
CSC 352 Parallel Processing Project 1
Diana Jaunzeikare

March 2, 2010

This report analyses the performance of three implementations of the same program -

threaded, multiprocessing and serial. The task of the program is to search for a keyword

on some server (here Dominiqu’s) that will give back a list of urls of files (20 or less) that

contain the keyword. Then the program queries each of the url, gets the whole file, removes

stopwords, calculates the frequency of each word, ranks the words and then assigns a score

to the document as the inverse of the rank. (So one query is defined as accessing one url

and calculating it’s score.) Then, in a decreasing order of score, it outputs the url, its score

and a context around the keyword.

The time of the execution is measured with Python’s time class. It starts measuring

after the list of urls have been retrieved and before each url is processed. It stops measuring

the time when all urls have been processed and before arranging them in the order of the

score. Thus the time measured is of the part of the program that is executed in parallel in

threaded and multiprocessing implementations. The best time and average time of 3 runs is

calculated. The number of queries per second is calculated as number of queries divided by

time it took to process them.

The experiment was done on a Intel(R) Core(TM)2 Duo CPU P8600 with speed 2.40GHz

each. The time of the day was around 8pm. Internet connection was Smith College residential

Wifi for the first two experiments.

In the Figure 1 we can see the results of number of queries per second, whith the keyword

searched being ”love”. The multiprocessing implementation of the program performs the best

with 9.4 queries per second as the best result among three runs and 7.9 queries per second

on average. Not so much surprisingly anymore, the serial version performs better than the

threaded version (but worse than the multiprocessing one). This probably is due to the

Python Global Interpreter Lock, that allows only one thread to perform at a time.

These results are specific for the keyword ”love”. In Figure 2 are results for different

keywords. When keywords ”love”, ”car” and ”joy” were searched, 20 urls were returned, for

the keyword ”blablabla” none were returned, and for the keyword ”christmass” 4 urls were

returned.

Again serial version performs better than the threaded version every single time. The

multiprocessing implementation outperforms the other two, except for the keyword ”joy”.

The explanation for this anomaly could be that it happened that at the time the experiment

1



CSC 352 Parallel Processing Project 1
Diana Jaunzeikare

March 2, 2010

was run and specifically the search for the keyword ”joy” was performed, there was a some

kind of lag in the Internet connection.

Also in Figure 2 it seems that performance is better if less urls are processed (as in the

case with keyword ”christmass”). However there is too few data points to be completely sure.

To explore it in more detail it would require to be able ask the server to return arbitrary

number of results (not 20 or less as it is now).

I also wanted to see how performance changes with different Internet connection speeds.

The experiment was run on a wifi connection in the Engineering building (Green Box) (the

speed there was the slowest), wifi connection at residential house (medium speed) and eth-

ernet connection at the same residential house (the fastest). In Figure 3 differences and

dependence of the performance on the Internet speed is clearly visible. The faster the In-

ternet connection the better performance. The multiprocessing implementation outperforms

the other implementations at medium and fast Internet speeds, however the results at low

Internet speed are very close. What is different from the other graphs is that at the highest

Internet speed the serial version is slower than the threaded version.

In summary, the multiprocessing implementation almost all the time outperforms the

threaded version, which is expected due to the Python Global Interpreter Lock, which allows

to execute only one thread at a time. It is relevant to this program, since part of the program

(maybe even the largest part) is spent in a ”cpu bound” mode (that is when calculating the

score of the document). Even the serial implementation outperforms the threaded version,

which is consistent with my results in homework 2.

2



CSC 352 Parallel Processing Project 1
Diana Jaunzeikare

March 2, 2010

best_t average_t

Number of queries per second 
 Threaded vs Multiprocessing vs Serial

Categories: Best time and Average time

N
um

be
r 

of
 q

ue
rr

ie
s 

pe
r 

se
co

nd

0
2

4
6

8

Threaded
Multiproc
Serial

Figure 1: Number of queries per second. The best and average time for retrieving 20 urls
with keyword ”love”.

3



CSC 352 Parallel Processing Project 1
Diana Jaunzeikare

March 2, 2010

love blablabla car joy christmass

Number of queries per second 
 Threaded vs Multiprocessing vs Serial

Keywords

N
um

be
r 

of
 q

ue
rr

ie
s 

pe
r 

se
co

nd

0
2

4
6

8
10

12
14 Threaded

Multiproc
Serial

Figure 2: Number of queries per second. The best time for different keywords.

4



CSC 352 Parallel Processing Project 1
Diana Jaunzeikare

March 2, 2010

wifi_eng wifi_dorm eth_dorm

Number of queries per second 
 Wifi at Eng building vs Wifi residential vs Ethernet

Internet connection

N
um

be
r 

of
 q

ue
rr

ie
s 

pe
r 

se
co

nd
 (

lo
g 

sc
al

e)

1
2

5
10

20
50

Threaded
Multiproc
Serial

Figure 3: Number of queries per second. The best time for the keyword ”love”, with exper-
iment performed with different Internet connections.

5


