
Finite-state machines
Feedback is a fascinating engineering principle. It can turn a rather simple device or
process into something substantially more complex. We've seen the effects of feedback
intentionally integrated into circuit designs with some rather astounding effects:

Comparator + negative feedback -----------> controllable-gain amplifier
Comparator + positive feedback -----------> comparator with hysteresis
Combinational logic + positive feedback --> multivibrator

In the field of process instrumentation, feedback is used to transform a simple
measurement system into something capable of control:

Measurement system + negative feedback ---> closed-loop control system

Feedback, both positive and negative, has the tendency to add whole new dynamics to
the operation of a device or system. Sometimes, these new dynamics find useful
application, while other times they are merely interesting. With look-up tables
programmed into memory devices, feedback from the data outputs back to the address
inputs creates a whole new type of device: the Finite State Machine, or FSM:

The above circuit illustrates the basic idea: the data stored at each address becomes the
next storage location that the ROM gets addressed to. The result is a specific sequence
of binary numbers (following the sequence programmed into the ROM) at the output,
over time. To avoid signal timing problems, though, we need to connect the data outputs
back to the address inputs through a 4-bit D-type flip-flop, so that the sequence takes
place step by step to the beat of a controlled clock pulse:

An analogy for the workings of such a device might be an array of post-office boxes,
each one with an identifying number on the door (the address), and each one containing
a piece of paper with the address of another P.O. box written on it (the data). A person,
opening the first P.O. box, would find in it the address of the next P.O. box to open. By
storing a particular pattern of addresses in the P.O. boxes, we can dictate the sequence
in which each box gets opened, and therefore the sequence of which paper gets read.

Having 16 addressable memory locations in the ROM, this Finite State Machine would
have 16 different stable "states" in which it could latch. In each of those states, the
identity of the next state would be programmed in to the ROM, awaiting the signal of the
next clock pulse to be fed back to the ROM as an address. One useful application of such
an FSM would be to generate an arbitrary count sequence, such as Gray Code:

Address -----> Data Gray Code count sequence:

0000 -------> 0001 0 0000

0001 -------> 0011 1 0001

0010 -------> 0110 2 0011

0011 -------> 0010 3 0010

0100 -------> 1100 4 0110

0101 -------> 0100 5 0111

0110 -------> 0111 6 0101

0111 -------> 0101 7 0100

1000 -------> 0000 8 1100

1001 -------> 1000 9 1101

1010 -------> 1011 10 1111

1011 -------> 1001 11 1110

1100 -------> 1101 12 1010

1101 -------> 1111 13 1011

1110 -------> 1010 14 1001

1111 -------> 1110 15 1000

Try to follow the Gray Code count sequence as the FSM would do it: starting at 0000,
follow the data stored at that address (0001) to the next address, and so on (0011), and
so on (0010), and so on (0110), etc. The result, for the program table shown, is that the
sequence of addressing jumps around from address to address in what looks like a
haphazard fashion, but when you check each address that is accessed, you will find that
it follows the correct order for 4-bit Gray code. When the FSM arrives at its last
programmed state (address 1000), the data stored there is 0000, which starts the whole
sequence over again at address 0000 in step with the next clock pulse.

We could expand on the capabilities of the above circuit by using a ROM with more
address lines, and adding more programming data:

Now, just like the look-up table adder circuit that we turned into an Arithmetic Logic Unit
(+, -, x, / functions) by utilizing more address lines as "function control" inputs, this
FSM counter can be used to generate more than one count sequence, a different
sequence programmed for the four feedback bits (A0 through A3) for each of the two
function control line input combinations (A4 = 0 or 1).

Address -----> Data Address -----> Data
00000 -------> 0001 10000 -------> 0001
00001 -------> 0010 10001 -------> 0011
00010 -------> 0011 10010 -------> 0110
00011 -------> 0100 10011 -------> 0010
00100 -------> 0101 10100 -------> 1100
00101 -------> 0110 10101 -------> 0100
00110 -------> 0111 10110 -------> 0111
00111 -------> 1000 10111 -------> 0101
01000 -------> 1001 11000 -------> 0000
01001 -------> 1010 11001 -------> 1000
01010 -------> 1011 11010 -------> 1011

01011 -------> 1100 11011 -------> 1001
01100 -------> 1101 11100 -------> 1101
01101 -------> 1110 11101 -------> 1111
01110 -------> 1111 11110 -------> 1010
01111 -------> 0000 11111 -------> 1110

If A4 is 0, the FSM counts in binary; if A4 is 1, the FSM counts in Gray Code. In either
case, the counting sequence is arbitrary: determined by the whim of the programmer.
For that matter, the counting sequence doesn't even have to have 16 steps, as the
programmer may decide to have the sequence recycle to 0000 at any one of the steps
at all. It is a completely flexible counting device, the behavior strictly determined by the
software (programming) in the ROM.

We can expand on the capabilities of the FSM even more by utilizing a ROM chip with
additional address input and data output lines. Take the following circuit, for example:

Here, the D0 through D3 data outputs are used exclusively for feedback to the A0
through A3 address lines. Date output lines D4 through D7 can be programmed to output
something other than the FSM's "state" value. Being that four data output bits are being
fed back to four address bits, this is still a 16-state device. However, having the output
data come from other data output lines gives the programmer more freedom to
configure functions than before. In other words, this device can do far more than just
count! The programmed output of this FSM is dependent not only upon the state of the
feedback address lines (A0 through A3), but also the states of the input lines (A4
through A7). The D-type flip/flop's clock signal input does not have to come from a pulse

generator, either. To make things more interesting, the flip/flop could be wired up to
clock on some external event, so that the FSM goes to the next state only when an input
signal tells it to.

Now we have a device that better fulfills the meaning of the word "programmable." The
data written to the ROM is a program in the truest sense: the outputs follow a pre-
established order based on the inputs to the device and which "step" the device is on in
its sequence. This is very close to the operating design of the Turing Machine, a
theoretical computing device invented by Alan Turing, mathematically proven to be able
to solve any known arithmetic problem, given enough memory capacity.

PLC Repair & Testing
Allen-Bradley,Siemens,TI,GE, many more!
25 Yrs.Exp.1 Yr.Warranty
www.PESquality.com

