Name:	DT
_	

CSC231 Midterm Exam Fall 2012

This is a closed-book, closed-notes in-class exam given under the rules of the honor code. You cannot discuss any details or exchange information with anybody except the instructor. You have 50 minutes to answer 6 of the questions. If you answer more than 6 answers, the top 6 answers will be counted.

Problem #1

- Write a program that computes and stores in an array of 16-bit words the first 10 powers of 2. The array starts with 0 in all 10 cells then stores 1 in the first cell, 2 in the second, 4 in the third, etc.
- Is a 16-bit format sufficient to store all the numbers?

yes! 2'0 < 2'6-1 which is the largest unsigned that can be streed in a 16-bit format.

Power: dw 0,0,0,0,0
dw 0,0,0,0,0

inv ax, 1
mov ecx, 10
mov ebx, Power

for: mov word [ebx], ax
add ax, ax
add ebx, 2
loop for

Name:

 What is in word3 once the three instructions below have finished executed?

Problem #3

- Assume we decide to use words of 10 bits to represent 2's complement numbers. What would be the *range* of integers we could store in such a format? Explain your answer.
- 2) Could 1024 be stored in such a format?
- 3) What is the binary representation of -1 in this format?

1)
$$-2^9$$
 to $2^9-1 = -512$ to 511

- 2) No, 1024 cannot be represented in 2's complement or as an unsigned number in a 10-bit format
- 3) -1 = 11 1111 1111 in binary in a 10-bit Turnat

Name:_____

Problem #4

• How many times does the loop below repeat?

for: mov ecx, 0
for: inc eax
dec ebx
loop for

the loop will go 232 times

What numbers are printed by the loop below?

mov ecx, 10
mov eax, 0

for2: call print_int
mov eax, ecx
dec ecx
loop for2

010864

M		
Name:_		

• What values are left in eax, ebx, ecx, and edx at the end of these instructions?

```
eax, 0
      MOA
             ebx, eax
      mov
             ecx, ecx
      sub
             edx, 0x00000000
      and
      add
            al, 1
             al, 0xf0
      loop
             for
for:
             bx, dx
      mov
             ebx, 0xffff0000
      or
```

lax: 00 00 00 F1 ebx: FF FF 00 00 ecx: FF FF FF FFF edx: 0000 0000

Problem #6

- Perform the addition (in binary or hex, by hand) of -2 and 1024 coded as 16-bit 2's complement numbers. Is the result correct as a 16-bit 2's complement number?

2) flipping all the bits and adding I we get $0 \times 0000 \ 1001$ $= 1 \times 16^{3} + 1$ = 4096 + 1 = 4097=) the number was

Show the contents of the memory with whatever format is appropriate once the variables shown below have been loaded in it:

section .d dd dd db dw db db	<pre>lata 0x1010 -1 1,2,3,4,5,6,7 0xaa "a", "b", "c", "d" "abcd"</pre>
) a o o o o o	1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
→ O F F O O O O O O O O O O O O O O O O	2 1 F F 00 00 0
	dd dd db dw db db db

Name:	

Look at the code below. Is the mov instruction valid?

Will it create a segmentation fault? If not, what value will get stored in eax?

What addressing modes are used for the 2 operands of the mov instruction?

msg1 db "midterm exam"
msg2 db "fall 2012"

section .text
global asm_main

asm main:

mov

eax, msg1-msg2

Assume msg1 = 0, then msg2 = 12. They are both label and represent addresses. Addresses are 32-bit numbers.

So msgl-msg2 = 0-12 = -12The instruction is equivalent to

mov eax, -12

Les immediate

register