CSC352

Week #6 — Spring 2017

Dominique Thiebaut
dthiebaut@smith.edu

g M
; \/O\)\T

V]
a
"
" N
Li?ethe
Pargam
e)
|

You Tllhe conway's game of life

https://www.youtube.com/watch?v=CgOcEZinQ2I
https://www.youtube.com/watch?v=CgOcEZinQ2I

Fdouts))

= Serial Version

login to your 352b account

o S’[udy It getCopy GameOfLife.java
javac GameOfLife. java

java GameOfLife

* Run it on your laptop

* Use both dish and dish?2 as the array of live cells,
and see how they evolve

Other option:

http://cs.smith.edu/dftwiki/index.php/CSC352 Game of Life Lab 2017

Q‘.} D. Thiebaut, Computer Science, Smith College
A Y

http://cs.smith.edu/dftwiki/index.php/CSC352_Game_of_Life_Lab_2017

2-1hread Version

 As a group, discuss the different tissues associated with

parallelizing the Game of Life and running it with two
threads.

e |ist all the iIssues that must be addressed on the
whiteboard

 How will you verity the correctness of the parallel version?

* Play-out (human play) the execution of the 2-thread

orogram: two people or two groups play the roles of the
two threads.

A. D. Thiebaut, Computer Science, Smith College

B et
g; b=,
” St
y s =0
\ AR
PLENESE
{ -

Group Work!

Image taken from: http://www.brocku.ca/blogs/futurestudents/files/2014/10/puzzle-work.jpg
‘ D. Thiebaut, Computer Science, Smith College

http://www.brocku.ca/blogs/futurestudents/files/2014/10/puzzle-work.jpg

Could be Usetull...

 What is a BlockingQueue?
BlockingQueue is a queue which is thread safe to insert or
retrieve elements from it. Also, it provides a mechanism
which blocks requests for inserting new elements when the
queue is full or requests for removing elements when the
gueue is empty, with the additional option to stop waiting
when a specific timeout passes. This functionality makes
BlockingQueue a nice way of implementing the Producer-
Consumer pattern, as the producing thread can insert
elements until the upper limit of BlockingQueue while the
consuming thread can retrieve elements until the lower
limit is reached and of course with the support of the
aforementioned blocking functionality.

https://examples.javacodegeeks.com/core-java/util/concurrent/java-blockingqueue-example/

Thread safe: Implementation is guaranteed to
be free of race conditions when accessed by
multiple threads simultaneously.

—Johnny Appleseed

[Thread 1 ‘ ’ Thread 2

BlockingQueue
Put Take Throws Special
Exception Value Blocks | Times Out

Insert add(o) offer(o) put (o) oiier{oc, timeout,
timeunit)
Remove | remove(o) poll() take() | poll(timeout, timeunit)
° B|Ock|ngQueue Examine | element() Jpeek()

» Need to yse an implementation of it:
A Queue that addﬁlonally

SUPROAFayBloekingatete
wait for the queue to
becomigetaytigenpty when
retrieving an element, and

wait ToHElsedRIqeEkngQere
avall G BREH R R ue

when storing an element”
e SynchronousQueue

Image & table from: http://tutorials.jenkov.com/java-util-concurrent/blockinggueue.htm!

Q‘.} D. Thiebaut, Computer Science, Smith College
A Y

http://tutorials.jenkov.com/java-util-concurrent/blockingqueue.html

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;

public class UsingQueues {

public static void main(String[] args) throws InterruptedException {
BlockingQueue<Integer> toWorker() = new ArrayBlockingQueue<Integer>(2);
BlockingQueue<Integer> fromWorker(Q = new ArrayBlockingQueue<Integer>(2);

// create a worker and give it the two queues
DemoThread t=new DemoThread(fromWorkerQ, toWorkerQ);

// start thread
t.start();

// wait 1/2 second
try {
Thread.sleep(500);
} catch (InterruptedException e) {
e.printStackTrace();

}

// send work to worker
toWorkerQ.put(100);

// wait for answer back from worker
int x = fromWorkerQ.take();

// display the result

System.out.println("x = + X)

) Handouts

Code available here: http://cs.smith.edu/dftwiki/index.php/CSC352:_Using_BlockingQueues

D. Thiebaut, Computer Science, Smith College

http://cs.smith.edu/dftwiki/index.php/CSC352:_Using_BlockingQueues

VAR
* DemoThread
*/
class DemoThread extends Thread {
BlockingQueue<Integer> sendQ;
BlockingQueue<Integer> receiveQ;

DemoThread(BlockingQueue<Integer> sendQ,
BlockingQueue<Integer> receiveQ) {
this.sendQ = sendQ;
this.receiveQ = receiveQ;

}

public wvoid run(){
int x=0;

// block until there's something in the queue

try { I

x = receiveQ.takd{);

} catch (InterruptedException el) {
el.printStackTrace();

}

// do some computation
X = xX*2;

// send results back

try {
sendQ.put(x);

} catch (InterruptedException e) {
e.printStackTrace();

} Handouts

D. Thiebaut, Computer Science, Smith College

Implement the
2-Thread Game
fe In Jayve

We Stopped
Here

Last Time

The following slides present an approach for

1) Running experiments
2) Evaluating performance
3) Displaying a meaningful graph

Q‘.} D. Thiebaut, Computer Science, Smith College
A Y

The Next Slides present...

* An approach for
* Running experiments automatically

* Measuring and recording performance
measures

* Filtering and graphing the results

Q‘.} D. Thiebaut, Computer Science, Smith College
A Y

The Next Slides present...

* An approach for

* Running experiments automatically

* Measuring and recording performance
measures

* Filtering and graphing the results

Q‘.} D. Thiebaut, Computer Science, Smith College
A Y

The Next Slides present...

* An approach for

* Running experiments automatically

time,
* Measuring and recording performance

measures

* Filtering and graphing the results

Q‘.} D. Thiebaut, Computer Science, Smith College
A Y

The Next Slides present...

* An approach for
* Running experiments automatically

* Measuring and recording performance
measures

Python and
* Filtering and graphing the results R

Q‘.} D. Thiebaut, Computer Science, Smith College
A Y

Defining the Number
of Threads at
Execution Time

UsingQueuesN {

void main(String[] args) InterruptedException {

UsingQueuesN.java

(args.length <1) {
System.out.println("Syntax: java UsingQueuesN n");
System.out.println(" where n = # of threads");

i } ’
int N = Integer.parselnt(args[@]);

BlockingQueue<Integer> toWorkersQ = ArrayBlockingQueue<Integer>(2*N);
BlockingQueue<Integer> fromforkersQ = ArrayBlockingQueue<Integer>(2*N);

// create a worker and give it the two queues
DemoThreadN[] threads = DemoThreadN[N];

(int 1=0; 1<N; 1+) {

DemoThreadN t= DemoThreadN(1, fromWorkersQ, toWorkersQ);
t.start();
threads[i] = t;
}
// wait 1/2 second
{
Thread.sleep(500);
} (InterruptedException e) {))
e.printStackTrace(); getCopy UsingQueuesN.java
} [] [] []
Javac UsingQueuesN. java
// send same amount of work to each worker .]
Cint 120 i<N: is+) Java UsingQueuesN 8

toWorkersQ.put(100);

// wait for answer back from worker
(int 1=0; 1<N; 1+) {
int x = fromiorkersQ.take();

Handouts

// display the result
System.out.println("x = " + x);

http://cs.smith.edu/dftwiki/index.php/CSC352:_Defining_Number_of_Threads_at_Execution_Time#Source

DemoThreadN Thread {
BlockingQueue<Integer> sendQ;
BlockingQueue<Integer> receiveQ;
int Id;

DemoThreadN(int I1d,
BlockingQueue<Integer> sendQ,
BlockingQueue<Integer> receiveQ) {
Id = Id;
.sendQ = sendQ;
.receiveQ = receive(Q;

}
void run(){
int x=0;
// block until there's something in the queue
{
x = receiveQ.take();
} (InterruptedException el) {

el.printStackTrace();
}

// do some computation
X =x*¥(CId+1);

// send results back

{
sendQ.put(x);

} (InterruptedException e) {
e.printStackTrace();

UsingQueuesN.java

Handouts

http://cs.smith.edu/dftwiki/index.php/CSC352:_Defining_Number_of_Threads_at_Execution_Time#Source

Measuring
Performance

Pick the Performance Measure that
'S Right for Your Application

o Speedup = T(1)/ T(N) as a function of N
* Pick the best serial algorithm!
 Define N (# of cores, # of threads, # of processors)

* Pick the right size problem and keep it constant
(size of lite grid, for example)

* Make sure data size is large enough, but fits in
memory (avoid disk thrashing)

A. D. Thiebaut, Computer Science, Smith College

(side note)

Proc

e How can Amdahl's Law be circumvented:

Q‘.) D. Thiebaut, Computer Science, Smith College
A Y

(side note)

e How can Amdahl's Law be circumvented:

* Pick a very large data set

Proc

l data
set

Q‘.} D. Thiebaut, Computer Science, Smith College
A Y

(side note)

e How can Amdahl's Law be circumvented:

* Pick a very large data set

Proc

disk
thrashing

Q‘.) D. Thiebaut, Computer Science, Smith College
A Y

(side note)

(side note)

(side note)

‘ D. Thiebaut, Computer Science, Smith College

Measuring Performance

* Measure the average execution time of several
'uns for each case, or the average quantity of
iNnterest per unit of time.

* Use shell scripts and programming tools (See next
slides)

A. D. Thiebaut, Computer Science, Smith College

Using Shell Scripts

http://www.science.smith.edu/dftwiki/index.php/
CSC352:_Using_Bash, an_example

from 352b-xx account on aurora..
getcopy PrintN. java

getcopy processTimingData.py
getcopy runPrintN.sh

A. D. Thiebaut, Computer Science, Smith College

http://www.science.smith.edu/dftwiki/index.php/CSC352:_Using_Bash,_an_example

lhe target program

class PrintN {

public static void main(String[] args) {

int N = Integer.parselInt(args[0]);
System.out.println("I got " + N);

Create a program that
gets its (fake) degree of
parallelism
from the command line

http://www.science.smith.edu/dftwiki/index.php/CSC352:_Using_Bash_Scripts_to_Measure_Program_Execution_Time

class PrintN {

public static void main(String[] args) {
int N = Integer.parselnt(args[0]);
System.out.println("I got " + N);

Run the program once
iIn a loop from the command
line...

at the Linux prompt:

bash

javac PrintN. java

for i in 1 2 3456 7 8 9 10 ; do
java PrintN S$i

done

D. Thiebaut, Computer Science, Smith College

class PrintN {
public static void main(String[] args) {

int N = Integer.parselnt(args[0]);
System.out.println("I got " + N);

Embed the commands
just typed at the prompt
Into a Bash shell
script

at the Linux prompt:

bash

javac PrintN. java

for i in 1 2 3456 7 8 9 10 ; do
java PrintN S$i

done

#! /bin/bash
runPrintN.sh
#

javac PrintN. java

for i in 1 2 345 6 7 8 9 10 ; do
java PrintN S$i

done

D. Thiebaut, Computer Science, Smith College

class PrintN {
public static void main(String[] args) {

int N = Integer.parselnt(args[0]);
System.out.println("I got " + N);

Run each program a
few times
for the same level of
parallelism, and
measure execution time
for each run...

at the Linux prompt:

bash

javac PrintN. java

for i in 1 2 3456 7 8 9 10 ; do
java PrintN S$i

done

#! /bin/bash
runPrintN.sh

#! /bin/bash #

runPrintN.sh

javac PrintN. java

for 1 in 1 2 3456 7 8 9 10
for j in 1 2 3 ; do
/usr/bin/time java PrintN $i
done
done

y dO
14

for i in 1 2 345 6 7 8 9 10 ; do
java PrintN S$i
done

D. Thiebaut, Computer Science, Smith College

./runPrintN.sh

I got 1

Note, the time command outputs its timing
information to stderr, while the other command
and java program outputs to stdout...

real 0Om0@.080s
user 0m0.067s
Sys 0m@.011ls

I got 1

real 0Om0@.082s
user 0m0.067s
Sys 0m@.011ls

I got 10

real Om0@.079s
user 0m0.066s
sys 0m@.011s

D. Thiebaut, Computer Science, Smith College

Redirect stderr to stdout,
and capture lines with "got" or
"real" to a text file.

./runPrintN.sh 2>&1 | grep "got\|real"™ > timing.data

D. Thiebaut, Computer Science, Smith College

./runPrintN.sh 2>&1 | grep "got\|real"™ > timing.data
cat timing.data

I got 1
real Om@.085s
I got 1
real Om0@.086s
I got 1
real Om@.085s
I got 2
real Om@.093s
I got 2
real Om@.096s

real Om0.079s Contents of timing.data

L (with middle lines

réa my. S .

I got 10 removed for conciseness)
real Om@.079s

I got 10

real Om@.079s

D. Thiebaut, Computer Science, Smith College

processTimingData.py
D. Thiebaut

Write a Python
program
to filter timing.data
and print a simple
output of x and y
values.

from __ future__ import print_function

file = open("timing.data", "r")
lines = file.readlines()
file.closel()

create array of time averages
times = [0]%11 # 0-10, hence 11

parse lines of text
for line in text.split("\n"):
if len(line) < 2:

continue
if line.find("got") !'= -1:
n = int(line.split()[-1])
else:
time = line.replace('m', ' ').replace('s', '').split()[-1]

time = float(time)
times[n] += time

compute averages and print them
for i in range(len(times)):
if times[i] != 0:
print(i, times[i]/3.0)

D. Thiebaut, Computer Science, Smith College

processTimingData.py
D. Thiebaut

Output.
Ready for plotting!

from _ future__ import print_function

file = open("timing.data", "r")
lines = file.readlines()
file.close()

create array of time averages
times = [0]1%11 # 0-10, hence 11

parse lines of text
for line in text.split("\n"):
if len(line) < 2:
continue

if line.find("got") !'= -1:
n = int(line.split()[-1]) python processTimingData.py
else: 1 0.0853333333333
time = line.replace('m', ' ').replace('s', '' 2 0.0923333333333
time = float(time) 3 0.0843333333333
times[n] += time 4 0.0816666666667
5 0.079
compute averages and print them 6 0.0866666666667
for i in range(len(times)): 7 0.0843333333333
if times[i] != 0: 8 0.0796666666667
print(i, times[il/3.0) 9 0.0806666666667
10 0.079

D. Thiebaut, Computer Science, Smith College

Plotting the Resulting
Timing Information
With R

title: "Plotting Execution Times"
author: "D. Thiebaut”

date: "2/21/2017"

output: html document

This R-Markdown illustrates how to quickly display a graph of the
average execution times of an application running on 1 to 20 threads.

T {r}
noThreads <- ¢(1, 2, 4, 8, l6, 20)
execTimes <- c¢(10, 8.5, 7.0, 6.0, 5.5, 7.3)

jpeg('/Users/thiebaut/Desktop/executionTimes.jpg’')
plot(noThreads, execTimes, type="b", col="blue",

xlab="Number of Threads", ylab="Avg. Execution Time (s)")
dev.off ()

plot(noThreads, execTimes, type="b", col="blue", -
xlab="Number of Threads", ylab="Avg. Execution Time (s)")

N N~

on Tme (8)

Avg. Execut

Number of Threads

D. Thiebaut, Computer Science, Smith College

Make sure that the graph
clearly shows POINTS

20 and that the lines are
understood to show
the trend.

£

B e

$

g2 ~ - \

© \O- /
] ! i
5 10 15 20
Number of Threads

D. Thiebaut, Computer Science, Smith College

We Stopped
Here

Last Time

Some Comments
On Papers

Cornell University

Center for Advanced Computing

What /s Scalability?

* |deal is to get N times more work done on N processors

« Strong scaling: compute a fixed-size problem N times faster
— Speedup S=T,/Ty; linear speedup occurs when S =N
— Can’t achieve it due to Amdahl’s Law (no speedup for serial parts)

* Weak scaling: compute a problem N times bigger in the same
amount of time

— Speedup depends on the amount of serial work remaining constant or
increasing slowly as the size of the problem grows

— Assumes amount of communication among processors also remains
constant or grows slowly

1/15/2015 www.cac.cormell.edu 5

D. Thiebaut, Computer Science, Smith College

Strong vs Weak Scaling

Proc B Proc B Proc B Proc

Strong

Scaling

Q‘.} D. Thiebaut, Computer Science, Smith College
A S

Strong vs Weak Scaling

Proc B Proc B Proc B Proc

Weak
m I I I I

D. Thiebaut, Computer Science, Smith College

hitps://www.tops00.orgllists/2016/11/ Top500 List

#1 National Supercomputing 93,014.6 TFlops
Center in Wuxi China
10,049,600 cores

Name The Number Prefix
quadrillion 10715 peta
trillion 1,000,000,000,000 tera
billion 1,000,000,000 glga
million 1,000,000 mega

thousand 1,000 kilo

Q‘.} D. Thiebaut, Computer Science, Smith College
A Y

https://www.top500.org/lists/2016/11/

https://www.top500.org/lists/2016/11/

CPU MHz MFlops
Core 1i5 2467M geee 1064.70 315.46
Celeron C2 M 2000 1092.56 121.25
Core 2 Duo 1 CP 2400 1315.42 195.13
Phenom II 3000 1412.83 244.43
Core i7 930 ok & & 1764.75 428.00
Core i7 860 WA 2004.31 381.97
Core i7 3930K EE&E 2529.73 746.01
Core i7 4820K $$S81 2671.15 892.04
Core i7 4820K $$82 2684.05 895.54
Core i7 3930K oC 3112.94 926.92
####¥ Rated as 2800 MHz but running at up

* % %%

geee
&&&&
$$51
$$52

to 3460 MHz using Turbo Boost

Rated as 2800 MHEz but running at up
to 3066 MHz using Turbo Boost

Rated as 1600 MHz running at up

to 2300 MHz using Turbo Boost

Rated as 3200 MHz but running at up
to 3800 MHz OC OverClocked ~4720 MHz
Rated as 3700 MHEz but running at up
to 3900 MHz using Turbo Boost
Performance not Balanced Power
Setting for 3900 MHz

Mobile CPU

MFlops (no opt)

Top500 List

101N7 cores
93 10715 Flops

4 cores
3 1079 Flops

‘\\\\\§§§~‘

2.5 10”6 more cores
30 106 more computing power

D. Thiebaut, Computer Science, Smith College

https://www.top500.org/lists/2016/11/

100 Pflops l
33.9 PFlops

10 Pflops

1 Pflops
100 Tflops

No. 1 system—;

10 Tflops

1 TM0pS =5 7 GFiops

Performance

100 Gflops -

SaeT //T\Io. 500 system
10 Gflops e =4
1 Gflops |- /

'/;00 MFlops

Ty rryrrryrrrrryrryrrrrryryrrrrryrryrrrryrryryrayrnra

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

100 Mflops

FIGURE 1. Supercomputer performance over time as tracked by the TOP500 list. The red
and orange lines show performance of the first (number 1) and last (number 500) sys-
tems, respectively, and the blue line shows average performance of all systems. Dashed
lines are fitted exponential growth curves before and after 2008 for the orange line and
before and after 2013 for the blue line.

From: https://www.nextplatform.com/2015/11/25/2241/

D. Thiebaut, Computer Science, Smith College

Advanced

Concepts on
Threads

The Basics

- Threads Operation
e run()/start()
+ yield()

* sleep()
* join()

e wait(), notify(), and also notifyAll()

Q‘.} D. Thiebaut, Computer Science, Smith College
A Y

States of a Thread

New thread —— @ —> TJerminated

l T / waiting on an object

sleeping
blocked < blocking on |/O

\ blocked on a lock

Q‘.} D. Thiebaut, Computer Science, Smith College
A Y

How does one get the state”

 NEW

« RUNNABLE
. Bl OCKED getState()
« WAITING

o TIME_WAITING

 TERMINATED

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Thread.State.html

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Thread.State.html

Threads good not only for
speedup

App -
time
T
T2 time

Q‘.} D. Thiebaut, Computer Science, Smith College
A Y

Threads good not only for
speedup

time

Q‘.} D. Thiebaut, Computer Science, Smith College
A Y

Important Concepts

« CPU Bound Processes/Threads

e |/O Bound Processes/Threads

Q‘.} D. Thiebaut, Computer Science, Smith College
A Y

Time Scale

* Why I/O recognizing I/O-bound process is important
e CPUcycle: 1ns
* RAM cycle: 100-500 ns
* Disk access = seek + latency
* seek =1ms
 latency = 1/2 rotation, at 10,000 RPM

* Question: How long does the processor wait for data from
disk?

Q‘.} D. Thiebaut, Computer Science, Smith College
A Y

Problems Associated with Sharing Data

Thinking

* The Dining-Philosophers Problem

hitp://vip.cs.utsa.edu/nst/pubs/starving/starving.html

Q‘.) D. Thiebaut, Computer Science, Smith College
A Y

http://vip.cs.utsa.edu/nsf/pubs/starving/starving.html

Problems Associated with Sharing Data

A

Thinking

* The Dining-Philosophers Problem

hitp://vip.cs.utsa.edu/nst/pubs/starving/starving.html

Q‘.) D. Thiebaut, Computer Science, Smith College
A Y

http://vip.cs.utsa.edu/nsf/pubs/starving/starving.html

Thinking Hunary Eatin

oW O

n
N

D. Thiebaut, Computer Science, Smith College

Thinking Hunary Eatin

oW O

n
N

D. Thiebaut, Computer Science, Smith College

Thinkin Hunagry Eatin

Thinkin Hunagry Eatin

Deadlock

0 - 10 12

D. Thiebaut, Computer Science, Smith College

Thread Scheduling

 What is the policy?

 Java doc says: Implemented in the JVM, preemptive,
based on priority. (No mention of time-slices.)

1= low priority, 5 = main, 10 = high priority
e getPriority() & setPriority()
e However, most OS implement time-slices (quanta),

roughly 1ms, preemptive, and round-robin ==> JVMs
do the same

A. D. Thiebaut, Computer Science, Smith College

Rule #1 for Preventing
Deadlocks

 Grab all the shared data-
structures that you need first

* |f you can't, release them all

e Wait a random amount of time
and try again

Q‘.) D. Thiebaut, Computer Science, Smith College
A Y

Rule #2 for Preventing
Starvation

* |n Dining Philosophers situation,
do not allow a philosopher to eat
twice before one has had a

chance to eat once ('polite”

d gorihm Of http://vip.cs.utsa.edu/nsf/pubs/

starvingﬁstarving.html)

Q‘.) D. Thiebaut, Computer Science, Smith College
A Y

http://vip.cs.utsa.edu/nsf/pubs/starving/starving.html

Crash Course on
C

(Switch to Separate Set of Slides)

Q‘.} D. Thiebaut, Computer Science, Smith College
A Y

