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Abstract

This document provides an overview of the Motorola 68HC11 processor, focusing
on programming the E1 series chip using the open-source as6811 assembler.

1 Bits and Bytes

Most humans, having ten fingers, think in decimal numbers. In computers, information
is represented with voltages, and it is most convenient for the voltage levels to represent
only two states: a binary one or binary zero. Thus computers process binary digits, or
bits.

For convenience, microprocessors group bits together into words. The first micro-
processor, the Intel 4004, operated on a word composed of four bits. Many small
microprocessors use 8-bit words, called bytes.

In an 8-bit numeral, 256 different states can be represented (since 28 = 256). Pro-
grammers use these 256 states to represent different things. Some common usages of
a byte of data are:

• a natural number from 0 to 255;

• an integer in the range of -128 to 127;

• a character of data (a letter, number, or printable symbol).

When programmers need to represent larger numerals, they group bytes together.
A common grouping is two bytes, often called a 16-bit word, or a short (a “regular”
word is 4 bytes of data). A word can have 65536 states, since 216 = 65536.

Decimal numbers are painful to use when talking about binary information. To
make life easier, programmers started to use the base 16 hexadecimal (or hex for short)
numbering system when talking about bits, bytes, and other binary data.

The hex system uses 16 different digits to represent each place value of a numeral.
Using hex, one would count as follows: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10
. . . etc. The letters A though F are then used to represent the values of (decimal) 10
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binary decimal hex

0b0000 0 0x0
0b0001 1 0x1
0b0010 2 0x2
0b0011 3 0x3
0b0100 4 0x4
0b0101 5 0x5
0b0110 6 0x6
0b0111 7 0x7
0b1000 8 0x8
0b1001 9 0x9
0b1010 10 0xA
0b1011 11 0xB
0b1100 12 0xC
0b1101 13 0xD
0b1110 14 0xE
0b1111 15 0xF
0b10000 16 0x10

0b11100011 0xE3
0b10011100 0x9C
0b11111111 255 0xFF

256 0x100
1024 0x400

65535 0xFFFF

Figure 1: Some Numeric Conversions

through 15, respectively. This is wonderful, because a hex digit (of 16 possible states)
is equivalent to four bits exactly. Then, a byte can be represented by exactly two hex
digits, and a sixteen bit word by four of them.

The following conventions are typical for representing values in using the different
numeric bases. Binary numbers are represented by the prefix 0b. Hexadecimal numbers
are specified by 0x. Decimal numbers don’t have a prefix. (These aren’t the only
conventions that are used in the computer world, but they will be standard throughout
these notes.)

Let’s examine some of the numeric conversions in Figure 1. Notice that four bits
equal one hex digit. This is helpful in converting binary to hex. Notice some entries
don’t have their decimal values filled in. This is to make the point that it’s easy to
transcribe between binary and hexadecimal representation, but using decimal is often
cumbersome.

It’s good to know some general quantities. For example, eight bits, or one byte,
is 256 values. Then the largest unsigned integer representable in a byte is 255. The
largest integer representable in two bytes is 65535.

A byte can be used to represent one character of information. A standard has
been devised for this, called the American Standard Code for Information Interchange
standard, or ASCII code1. ASCII is almost universally accepted for representing the
English character set, including upper and lower case letters, numbers, and typical

1ASCII is pronounced as in “ass-key.”
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Memory Address Function # bytes (decimal)
0x00–0x1ff RAM memory 512

0x1000–0x013f special registers 64
0xb600–0xb7ff EEPROM memory 512

Figure 2: Memory Map of the 68hc11e1 Microprocessor

punctuation (like !@#$%&*()). An old competing IBM standard, the EBCDIC code,
is largely defunct except on some of their mainframes, but modern computer scientists
are presently devising a 16-bit international character code.

In the back of the Motorola HC11 programmer’s handbook is a table of the ASCII
codes. The most important thing to know is first that it exists, but then some other
details. First, notice that it only uses seven of the eight bits in a byte. So, there are
actually only 128 ASCII characters, using the values 0x00 to 0x7F hex.

Printable characters start at 0x20 hex (32 decimal). The codes from 0x0 to 0x1F
are used for things like cursor control, line feeds, and the like. Knowing the ASCII
characters become important if when doing interactive programming on your HC11,
in which case the user might type ASCII information to the HC11 over the serial line,
and it would respond in kind. Then, the programmer must deal with the characters as
bytes, and the ASCII codes become important.

2 Introduction to the HC11

2.1 Memory Map

Microprocessors store their programs and data in memory. Memory is organized as a
contiguous string of addresses, or locations. Each memory location contains eight bits
of data (this is because the HC11 is an 8-bit micro; other processors can have 16 or 32
bits of data at each memory location).

The entire amount of memory that a processor can access is called its address space.
The HC11 has an address space of 65,536 memory locations, corresponding exactly to
16 bits of address information. This mean that a 16-bit numeral can be used to point
at, or address, any of the memory bytes in the address space of the HC11. Thus four
hexadecimal digits (4 bits per digit × 4 digits) can exactly specify one memory location
(in which one will find one byte of information).

In general, any area of memory should be equivalent to any other. Because the HC11
is a special-purpose chip, and all of its memory is etched right on the microprocessor
chip itself, its designers had to dedicate portions of its memory to particular functions.
Figure 2 shows a “memory map” of the HC11 chip. Let’s go over this map in detail.

The first area of memory, from address 0x00 to 0x1ff, is the chip’s random access
memory, or RAM. RAM can be both written and erased. It’s “volatile,” which means
that when power is removed from the chip, it loses its state. RAM is typically used for
storing programs and data.

When you program the HC11, however, RAM is not typically used to store pro-
grams, because there’s only 512 bytes of it (0x00 to 0x1ff is 512 bytes). It is normally
used it to store data and variable values that the program will use while it’s running.
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Programs will reside normally in the EEPROM, an acronym for electrically erasable
programmable read-only memory. EEPROM is the culmination of a trend in pro-
grammable, yet permanent, memory technology.

Read-only memory (ROM) means what it suggests: that memory can only be read,
not written to like RAM. It is programmed at the factory, in mass quantities. This
is good for companies that are selling a production version, but to satisfy R & D
engineers, PROM (programmable read-only memory) was developed.

PROM chips can’t be erased, so when in order to make changes to code, the chip
is throw away and a new one is used. PROM chips aren’t horribly expensive, but this
process still imposes a high development cost.

EPROM, or erasable programmable read only memory, was the next step. Most
EPROM chips are erased by exposing the chip to ultraviolet light for half an hour.
This is a vast improvement over PROM, but unless there is a large supply of blank
chips for reprogramming, the programmer will have a long wait time between code
downloads.

The Motorola 68hc11e1 chip uses recent ROM technology: EEPROM, which is
electrically erasable. This means that the chip can erase its own ROM, and download
new data to be written into it. It’s the ultimate thing for microprocessor hackers,
because new programs can be downloaded into the chip in just ten seconds or so. Also,
because it’s ROM, when the micro is powered down, its program doesn’t go away.

EEPROM isn’t a substitute for RAM: writing new data in is extremely slow by
RAM standards, and can only be done a finite number of times (about one to ten
thousand erase/write cycles, to be exact).

The EEPROM resides from addresses 0xb600 to 0xb7ff. There’s just 512 bytes of
it.

In the middle part of the address space, starting at address 0x1000, is an area
for special control registers. By storing and reading values from this area of memory,
you can control input/output functions like the serial ports, sensors and motor ports,
and a host of other HC11 special functions. These features are discussed in detail in
Section 4.

2.2 Registers

A microprocessor does its work by moving data from memory into its internal regis-
ters, processing on it, and then copying it back into memory. These registers are like
variables that the processor uses to do its computations. There are two different types
of registers: accumulators, and index registers.

Accumulators are used to perform most arithmetic operations, like addition, sub-
traction, or performing logical and bit operations (and, or, invert). Results of such
operations often are placed back into a register; for example, an instruction may add
something to the “A” register, and place the sum back into that same register. It’s
for this reason that the name accumulator is appropriate for these register type: they
accumulate the results of on-going computations.

Index registers are used to point at data that is located in memory. For example,
in the add operation just described, the addend (the number getting “added in” to the
sum) might be indexed by the “X” register, meaning that the X register is being used
to indicate the address of the data in memory.

Figure 3 shows the “programmer’s model” of the registers of the HC11.
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7 A 7 B 0 8-bit accumulators A and B
15 D 0 or 16-bit double accumulator D

15 X 0 index register X

15 Y 0 index register Y

15 SP 0 stack pointer

15 PC 0 program counter

Figure 3: Programmer’s Model of HC11 Registers

The HC11 has two accumulators, labelled A and B. Each are 8-bit registers: they
hold one byte of data.

The general-purpose index registers are the X and Y registers. These are 16-bit
registers and are most commonly used to address data in memory.

The A and B registers can be used together as a 16-bit arithmetic register, in which
case they are named the D register. As indicated in the diagram, the A register forms
the “high bits,” or most significant digit, in this mode.

The Stack Pointer, or SP register, is used to store the location of the program stack.
The stack, which is explained in detail later, is used for temporary storage of data, and
to store the return address before a subroutine is called.

The Program Counter, or PC, is used to keep track of the current instruction
being executed. The PC is automatically incremented as the microprocessor proceeds
through the instruction stream.

3 Programming the HC11

When a microprocessor runs a program, it advances sequentially through memory,
fetching and executing one instruction at a time. As mentioned earlier, the PC (pro-
gram counter) register keeps track of the address of the instruction currently being
executed. The microprocessor automatically advances the PC to the next instruction
after it is finished executing the current one.

Let’s look at typical instruction: load a number into the A register. The machine
code for this instruction is (in hex): 86 nn, where nn is the byte to be loaded into the
register. The hex value 0x86 is called the operational code, or op-code, that signifies
the “load A register” instruction.

Instructions may be one, two, three, or four bytes long, depending on what their
function is. When the microprocessor encounters the byte 0x86 in the instruction
stream, it knows, “I’m going to fetch the next byte of data, and load that into my A
register.” After the microprocessor evaluates the first byte of an instruction, it knows
how many more bytes it needs to fetch to complete the instruction, if it is longer than
one byte. Then it executes the next instruction, and so on, ad infinitum.

Instructions take varying numbers of machine cycles to execute, depending on their
complexity. The HC11 we’re using operates at a frequency of 2 megahertz (Mhz.),
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meaning that it executes 2,000,000 machine cycles per second. The period of a machine
cycle is then 0.5 microseconds (µsec), so an instruction that requires 3 machine cycles
will take 1.5 µsec of real time to execute.

In general, longer instructions (those needing two, three, or four bytes) take longer
(more machine cycles) to execute, although there are some exceptions to this rule.

3.1 Machine Code vs. Assembly Language

People often speak of machine code and assembly language. Both of these terms refer
to the same thing: the program that is executed directly by the microprocessor.

However, these terms refer to that program in different states of development. Let
me explain.

Machine code usually refers to the raw data stored as a microprocessor’s program.
This is commonly described in the hexadecimal notation we’ve been using.

Assembly language is a set of mnemonics, or names, and a notation that is a readable
yet efficient way of writing down the machine instructions. Usually, a program that is
written in assembly language is processed by an assembler program, that converts the
mnemonic instructions into machine code. This output from the assembler program is
often called the object code, which can then executed directly by the microprocessor.

In the HC11 assembly language, the “Load A register” instruction that we discussed
earlier is written as follows:

ldaa #0x80

The word “ldaa” is the assembly language mnemonic for “LoaD Accumulator A.”
Then, the #0x80 is the hexadecimal value to be loaded (the value 0x80 was selected at
random).

When a HC11 assembler program processes an input file, it knows the mnemon-
ics for all of the HC11 instructions, plus their corresponding op-codes. It uses this
information to create the object code file.

The assembly process is a straight-forward, mechanical operation. Each assembly-
language instruction is converted to one machine-language instruction (though that
instruction may be one to four bytes in length). Assembler programs have none of the
sophistication that high-level language compilers must have.

But, assemblers typically have features to make writing assembly programs easier.
These features allow the creation of symbolic labels for constant values or memory
addresses, perform arithmetic in binary, decimal, and hex format, and convert character
strings to binary values (amongst other functions).

Rather than presenting an overview of assembly language all at once, HC11 instruc-
tions are introduced throughout this document in a progressive fashion.

3.2 Addressing Modes

In our previous example (ldaa #0x80), the hex value 0x80 is loaded into the A register.
This method of loading data into the register is called immediate addressing, because
the data to be loaded is located “immediately” in the instruction itself. Immediate
addressing is commonly used to load a known piece of data into a register.

There are other ways to address data bytes that need to be operated on. These dif-
ferent methods are known as addressing modes. Other than the immediate addressing
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mode, most addressing modes provide ways of accessing data that is stored somewhere
in memory.

The extended addressing mode is a one way to access data stored in memory. In
this mode, the 16-bit address of a memory byte is specified in the instruction. For
example, the instruction

ldaa 0x1004

will load the A register with the contents of memory location 0x1004. This in-
struction uses three bytes of memory: one byte is the op-code, and two more bytes are
needed to specify the 16-bit memory address.

The direct addressing mode is similar to the extended mode, but works only for
data stored in the first 256 bytes of the chip’s address space, from addresses 0x00 to
0xFF. This happens to be the chip’s RAM, as shown in Figure 2, the HC11 Memory
Map. So the direct mode is used to store and load data to the RAM.

In the direct mode, only one byte of address data is required to specify the memory
address, since it is known to be in the first 256 bytes of memory. Instructions using
direct addressing may require only two bytes: one for the op-code, and one for the
address information. They execute in fewer cycles as a result of this savings. The
HC11 assembler will automatically choose the direct addressing mode if the address
specified is in the range 0x00 to 0xFF. Extended addressing could also be used to access
this portion of memory, but it would rarely be preferable.

The indexed addressing mode uses the X or Y register as a pointer into memory.
The value contained in the index register is and an offset byte are added to specify the
location of the desired memory byte or word.

Let’s look at an example to make this clear. Suppose the X register currently has
the value 0x1000. Then the instruction

ldaa 0,X

will load the A register with the contents of location 0x1000, and the instruction

ldaa 5,X

will load the A register with the contents of location 0x1005.
The offset value is contained in one byte of data, and only positive or zero offsets

are allowed. As such, only offsets in the range of 0 to 255 decimal are possible.
Why would a programmer use the indexed addressing mode, when the extended

addressing mode will access the desired byte directly? The reason to use the indexed
modes, with their associated offset bytes, is when repeatedly accessing locations from
a particular region of memory.

For example, the HC11 special register area begins at location 0x1000 and ends at
location 0x103F. Suppose there were a series of instructions that accessed the registers
located in this area. We could then set up the X register as a base pointer—pointing
to the beginning of this area of memory (we’d load the X register with 0x1000: ldx
#0x1000). Then, we can use the two-byte indexed instructions to do a series of loads,
stores, or whatever to the locations in this region that we were interested in.

This is good programming practice because each indexed instruction saves a byte
over the extended instruction. Once the cost is paid of loading the X register with the
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base address (a three byte instruction), each use of an indexed instruction will save
code space and execution time.

Indexed addressing really is most useful when working with arrays of common data
structures. Then, one can set up an index register to point at the base of each data
structure, and use indexed operations to access individual fields of that data element.
To move to the next data element, only the index base pointer needs to be changed,
the offsets will then access the subsequent structure.

Finally, there are a few instructions that do not support the extended addressing
mode (they support only direct and indexed addressing), so if one must work with a
byte not in the direct addressing area, then indexed addressing must be used.

Here is a list of all of the addressing modes that are supported on the HC11 archi-
tecture:

Immediate Data is part of the instruction itself. This mode is specified with the use
of the prefix “#” before the data byte or word. Example: ldaa #0x80 loads the
A register with the hex number 0x80.

Direct Data is located in RAM (within addresses 0x0000 to 0x00ff). One byte is used
to specify which RAM location is to be used. Example: staa 0x80 stores the A
register to the memory location 0x0080.

Extended Location of data is specified by a 16-bit address given in the instruction.
Example: staa #0x1000 stores the contents of the A register at memory location
0x1000.

Indexed Location of data is specified by the sum of a 16-bit index register (register
X or Y) and an offset value that is part of the instruction. Example: ldaa 5,X
loads the A register with the memory byte located at the address that is the sum
of the value currently in the X register and 5 (decimal). Offsets range in value
from 0 to 255.

Inherent Data is “inherent” to the microprocessor and does not require and external
memory address. Example: tab transfers the contents of the A register to to the
B register. No external memory address is required.

Relative Location is specified by an offset value from the address of the instruction
currently being executed. Example: bra 5 causes a branch that skips five bytes
ahead in the instruction stream. Relative addressing is only used in branching in-
structions. offsets range in value from -128 to +127, allowing jumps both forward
and backward in the instruction stream.

3.3 Data Types

The HC11 supports a few different “data types,” or ways of representing numbers.
Most high-level languages (like C) support many data types, such as integers, floating
point numbers, strings, and arrays. In assembly language, a programmer is given only
“the bits,” and must build more complex data types with subroutine libraries.

The HC11 has two data types: 8-bit numbers and 16-bit numbers. This means that
there are instructions that process numbers of length eight bits (bytes) and there are
instructions that process numbers of length sixteen bits (words).
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It’s good to keep in mind the range of an eight-bit number versus a sixteen-bit
number. An eight-bit number can have 256 different values (28 = 256), and a sixteen-
bit number can have 65536 different values (216 = 65536).

3.4 Arithmetic Operations

Microprocessors give the programmer a standard set of arithmetic and logical opera-
tions that can be performed upon numeric data.

The HC11 is a particularly nice processor because it provides instructions that
work on both eight-bit data values (such as the A or B registers or memory bytes)
and sixteen-bit data values (such as the X and Y index registers). Earlier processors
provided only eight-bit operations; the programmer had to combine them to get sixteen-
bit ones. Also, the multiplication and division instructions are by no means standard
amongst 8-bit microprocessors like the HC11.

The HC11 supports the following instructions:

Addition for both 8-bit and 16-bit values.

Subtraction for both 8-bit and 16-bit values.

Multiplication of two 8-bit values to yield a 16-bit result.

Division of two 16-bit values to yield an integer or fractional result.

Increment of both 8-bit and 16-bit values. The increment operation adds one to its
operand.

Decrement of both 8-bit and 16-bit values. The decrement operation subtracts one
from its operand.

Logical AND for 8-bit values. This instruction performs a bit-wise “and” operation
on two pieces of data. The result of an AND operation is 1 if and only if both of its
operands are 1. (e.g., 0b11110010 ANDed with 0b11000011 yields 0b11000010.

Logical OR for 8-bit values. This instruction performs a bit-wise “or” operation on
two pieces of data. The result of an OR operation is 1 if either or both of its
operands is 1.

Logical Exclusive OR for 8-bit values. The result of an exclusive-OR operation
(called “EOR”) is 1 if either, but not both, of its inputs are 1.

Arithmetic Shift operations on 8-bit and 16-bit values. The Arithmetic Shift op-
eration moves all the bits in an operand to the left or to the right by one bit
position. This is equivalent to a multiplication or division by 2 (respectively)
upon the operand.

Rotation operations on 8-bit values. These are similar to the shift operations except
that the bit that gets shifted out of the high or low bit position (depending on the
direction of the rotate) gets placed in the bit position vacated on the other side
of the byte. Example: rotate right (ROR) of 0b11011001 produces 0b11101100.

Bitwise Set and Clear operations on 8-bit values. These operations set or clear
bits at specified bit positions within an eight-bit data byte.

Clear operations on 8-bit memory bytes or registers. This instruction is equivalent
to writing a zero into the memory location or HC11 register, but does so more
quickly.
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There are a few more arithmetic instructions not mentioned here, but they are
relatively obscure.

3.5 Signed and Unsigned Binary Numbers

There are two methods of representing binary numbers that are commonly used by
microprocessors. Using these two methods, the same string of 1’s and 0’s that comprise
a byte or word can represent two different numbers, depending on which method is
being used.

The two methods are: unsigned binary format and two’s-complement signed binary
format.

The unsigned format is used to represent numbers in the range of 0 to 255 (one byte
of data) or 0 to 65535 (one word of data). This is the more simple way of representing
data; it’s easy to understand because there is a direct translation from the binary digits
into the actual numeric value. But, the unsigned format has the limitation that values
less than zero cannot be represented.

Here are some unsigned binary numbers and their decimal equivalents:

binary decimal

0b0000 0
0b0001 1
0b0010 2
0b0011 3
0b0100 4
0b0101 5
0b0110 6

0b10011100 156
0b11100011 227
0b11111111 255

Signed values are represented using the “two’s complement” binary format. In this
format, a byte can represent a value from −128 to +127, and a word can represent a
number from −32768 to +32767.

The highest bit (most significant, or left-most bit) of the number is used to represent
the sign. A “0” in the high bit indicates a positive or zero value, and a “1” in the high
bit indicates a negative value.

If the number is positive or zero, then the signed representation is exactly equivalent
to the unsigned one. For example, the largest binary number representable in a byte,
using the signed format is 0b01111111. The leading zero is the sign bit, indicating a
non-negative number; the seven ones that follow are the significant digits.

If the number is negative, then the following process determines its value: invert
the significant digits (change zero’s to one’s and one’s to zero’s), and add one. Put a
minus sign in front of the number, and that is the equivalent value.

For example, let’s figure out the value of the signed number 0b10011011. We know
this is a negative number, since its high bit is one. To find its value, we take the
significant digits (0b0011011) and invert them, obtaining 0b1100100. We add one,
and obtain 0b1100101. This value converted to decimal is 101; thus, our original
number was equal to −101.
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This bizarre method is employed because it has one tremendous property: signed
binary numbers can be added together like unsigned ones, and results of standard
addition and subtraction processes produce correct signed values.

I won’t go through the proof of this because I don’t know if it is interesting or not.
But let’s look at an example, which shows an addition of two signed binary numbers
to produce a valid result:

10011011 (-101 decimal)
+ 01110000 ( 112 decimal)
----------
(1)00001011 ( 11 decimal)

Ignoring the carry out of the highest bit position, we can see that performing regu-
lar binary addition on the two numbers gives us the correct result. This is important,
because then the microprocessor doesn’t have to implement different types of addition
and subtraction instructions to support both the signed and unsigned data represen-
tations.

3.6 Condition Code Register and Conditional Branching

Whenever the HC11 performs any type of arithmetic or logical operation, various
condition codes are generated in addition to the actual result of the operation. These
condition codes indicate if the following events happened:

• The result of the operation was zero.

• The result of the operation overflowed the 8- or 16-bit data word that it was
supposed to fit in. This condition is based on interpreting the data operands as
two’s complement values.

• The result was a negative value. Example: subtracting 50 from 10.

• The result generated a carry out of the highest bit position. This happens (for
example) when two numbers are added and the result is too large to fit into one
byte.

There is a special register in the HC11, called the condition code register, or CCR,
where this information is kept. Each condition is represented by a one-bit flag in the
CCR; if the flag is 1, then the condition is true. The CCR has eight flags in all; four
more in addition to the four mentioned.

Each flag has a name: the zero flag is called Z; the overflow flag is V, the negative
flag is N, and the carry flag is C.

The usefulness of these flags is that programs may branch depending on the value
of a particular flag or combination of flags. For example, the following fragment of
code will repeatedly decrement the A register until it is zero. This code fragment uses
the “branch if not equal to zero” instruction (bne) to loop until the A register equals
zero.

loop: deca ; decrement A register
bne loop ; if not zero, jump back to "Loop"
... ; program execution continues here
... ; after A is zero
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An entire set of these conditional branching instructions allows the programmer to
test if the result of an operation was equal to zero, not equal to zero, greater than zero,
less than zero, etc.

Some of the conditional branching instructions are designed for testing results of
two’s complement operations, while others expect to test results of unsigned operations.
As mentioned earlier, the same arithmetic operations can be used on both signed and
unsigned data. This is true, but the way that one must interpret the condition codes
of the result is different. Fortunately, the HC11 branch instructions will perform this
interpretation properly, provided the correct instruction is used for the type of data
the programmer has in mind.

Here is a list of some of the conditional branching instructions supported by the
HC11:

beq: Branch if Equal to Zero Branch is made if Z flag 1 (indicating a zero result).

bne: Branch if Not Equal to zero: Branch is made if Z flag is 0 (indicating a
non-zero result).

bcc: Branch if Carry is Clear Branch is made if C flag is 0, indicating that a
carry did not result from the last operation.

bcs: Branch if Carry is Set Branch is made if C flag is 1, indicating carry oc-
curred.

blo: Branch if Lower Branch is made if result of subtraction was less than zero.
This instruction works correctly when using unsigned data.

bge: Branch if Greater Than or Equal Branch is made if result of subtraction
is greater than or equal to zero. This instruction works correctly only when using
unsigned data.

Other branching instructions work with signed data and check the proper combi-
nation of flags to tell if results are greater or less than zero, etc.

One important thing to remember about branching instructions is that they use
the relative addressing mode, which means that the destination of a branch is specified
by a one-byte offset from the location of the branch instruction. As such, branches
may only jump forward or backward a maximum of about 128 bytes from the location
of the branch instruction.

If it is necessary to branch to a location further away, the JuMP instruction (jmp)
should be used, which takes an absolute two-byte address for the destination. The
destination of a jmp instruction thus may be anywhere in memory.

If necessary, use a conditional branch instruction to jump to a jmp instruction that
jumps to far-away locations.

3.7 Stack Pointer and Subroutine Calls

All microprocessors support a special type of data structure called the stack. A stack
stores data in a last-in, first-out (LIFO) method.

To visualize the stack, one may imagine a dishwasher who is washing a sink full
of dishes. After each dish is washed, it is placed on top of a pile of already-washed
dishes. When the chef removes dishes from the pile, the dish that’s removed is the last
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dish that the dishwasher placed on the pile. In this way, the stack of dishes stores the
dishes using a last-in, first-out algorithm.

The stack on the HC11 works the same way. Instead of a stack of dishes, the HC11
stores bytes in a contiguous area of memory. Instead of a dishwasher and a chef, the
HC11 uses a special register, called the stack pointer or SP, to keep track of the location
of the stack in memory.

When a number is placed on the stack (called a stack push), the number is stored in
memory at the current address of the stack pointer. Then the stack pointer is advanced
to the next position in memory.

When a number is taken off the stack (called a stack pull), the stack pointer is
regressed to the last location stored, and then the number at that memory location is
retrieved.

The stack has many different uses. One use is temporary storage of data. Suppose
there is a number in the A register to be stored and then retrieved a few instructions
later. One could push it on the stack (psha) to save it, and later pull it off the stack
(pula) to restore it.

The data in several different registers may be temporarily stored and retrieved in
this way. It’s important to remember that data goes on and comes off the stack in
a particular order. If data is stored with a psha and then a pshb (push A register,
push B register), it must restored with the sequence pulb, pula (pull B register, pull
A register).

The most important use of the stack is involved with subroutines. Subroutines are
pieces of code that may be “called,” or executed, by your main program. In this way,
they are like utility routines that your software uses.

For example, suppose a program often has need to execute a delay, simply waiting
1
10 of a second. Rather than repeatedly writing the code to perform the delay, it can
be written just once, as a subroutine. Then, whenever the main code needs execute
the delay, it can just call the subroutine.

The key thing about executing a subroutine properly is knowing where to return
when it finishes. This is where the stack comes in. When a subroutine is called, the
HC11 automatically “pushes” the return address—the place to continue after the sub-
routine is done—onto the stack. Then, it branches to begin executing the subroutine.

When the subroutine finished, the HC11 pulls the return address directly off the
stack, and branches to that location.

One may think, “Well, we don’t need a stack for this; we could just have one
particular location where the return address is stored. We could just look there when
returning from a subroutine.”

Actually, that is not a bad solution, but using the stack gives us a special power: it
enables nested subroutine calls. What happens when a subroutine calls a subroutine?
If a stack is being used, the second return address simply gets pushed on top of the
first, so that the first return address remains intact. In the other method, the first
return address would be overwritten and destroyed when the second subroutine call
occurred.

It can be seen that advanced computer science ideas like recursion are based in this
principle of a stack.

One detail worth mentioning about the stack’s implementation on the HC11 is that
the stack builds downwards in memory. That is, when a number is pushed on the
stack, the stack pointer is actually decremented to point to the next available memory
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location. This is somewhat counter-intuitive, but it doesn’t matter in how the stack
functions.

Since the stack is a dynamic structure, it must be located somewhere in HC11
RAM (read/write memory). As shown in Figure 2, the RAM is located from addresses
0x0000 to 0x00FF. It’s customary to initialize the stack at the top of RAM—address
0x1ff. Then, as the stack grows, it moves downwards towards location 0x0.

A good way to crash the processor is to repeatedly push a value on to the stack
and forget to pull it off. If this mistake is made inside a program loop, all of RAM will
easily be filled with garbage. When a subroutine attempts to return to its caller, the
return address will be nowhere in sight.

Just remember: each stack push must be matched with a stack pull. Each subrou-
tine call must be matched with a return from subroutine. And don’t try to execute
too many nested subroutine calls, since the HC11 has only 256 bytes of RAM for stack
space.

4 Architecture of the HC11

The HC11 chip includes many features that often must be implemented with hardware
external to the microprocessor itself. Some of these features include:

• serial line input and output

• analog to digital converters

• programmable timers

• counters

This section explains how to use these advanced features of the HC11.

4.1 Register Block

The HC11 uses a particular area of memory to interface with the special functions.
This area of memory is called the register block, and is located from addresses 0x1000
to 0x103f.

The general method of controlling the various features of the chip is by reading and
writing data to the different registers in the register block. Since the register block is
mapped into memory, the typical HC11 instructions for reading and writing data to
any area of memory are used into interact with these registers.

4.2 Block Diagram of HC11

Figure 4 shows a simplified block diagram of the HC11 architecture. A more com-
plete block diagram may be found in the green booklet, Motorola HC11 Programming
Reference Guide.

When scanning the diagram, notice that some of the ports have arrows running in
both directions (ports A, C, and D). These ports are bidirectional, meaning that they
can be used for either input or output.

Each port contains eight data bits, making it equivalent to one byte of data. Each
data bit is mapped to a physical pin on the microprocessor package. This means that
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Figure 4: Simplified Block Diagram of HC11

when data is written to a particular output port, that data appears as voltage levels on
the real pins connected to that port. In this way, the HC11 can interface with external
devices, such as the motor chips, or off-board sensor devices.

In many cases, ports may contain a mixture of pins used for either input or output.
In other cases, particular pins in a port are dedicated to a specific function.

Following is a brief description of each port on the diagram. The rest of this section
explains how to use each port in detail.

Port A. This is a digital, bidirectional port that implements special timer and counter
circuitry. The timers can be used to generate waveforms of varying frequencies;
the counters can be used to count certain events (like rising edges of signal) on
the input lines.

Port B. This is a digital port that may be used for output only. In the Mini Board
design, this port is used to control the motors.

Port C. This is a digital, bidirectional port. In the Mini Board design, this port is
used for input or output. Its default state is for input (thus it is a digital sensor
port).

Port D. This is a bidirectional port dedicated to serial input and output functions.
Two of the Port D pins are used in the Mini Board board design for communi-
cations with a host computer. The other four pins can be used to implement a
high speed link with another Mini Board.

Port E. This is the analog input port. In the Mini Board design, these eight pins are
wired to a connector port.

The following section begins the in-depth explanation of these ports with Port B,
the motor output port.

4.3 Port B
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Figure 5: Diagram of ADCTL Register

Port B is implemented as eight output pins on the HC11. Port B is controlled by a
register located at address 0x1004. By writing to this register, the Port B pins are
turned on and off.

When the HC11 is operated in expanded mode (that is, an external memory is
attached), then Port B becomes the upper eight address bits.

4.4 Port C

Port C is implemented as eight bidirectional pins on the HC11. This port may be
configured as an output port and used in a similar fashion to Port B using the DDRC
(data direction for Port C) register, as detailed in the Motorola literature.

Port C is controlled by reading the value of the location 0x1003. Whatever input
signals that are present on the Port C lines are then “latched” into Port C during the
read operation.

The Port C register is referred to by the name PORTC.

4.5 Port E

Port E is the analog input port. This port is controlled by several registers, and may
be configured in a few different ways.

In order to use the analog-to-digital (A/D) converter, the A/D system must first
be powered-up (its default state is off).

The System Configuration Options register (OPTION) is used to turn on the A/D
system. Bit 7 of this register must be set to “1” in order to turn on the A/D system:

LDAA #0b10000000 ; bit 7 set to 1
STAA 0x1039 ; location of OPTION register

The A/D system is actually configured as two banks of four channels each. In one
of its operating modes, it repeatedly samples values from either of these four-channel
banks.

In another operating mode, the A/D system will repeatedly sample only one of the
eight input channels. Because sampling takes a finite amount of time (about 17 µsec),
this is a useful mode if one wants to look at one channel very closely.

The A/D Control Status Register (ADCTL) is used to select these different modes.
Figure 5 is a pictorial of the ADCTL register.

Bit 7 of the ADCTL register, CCF, is the Conversions Complete Flag. It is set to
“1” when the A/D system has finished converting a set of four values. It is important
to wait for this flag to be set only when the the mode is changed of the A/D system.
Then, the CCF will be set to zero, and one should explicitly wait for it to turn to one
before trusting the converted values.

Bit 5 is SCAN, the Continuous Scan Control. If this bit is set to one, the A/D system
will repeatedly convert values. If it is set to zero, the A/D will convert four values and
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Channel Result in ADRx
CD CC CB CA Signal if MULT = 1
0 0 0 0 AD0 port E bit 0 ADR1
0 0 0 1 AD1 port E bit 1 ADR2
0 0 1 0 AD2 port E bit 2 ADR3
0 0 1 1 AD3 port E bit 3 ADR4
0 1 0 0 AD4 port E bit 4 ADR1
0 1 0 1 AD5 port E bit 5 ADR2
0 1 1 0 AD6 port E bit 6 ADR3
0 1 1 1 AD7 port E bit 7 ADR4

Figure 6: Settings of A/D Channel Select Bits

stop. For typical usage, it is probably simpler to set it to one and expect the A/D
system to continuously convert values.

Bit 4 is MULT, the Multiple Channel/Single Channel Control. If this bit is set to
one, the A/D will convert banks of four channels. If it is set to zero, the A/D will
convert one channel only.

Bits 3 to 0 select the channel(s) to be converted. The results of the A/D conversion
appear in four other registers, called ADR1, ADR2, ADR3, and ADR4.

Figure 6 is a table that maps the settings of the channel select bits to the readings
that appear in the ADRx registers when MULT equals one. If MULT is zero, then the
channel select bits select the channel that gets converted into all four ADRx registers.

ADCTL is located at address 0x1030; ADR1 through ADR4 are located at addresses
0x1031 through 0x1034.
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