut
dthiebaut@smith.edu

CSC352
Week #6 — Spring 2017

D. Thiebaut, Computer Science, Smith College

Making the Game
of Life Parallel

Programming Lab

D. Thiebaut, Computer Science, Smith College

https://www.youtube.com/watch?v=CgOcEZinQ2I

https://www.youtube.com/watch?v=CgOcEZinQ2I
https://www.youtube.com/watch?v=CgOcEZinQ2I

D. Thiebaut, Computer Science, Smith College

Serial Version

• Study it

• Run it on your laptop

• Use both dish and dish2 as the array of live cells,
and see how they evolve

login to your 352b account 

getCopy GameOfLife.java
javac GameOfLife.java

java GameOfLife

Other option:

http://cs.smith.edu/dftwiki/index.php/CSC352_Game_of_Life_Lab_2017

http://cs.smith.edu/dftwiki/index.php/CSC352_Game_of_Life_Lab_2017

D. Thiebaut, Computer Science, Smith College

2-Thread Version

• As a group, discuss the different tissues associated with
parallelizing the Game of Life and running it with two
threads.

• List all the issues that must be addressed on the
whiteboard

• How will you verify the correctness of the parallel version?

• Play-out (human play) the execution of the 2-thread
program: two people or two groups play the roles of the
two threads.

D. Thiebaut, Computer Science, Smith College

Group Work!

Image taken from: http://www.brocku.ca/blogs/futurestudents/files/2014/10/puzzle-work.jpg

http://www.brocku.ca/blogs/futurestudents/files/2014/10/puzzle-work.jpg

D. Thiebaut, Computer Science, Smith College

Could be Usefull…
• What is a BlockingQueue? 

BlockingQueue is a queue which is thread safe to insert or
retrieve elements from it. Also, it provides a mechanism
which blocks requests for inserting new elements when the
queue is full or requests for removing elements when the
queue is empty, with the additional option to stop waiting
when a specific timeout passes. This functionality makes
BlockingQueue a nice way of implementing the Producer-
Consumer pattern, as the producing thread can insert
elements until the upper limit of BlockingQueue while the
consuming thread can retrieve elements until the lower
limit is reached and of course with the support of the
aforementioned blocking functionality.
https://examples.javacodegeeks.com/core-java/util/concurrent/java-blockingqueue-example/

https://examples.javacodegeeks.com/core-java/util/concurrent/java-blockingqueue-example/

–Johnny Appleseed

Thread safe: Implementation is guaranteed to
be free of race conditions when accessed by

multiple threads simultaneously.

D. Thiebaut, Computer Science, Smith College

Using a BlockingQueue
• BlockingQueue is an interface in java.util.concurrent

• Need to use an implementation of it:

• ArrayBlockingQueue

• DelayQueue

• LinkedBlockingQueue

• PriorityBlockingQueue

• SynchronousQueue
Image & table from: http://tutorials.jenkov.com/java-util-concurrent/blockingqueue.html

“A Queue that additionally
supports operations that

wait for the queue to
become non-empty when
retrieving an element, and
wait for space to become

available in the queue
when storing an element”

http://tutorials.jenkov.com/java-util-concurrent/blockingqueue.html

D. Thiebaut, Computer Science, Smith College

Example

Code available here: http://cs.smith.edu/dftwiki/index.php/CSC352:_Using_BlockingQueues

http://cs.smith.edu/dftwiki/index.php/CSC352:_Using_BlockingQueues

D. Thiebaut, Computer Science, Smith College

Example (cont’d)

D. Thiebaut, Computer Science, Smith College

Implement the
2-Thread Game
of Life in Java

Play o
ut

Serial

Versio
n

Play out Parallel Version

D. Thiebaut, Computer Science, Smith College

D. Thiebaut, Computer Science, Smith College

The following slides present an approach for

1) Running experiments
2) Evaluating performance

3) Displaying a meaningful graph

D. Thiebaut, Computer Science, Smith College

The Next Slides present…

• An approach for

• Running experiments automatically

• Measuring and recording performance
measures

• Filtering and graphing the results

D. Thiebaut, Computer Science, Smith College

The Next Slides present…

• An approach for

• Running experiments automatically

• Measuring and recording performance
measures

• Filtering and graphing the results

bash
scripts

D. Thiebaut, Computer Science, Smith College

The Next Slides present…

• An approach for

• Running experiments automatically

• Measuring and recording performance
measures

• Filtering and graphing the results

time,
redirection

D. Thiebaut, Computer Science, Smith College

The Next Slides present…

• An approach for

• Running experiments automatically

• Measuring and recording performance
measures

• Filtering and graphing the results
Python and

R

D. Thiebaut, Computer Science, Smith College

Defining the Number
of Threads at

Execution Time

D. Thiebaut, Computer Science, Smith College

UsingQueuesN.java

Code available from: http://cs.smith.edu/dftwiki/index.php/CSC352:_Defining_Number_of_Threads_at_Execution_Time#Source

getCopy UsingQueuesN.java
javac UsingQueuesN.java

java UsingQueuesN 8

http://cs.smith.edu/dftwiki/index.php/CSC352:_Defining_Number_of_Threads_at_Execution_Time#Source

D. Thiebaut, Computer Science, Smith College

UsingQueuesN.java

Code available from: http://cs.smith.edu/dftwiki/index.php/CSC352:_Defining_Number_of_Threads_at_Execution_Time#Source

http://cs.smith.edu/dftwiki/index.php/CSC352:_Defining_Number_of_Threads_at_Execution_Time#Source

D. Thiebaut, Computer Science, Smith College

Measuring
Performance

D. Thiebaut, Computer Science, Smith College

Pick the Performance Measure that
is Right for Your Application

• Speedup = T(1) / T(N) as a function of N

• Pick the best serial algorithm!

• Define N (# of cores, # of threads, # of processors)

• Pick the right size problem and keep it constant
(size of life grid, for example)

• Make sure data size is large enough, but fits in
memory (avoid disk thrashing)

D. Thiebaut, Computer Science, Smith College

(side note)

Proc

RAM

DISK

• How can Amdahl's Law be circumvented:

D. Thiebaut, Computer Science, Smith College

(side note)

Proc

RAM

DISK

data
set

• How can Amdahl's Law be circumvented:

• Pick a very large data set

D. Thiebaut, Computer Science, Smith College

Proc

RAM

DISK

disk
thrashing

(side note)

• How can Amdahl's Law be circumvented:

• Pick a very large data set

D. Thiebaut, Computer Science, Smith College

Proc

RAM

DISK

Proc

RAM

DISK

Proc

RAM

DISK

Proc

RAM

DISK

Proc

RAM

DISK

(side note)

D. Thiebaut, Computer Science, Smith College

Proc

RAM

DISK

Proc

RAM

DISK

Proc

RAM

DISK

Proc

RAM

DISK

Proc

RAM

DISK

(side note)

D. Thiebaut, Computer Science, Smith College

Proc

RAM

DISK

Proc

RAM

DISK

Proc

RAM

DISK

Proc

RAM

DISK

Proc

RAM

DISK

(side note)

No more

thrashing

D. Thiebaut, Computer Science, Smith College

Measuring Performance

• Measure the average execution time of several
runs for each case, or the average quantity of
interest per unit of time.

• Use shell scripts and programming tools (See next
slides)

D. Thiebaut, Computer Science, Smith College

Using Shell Scripts

http://www.science.smith.edu/dftwiki/index.php/
CSC352:_Using_Bash,_an_example

from 352b-xx account on aurora…
getcopy PrintN.java
getcopy processTimingData.py
getcopy runPrintN.sh

http://www.science.smith.edu/dftwiki/index.php/CSC352:_Using_Bash,_an_example

D. Thiebaut, Computer Science, Smith College

The target program

class PrintN {
 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 System.out.println("I got " + N);
 }
 }

Create a program that
gets its (fake) degree of

parallelism
from the command line

Code available at: http://www.science.smith.edu/dftwiki/index.php/CSC352:_Using_Bash_Scripts_to_Measure_Program_Execution_Time

http://www.science.smith.edu/dftwiki/index.php/CSC352:_Using_Bash_Scripts_to_Measure_Program_Execution_Time

D. Thiebaut, Computer Science, Smith College

class PrintN {
 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 System.out.println("I got " + N);
 }
 }

at the Linux prompt:
bash
javac PrintN.java
for i in 1 2 3 4 5 6 7 8 9 10 ; do
 java PrintN $i
done

Run the program once
in a loop from the command

line…

D. Thiebaut, Computer Science, Smith College

class PrintN {
 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 System.out.println("I got " + N);
 }
 }

at the Linux prompt:
bash
javac PrintN.java
for i in 1 2 3 4 5 6 7 8 9 10 ; do
 java PrintN $i
done

#! /bin/bash
runPrintN.sh
#

javac PrintN.java
for i in 1 2 3 4 5 6 7 8 9 10 ; do
 java PrintN $i
done

Embed the commands
just typed at the prompt

into a Bash shell
script

D. Thiebaut, Computer Science, Smith College

class PrintN {
 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 System.out.println("I got " + N);
 }
 }

at the Linux prompt:
bash
javac PrintN.java
for i in 1 2 3 4 5 6 7 8 9 10 ; do
 java PrintN $i
done

#! /bin/bash
runPrintN.sh
#

javac PrintN.java
for i in 1 2 3 4 5 6 7 8 9 10 ; do
 java PrintN $i
done

#! /bin/bash
runPrintN.sh
#

javac PrintN.java
for i in 1 2 3 4 5 6 7 8 9 10 ; do
 for j in 1 2 3 ; do
 /usr/bin/time java PrintN $i
 done
done

Run each program a
few times

for the same level of
parallelism, and

measure execution time
for each run…

D. Thiebaut, Computer Science, Smith College

./runPrintN.sh

1
I got 1

real 0m0.080s
user 0m0.067s
sys 0m0.011s
1
I got 1

real 0m0.082s
user 0m0.067s
sys 0m0.011s

…

I got 10

real 0m0.079s
user 0m0.066s
sys 0m0.011s

Note, the time command outputs its timing
information to stderr, while the other command

and java program outputs to stdout…

D. Thiebaut, Computer Science, Smith College

./runPrintN.sh 2>&1 | grep "got\|real" > timing.data

Redirect stderr to stdout,
and capture lines with "got" or

"real" to a text file.

D. Thiebaut, Computer Science, Smith College

./runPrintN.sh 2>&1 | grep "got\|real" > timing.data

cat timing.data

I got 1
real 0m0.085s
I got 1
real 0m0.086s
I got 1
real 0m0.085s
I got 2
real 0m0.093s
I got 2
real 0m0.096s

…

real 0m0.079s
I got 10
real 0m0.079s
I got 10
real 0m0.079s
I got 10
real 0m0.079s

Contents of timing.data
(with middle lines

removed for conciseness)

D. Thiebaut, Computer Science, Smith College

processTimingData.py
D. Thiebaut

from __future__ import print_function

file = open("timing.data", "r")
lines = file.readlines()
file.close()

create array of time averages
times = [0]*11 # 0-10, hence 11

parse lines of text
for line in text.split("\n"):
 if len(line) < 2:
 continue
 if line.find("got") != -1:
 n = int(line.split()[-1])
 else:
 time = line.replace('m', ' ').replace('s', '').split()[-1]
 time = float(time)
 times[n] += time

compute averages and print them
for i in range(len(times)):
 if times[i] != 0:
 print(i, times[i]/3.0)

Write a Python
program

to filter timing.data
and print a simple
output of x and y

values.

D. Thiebaut, Computer Science, Smith College

processTimingData.py
D. Thiebaut

from __future__ import print_function

file = open("timing.data", "r")
lines = file.readlines()
file.close()

create array of time averages
times = [0]*11 # 0-10, hence 11

parse lines of text
for line in text.split("\n"):
 if len(line) < 2:
 continue
 if line.find("got") != -1:
 n = int(line.split()[-1])
 else:
 time = line.replace('m', ' ').replace('s', '').split()[-1]
 time = float(time)
 times[n] += time

compute averages and print them
for i in range(len(times)):
 if times[i] != 0:
 print(i, times[i]/3.0)

Output.
Ready for plotting!

python processTimingData.py
1 0.0853333333333
2 0.0923333333333
3 0.0843333333333
4 0.0816666666667
5 0.079
6 0.0866666666667
7 0.0843333333333
8 0.0796666666667
9 0.0806666666667
10 0.079

D. Thiebaut, Computer Science, Smith College

Plotting the Resulting
Timing Information

With R

D. Thiebaut, Computer Science, Smith College

R Markdown

title: "Plotting Execution Times"
author: "D. Thiebaut"
date: "2/21/2017"
output: html_document

This R-Markdown illustrates how to quickly display a graph of the
average execution times of an application running on 1 to 20 threads.

```{r}
noThreads <- c( 1,  2,   4,   8,   16,  20 )
execTimes <- c( 10, 8.5, 7.0, 6.0, 5.5, 7.3 )

jpeg( '/Users/thiebaut/Desktop/executionTimes.jpg' )
plot( noThreads, execTimes, type="b", col="blue", 
      xlab="Number of Threads", ylab="Avg. Execution Time (s)")
dev.off() 

plot( noThreads, execTimes, type="b", col="blue", 
      xlab="Number of Threads", ylab="Avg. Execution Time (s)")
```


D. Thiebaut, Computer Science, Smith College

Make sure that the graph
clearly shows POINTS
and that the lines are
understood to show

the trend.

D. Thiebaut, Computer Science, Smith College

D. Thiebaut, Computer Science, Smith College

Some Comments
On Papers

D. Thiebaut, Computer Science, Smith College

Steve Lantz

D. Thiebaut, Computer Science, Smith College

Strong vs Weak Scaling

Proc

RAM

Proc

RAM

Proc

RAM

Proc

RAM

Proc

RAM

Strong
Scaling

D. Thiebaut, Computer Science, Smith College

Strong vs Weak Scaling

Proc

RAM

Proc

RAM

Proc

RAM

Proc

RAM

Proc

RAM

Weak
Scaling

D. Thiebaut, Computer Science, Smith College

Top500 Listhttps://www.top500.org/lists/2016/11/

Name The Number Prefix
quadrillion 10^15 peta
trillion 1,000,000,000,000 tera
billion 1,000,000,000 giga
million 1,000,000 mega
thousand 1,000 kilo

#1 National Supercomputing 93,014.6 TFlops
 Center in Wuxi China
 10,649,600 cores

https://www.top500.org/lists/2016/11/

D. Thiebaut, Computer Science, Smith College

Top500 Listhttps://www.top500.org/lists/2016/11/

CPU MHz MFlops MFlops (no opt)

4 cores
3 10^9 Flops

10^7 cores
93 10^15 Flops

2.5 10^6 more cores
30 10^6 more computing power

https://www.top500.org/lists/2016/11/

D. Thiebaut, Computer Science, Smith College

From: https://www.nextplatform.com/2015/11/25/2241/

D. Thiebaut, Computer Science, Smith College

Advanced
Concepts on  

Threads

D. Thiebaut, Computer Science, Smith College

The Basics
• Threads Operation

• run()/start()

• yield()

• sleep()

• join()

• wait(), notify(), and also notifyAll()

D. Thiebaut, Computer Science, Smith College

States of a Thread

running

blocked

New thread Terminated

waiting on an object
sleeping

blocking on I/O
blocked on a lock

D. Thiebaut, Computer Science, Smith College

How does one get the state?

• NEW

• RUNNABLE

• BLOCKED

• WAITING

• TIME_WAITING

• TERMINATED

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Thread.State.html

getState()

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Thread.State.html

D. Thiebaut, Computer Science, Smith College

Threads good not only for
speedup

App

T1
T2

time

time

D. Thiebaut, Computer Science, Smith College

App

T1

I/O I/O

time

Threads good not only for
speedup

D. Thiebaut, Computer Science, Smith College

Important Concepts

• CPU Bound Processes/Threads

• I/O Bound Processes/Threads

D. Thiebaut, Computer Science, Smith College

Time Scale

• Why I/O recognizing I/O-bound process is important

• CPU cycle: 1 ns

• RAM cycle: 100-500 ns

• Disk access = seek + latency

• seek = 1 ms

• latency = 1/2 rotation, at 10,000 RPM

• Question: How long does the processor wait for data from
disk?

D. Thiebaut, Computer Science, Smith College

Problems Associated with Sharing Data

• The Dining-Philosophers Problem 
http://vip.cs.utsa.edu/nsf/pubs/starving/starving.html 
 

Thinking

HungryEating

http://vip.cs.utsa.edu/nsf/pubs/starving/starving.html

D. Thiebaut, Computer Science, Smith College

• The Dining-Philosophers Problem 
http://vip.cs.utsa.edu/nsf/pubs/starving/starving.html 
 

Problems?

Thinking

HungryEating

Problems Associated with Sharing Data

http://vip.cs.utsa.edu/nsf/pubs/starving/starving.html

D. Thiebaut, Computer Science, Smith College

D. Thiebaut, Computer Science, Smith College

Starvation

D. Thiebaut, Computer Science, Smith College

Starvation

Deadlock

D. Thiebaut, Computer Science, Smith College

Thread Scheduling

• What is the policy?

• Java doc says: Implemented in the JVM, preemptive,
based on priority. (No mention of time-slices.)

• 1= low priority, 5 = main, 10 = high priority

• getPriority() & setPriority()

• However, most OS implement time-slices (quanta),
roughly 1ms, preemptive, and round-robin ==> JVMs
do the same

D. Thiebaut, Computer Science, Smith College

Rule #1 for Preventing
Deadlocks

• Grab all the shared data-
structures that you need first

• If you can’t, release them all

• Wait a random amount of time
and try again

D. Thiebaut, Computer Science, Smith College

Rule #2 for Preventing
Starvation

• In Dining Philosophers situation,
do not allow a philosopher to eat
twice before one has had a
chance to eat once ("polite"
algorihm of http://vip.cs.utsa.edu/nsf/pubs/
starving/starving.html)

http://vip.cs.utsa.edu/nsf/pubs/starving/starving.html

D. Thiebaut, Computer Science, Smith College

Crash Course on
C

(Switch to Separate Set of Slides)

