
Audrey Ong 3/3/16

CSC 270

Homework 5

Problem 1

Part 1

 Figure 1 shows the state diagram of the sequencer that is to be implemented with D flip-
flops.

Figure 1. State Diagram of Sequencer to be Implemented

 From Figure 1, eight states are observed, which corresponds to three flip-flops. Table 1
shows Figure 1’s Tn to Tn+1 state table, and table 2 shows the binary representation of table 1. The
variables S0, S1, S2, S3, S4, S5, S6, and S7 represents the 8 different states observed in the state
diagram. The variable Q2, Q1, and Q0 represent individual bits that are the outputs from the three
different flip-flops. Tn and Tn+1 represent the current state and the future state respectively, and D2,
D1, and D0 represent the Boolean expression that expresses the future Q2, Q1 and Q0 as a function
of the current Q2, Q1 and Q0.

Table 1. Tn to Tn+1 State Table

Tn Tn+1

S0 S1
S1 S2
S2 S3
S3 S4
S4 S5
S5 S2
S6 S7
S7 S6

Table 2. Tn to Tn+1 Binary State Table

Present Future

Tn Tn+1

Q2 Q1 Q0 Q2 Q1 Q0
0 0 0 0 0 1
0 0 1 0 1 1
0 1 1 0 1 0
0 1 0 1 1 0
1 1 0 1 1 1
1 1 1 0 1 1
1 0 1 1 0 0
1 0 0 1 0 1

 D2 D1 D0
Tn

 Tables 3, 4, and 5 show the Karnaugh maps for D2, D1, and D0 respectively, and Equations 1,
2, and 3 show the Boolean expressions for D2, D1, and D0 respectively that come from the Karnaugh
map.

Table 3. Karnaugh Map for D2

 Q1Q0
Q2

00 01 11 10

0 1
1 1 1 1

Table 4. Karnaugh Map for D1

 Q1Q0
Q2

00 01 11 10

0 1 1 1
1 1 1

Table 5. Karnaugh Map for D0

 Q1Q0
Q2

00 01 11 10

0 1 1
1 1 1 1

𝐷2 = 𝑄1𝑄0′ + 𝑄2𝑄1′ (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1)

𝐷1 = 𝑄1 + 𝑄2′𝑄0 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2)

𝐷0 = 𝑄2′𝑄1′ + 𝑄1′𝑄0′ + 𝑄2𝑄1 = 𝑄1′(𝑄2′ + 𝑄0′) + 𝑄2𝑄1 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3)

 Table 6 shows the transition table containing the Q outputs and the RYG outputs.

Table 6. Q2, Q1, Q0 Outputs and its Corresponding R, Y, G Values

 Tn
State Q2 Q1 Q0 R Y G

S0 0 0 0 1 0 0
S1 0 0 1 1 0 0
S2 0 1 1 0 0 1
S3 0 1 0 0 1 0
S4 1 1 0 1 0 0
S5 1 1 1 1 1 0
S6 1 0 1 0 0 0
S7 1 0 0 1 0 0

Tables 7, 8, and 9 show the Karnaugh maps for R, Y, and G respectively, and Equations 4, 5,
and 6 show the Boolean expressions for R, Y, and G respectively that come from the Karnaugh map.

Table 7. Karnaugh Map for R

 Q1Q0
Q2

00 01 11 10

0 1 1
1 1 1 1

Table 8. Karnaugh Map for Y

 Q1Q0
Q2

00 01 11 10

0 1
1 1

Table 9. Karnaugh Map for G

 Q1Q0
Q2

00 01 11 10

0 1
1

𝑅 = 𝑄2′𝑄1′ + 𝑄1′𝑄0′ + 𝑄2𝑄1 = 𝐷0 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 4)

𝑌 = 𝑄2′𝑄1𝑄0′ + 𝑄2𝑄1𝑄0 = 𝑄1(𝑄2′𝑄0′ + 𝑄2𝑄0) = 𝑄1(𝑄2 ⊕ 𝑄0)′ (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5)

𝐺 = 𝑄2′𝑄1𝑄0 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6)

 Below shows the python code and its corresponding output used to check the Boolean
equations D2, D1, D0, R, Y and G found. The code shows that the equations do indeed produce the
state diagram shown in Figure 1, and it that the sequencer works correctly, no matter what state it
starts in.

Code:

hw5.py

Audrey Ong

homework 5

def NOT(a):

 return 1 - a

def RYGSequencer(Q2, Q1, Q0, numOfCycles):

 for step in range(numOfCycles):

 D0 = (NOT(Q1) & (NOT(Q2) | NOT(Q0))) | (Q2 & Q1)

 D1 = Q1 | (NOT(Q2) & Q0)

 D2 = (Q1 & NOT(Q0)) | (Q2 & NOT(Q1))

 R = D0

 Y = Q1 & NOT(Q2 ^ Q0) # Q2 ^ Q0 = Q2 xor Q0

 G = NOT(Q2) & Q1 & Q0

 print("Q2Q1Q0 = %d %d %d | RYG = %d %d %d" % (Q2, Q1, Q0,
R, Y, G))

 Q0 = D0

 Q1 = D1

 Q2 = D2

def main():

 print("Starting test from S0 000")

 RYGSequencer(0, 0, 0, 8)

 print("")

 print("Starting test from S1 001")

 RYGSequencer(0, 0, 1, 7)

 print("")

 print("Starting test from S2 011")

 RYGSequencer(0, 1, 1, 6)

 print("")

 print("Starting test from S3 010")

 RYGSequencer(0, 1, 0, 6)

 print("")

 print("Starting test from S4 110")

 RYGSequencer(1, 1, 0, 6)

 print("")

 print("Starting test from S5 111")

 RYGSequencer(1, 1, 1, 6)

 print("")

 print("Starting test from S6 101")

 RYGSequencer(1, 0, 1, 4)

 print("")

 print("Starting test from S7 100")

 RYGSequencer(1, 0, 0, 4)

main()

Output:

Starting test from S0 000

Q2Q1Q0 = 0 0 0 | RYG = 1 0 0

Q2Q1Q0 = 0 0 1 | RYG = 1 0 0

Q2Q1Q0 = 0 1 1 | RYG = 0 0 1

Q2Q1Q0 = 0 1 0 | RYG = 0 1 0

Q2Q1Q0 = 1 1 0 | RYG = 1 0 0

Q2Q1Q0 = 1 1 1 | RYG = 1 1 0

Q2Q1Q0 = 0 1 1 | RYG = 0 0 1

Q2Q1Q0 = 0 1 0 | RYG = 0 1 0

Starting test from S1 001

Q2Q1Q0 = 0 0 1 | RYG = 1 0 0

Q2Q1Q0 = 0 1 1 | RYG = 0 0 1

Q2Q1Q0 = 0 1 0 | RYG = 0 1 0

Q2Q1Q0 = 1 1 0 | RYG = 1 0 0

Q2Q1Q0 = 1 1 1 | RYG = 1 1 0

Q2Q1Q0 = 0 1 1 | RYG = 0 0 1

Q2Q1Q0 = 0 1 0 | RYG = 0 1 0

Starting test from S2 011

Q2Q1Q0 = 0 1 1 | RYG = 0 0 1

Q2Q1Q0 = 0 1 0 | RYG = 0 1 0

Q2Q1Q0 = 1 1 0 | RYG = 1 0 0

Q2Q1Q0 = 1 1 1 | RYG = 1 1 0

Q2Q1Q0 = 0 1 1 | RYG = 0 0 1

Q2Q1Q0 = 0 1 0 | RYG = 0 1 0

Starting test from S3 010

Q2Q1Q0 = 0 1 0 | RYG = 0 1 0

Q2Q1Q0 = 1 1 0 | RYG = 1 0 0

Q2Q1Q0 = 1 1 1 | RYG = 1 1 0

Q2Q1Q0 = 0 1 1 | RYG = 0 0 1

Q2Q1Q0 = 0 1 0 | RYG = 0 1 0

Q2Q1Q0 = 1 1 0 | RYG = 1 0 0

Starting test from S4 110

Q2Q1Q0 = 1 1 0 | RYG = 1 0 0

Q2Q1Q0 = 1 1 1 | RYG = 1 1 0

Q2Q1Q0 = 0 1 1 | RYG = 0 0 1

Q2Q1Q0 = 0 1 0 | RYG = 0 1 0

Q2Q1Q0 = 1 1 0 | RYG = 1 0 0

Q2Q1Q0 = 1 1 1 | RYG = 1 1 0

Starting test from S5 111

Q2Q1Q0 = 1 1 1 | RYG = 1 1 0

Q2Q1Q0 = 0 1 1 | RYG = 0 0 1

Q2Q1Q0 = 0 1 0 | RYG = 0 1 0

Q2Q1Q0 = 1 1 0 | RYG = 1 0 0

Q2Q1Q0 = 1 1 1 | RYG = 1 1 0

Q2Q1Q0 = 0 1 1 | RYG = 0 0 1

Starting test from S6 101

Q2Q1Q0 = 1 0 1 | RYG = 0 0 0

Q2Q1Q0 = 1 0 0 | RYG = 1 0 0

Q2Q1Q0 = 1 0 1 | RYG = 0 0 0

Q2Q1Q0 = 1 0 0 | RYG = 1 0 0

Starting test from S7 100

Q2Q1Q0 = 1 0 0 | RYG = 1 0 0

Q2Q1Q0 = 1 0 1 | RYG = 0 0 0

Q2Q1Q0 = 1 0 0 | RYG = 1 0 0

Q2Q1Q0 = 1 0 1 | RYG = 0 0 0

Given the equations found for D2, D1, D0, R, Y and G, the circuit diagram showing the
implementation of the state diagram in Figure 1 with D flip-flops is shown in Figure 2.

Figure 2. Circuit Diagram of the Sequencer Shown in Figure 1

Part 2

 To automatically escape the S6-S7 cycle with the cheapest fix, we need to examine Table 2
and the Karnaugh maps in Tables 3, 4, and 5 and suggest modifications to Table 2 that would require
the least amount of change to our circuit diagram shown in Figure 2. As seen from Table 2 and the
Karnaugh map in Table 3, if we change Q2 in Tn+1 from 1 to 0 in both S6 (Q2Q1Q0 = 101 during Tn)
and S7 (Q2Q1Q0 = 100 during Tn), we can remove the bottom two 1s in Table 3, which would in fact
simply our final circuit, and give us a negative cost. The modified Boolean expression for D2 is
expressed in Equation 7.

𝐷2(𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑) = 𝑄1𝑄0′ (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 7)

 Therefore if the sequencer starts in S6, the next state will be S0, and if the sequencer starts
in S7 the next state will become S1, thus escaping the S6-S7 loop. Where in Equation 1, D2 originally
needed two AND gates and one OR gate to implement, the modified D2 equation only requires one
AND gate. Since there are four AND gates in a chip, and four OR gates in a chip, the cost of my fix is -
1/4 - 1/4 = -1/2. Figure 3 shows this modified circuit that automatically exits the S6-S7 cycle.

Figure 3. Modified Circuit Diagram of Sequencer that Escapes the S6-S7 Cycle

 Below shows the python code used to test the modified circuit that eliminates the S6-S7
cycle. As seen from the code output, the new circuit does indeed escape the S6-S7 cycle
automatically.

Code 2:

hw5mod.py

Audrey Ong

homework 5

def NOT(a):

 return 1 - a

def RYGSequencer(Q2, Q1, Q0, numOfCycles):

 for step in range(numOfCycles):

 D0 = (NOT(Q1) & (NOT(Q2) | NOT(Q0))) | (Q2 & Q1)

 D1 = Q1 | (NOT(Q2) & Q0)

 D2 = (Q1 & NOT(Q0))

 R = D0

 Y = Q1 & NOT(Q2 ^ Q0) # Q2 ^ Q0 = Q2 xor Q0

 G = NOT(Q2) & Q1 & Q0

 print("Q2Q1Q0 = %d %d %d | RYG = %d %d %d" % (Q2, Q1, Q0,
R, Y, G))

 Q0 = D0

 Q1 = D1

 Q2 = D2

def main():

 print("Starting test from S0 000")

 RYGSequencer(0, 0, 0, 8)

 print("")

 print("Starting test from S1 001")

 RYGSequencer(0, 0, 1, 7)

 print("")

 print("Starting test from S2 011")

 RYGSequencer(0, 1, 1, 6)

 print("")

 print("Starting test from S3 010")

 RYGSequencer(0, 1, 0, 6)

 print("")

 print("Starting test from S4 110")

 RYGSequencer(1, 1, 0, 6)

 print("")

 print("Starting test from S5 111")

 RYGSequencer(1, 1, 1, 6)

 print("")

 print("Starting test from S6 101")

 RYGSequencer(1, 0, 1, 7)

 print("")

 print("Starting test from S7 100")

 RYGSequencer(1, 0, 0, 7)

main()

Output 2:

Starting test from S0 000

Q2Q1Q0 = 0 0 0 | RYG = 1 0 0

Q2Q1Q0 = 0 0 1 | RYG = 1 0 0

Q2Q1Q0 = 0 1 1 | RYG = 0 0 1

Q2Q1Q0 = 0 1 0 | RYG = 0 1 0

Q2Q1Q0 = 1 1 0 | RYG = 1 0 0

Q2Q1Q0 = 1 1 1 | RYG = 1 1 0

Q2Q1Q0 = 0 1 1 | RYG = 0 0 1

Q2Q1Q0 = 0 1 0 | RYG = 0 1 0

Starting test from S1 001

Q2Q1Q0 = 0 0 1 | RYG = 1 0 0

Q2Q1Q0 = 0 1 1 | RYG = 0 0 1

Q2Q1Q0 = 0 1 0 | RYG = 0 1 0

Q2Q1Q0 = 1 1 0 | RYG = 1 0 0

Q2Q1Q0 = 1 1 1 | RYG = 1 1 0

Q2Q1Q0 = 0 1 1 | RYG = 0 0 1

Q2Q1Q0 = 0 1 0 | RYG = 0 1 0

Starting test from S2 011

Q2Q1Q0 = 0 1 1 | RYG = 0 0 1

Q2Q1Q0 = 0 1 0 | RYG = 0 1 0

Q2Q1Q0 = 1 1 0 | RYG = 1 0 0

Q2Q1Q0 = 1 1 1 | RYG = 1 1 0

Q2Q1Q0 = 0 1 1 | RYG = 0 0 1

Q2Q1Q0 = 0 1 0 | RYG = 0 1 0

Starting test from S3 010

Q2Q1Q0 = 0 1 0 | RYG = 0 1 0

Q2Q1Q0 = 1 1 0 | RYG = 1 0 0

Q2Q1Q0 = 1 1 1 | RYG = 1 1 0

Q2Q1Q0 = 0 1 1 | RYG = 0 0 1

Q2Q1Q0 = 0 1 0 | RYG = 0 1 0

Q2Q1Q0 = 1 1 0 | RYG = 1 0 0

Starting test from S4 110

Q2Q1Q0 = 1 1 0 | RYG = 1 0 0

Q2Q1Q0 = 1 1 1 | RYG = 1 1 0

Q2Q1Q0 = 0 1 1 | RYG = 0 0 1

Q2Q1Q0 = 0 1 0 | RYG = 0 1 0

Q2Q1Q0 = 1 1 0 | RYG = 1 0 0

Q2Q1Q0 = 1 1 1 | RYG = 1 1 0

Starting test from S5 111

Q2Q1Q0 = 1 1 1 | RYG = 1 1 0

Q2Q1Q0 = 0 1 1 | RYG = 0 0 1

Q2Q1Q0 = 0 1 0 | RYG = 0 1 0

Q2Q1Q0 = 1 1 0 | RYG = 1 0 0

Q2Q1Q0 = 1 1 1 | RYG = 1 1 0

Q2Q1Q0 = 0 1 1 | RYG = 0 0 1

Starting test from S6 101

Q2Q1Q0 = 1 0 1 | RYG = 0 0 0

Q2Q1Q0 = 0 0 0 | RYG = 1 0 0

Q2Q1Q0 = 0 0 1 | RYG = 1 0 0

Q2Q1Q0 = 0 1 1 | RYG = 0 0 1

Q2Q1Q0 = 0 1 0 | RYG = 0 1 0

Q2Q1Q0 = 1 1 0 | RYG = 1 0 0

Q2Q1Q0 = 1 1 1 | RYG = 1 1 0

Starting test from S7 100

Q2Q1Q0 = 1 0 0 | RYG = 1 0 0

Q2Q1Q0 = 0 0 1 | RYG = 1 0 0

Q2Q1Q0 = 0 1 1 | RYG = 0 0 1

Q2Q1Q0 = 0 1 0 | RYG = 0 1 0

Q2Q1Q0 = 1 1 0 | RYG = 1 0 0

Q2Q1Q0 = 1 1 1 | RYG = 1 1 0

Q2Q1Q0 = 0 1 1 | RYG = 0 0 1

