
1

Tiffany Q. Liu

April 18, 2011

CSC 270

Lab #11

Lab #11: Building a 1-Bit Input I/O Controller

Introduction
 For this lab, we worked towards building a circuit with the 6811 kit that acts as a 1-bit

input I/O controller. This lab assumes experience from a previous lab of an assembled, designed,

and fully tested 1-bit output controller. It is important to note that steps in this lab are to be

followed carefully for a design flaw could kill components in the kit.

Materials

Figure 1. Wiring Kit. Figure 2. 6811 Microprocessor Kit

(Taken from D.Thiebaut).

Figure 3. Oscilloscope Cables.

 Figure 4. Tektronix Oscilloscope

2

Figure 5. Dual D-Type Positive Edge-Triggered Flip-Flop 74LS74.

Figure 6. Hex Inverter 74LS04 Compared to a USB Flash Drive.

Figure 7. Quad 2-Input OR Gate 74LS32 Compared to a USB Flash Drive.

3

Figure 8. One-of-Ten Decoder 74LS42 Compared to a USB Flash Drive.

Figure 9. Logic Diagram of the 74HCT244 Driver.

4

Step 1: Basic Design
 To start, the E signal and address bits were connected to the decoder the same exact way

as they were connected in the previous lab when we were creating a 1-bit output controller. In

the previous lab, we assigned our flip-flop to hexadecimal address 8000H, which was activated

by decoder output y4. This is the same address we will use for our 1-bit input port. Since the

output port is only energized when the R/W’ signal is low and the input port is only energized

when the R/W’ signal is high, we can use the same address for our flip-flop for both input and

output. Knowing this we came up with the following circuit and timing diagram for an

input/output port:

Figure 10. Circuit Diagram for a 1-Bit Input Controller.

5

Figure 11. Timing Diagram for LDAA Instruction.

Figure 12. Timing Diagram for STAA Instruction.

Step 2: Wiring
 Next, we wired our kit according to the circuit diagram in Figure , connecting everything

except the output of the tri-state driver to D0 (this will be done only when we are sure that the

rest of our circuit is wired correctly).

Step 3: Programming
 We then wrote an endless loop that will constantly read a byte from the address

corresponding to the 1-bit input port and write it back at the same address (storing it in the 1-bit

flip-flop):

 ;--- data section ---

 ;--- code section ---

 ORG 0000

 LOOP:

 0000 B6 80 00 LDAA 8000 ; ACCA <-XXXXXXXb

 0003 B7 80 00 STAA 8000 ; flip-flop <- b

 0006 7E 00 00 JMP LOOP ; loop infinitely

6

After entering the assembled program into the kit and running it, we attached probes to the y4

output of the decoder and the R/W’ to monitor the two signals generated by the program. We

obtained the following screen capture:

Figure 13. Screen Capture of y4 Output Signal (Yellow) and R/W’ Signal (Blue) from 1-Bit

Input Controller.

This capture makes sense in regards to the program we were running and the circuit we were

using. In one iteration of the loop, we can see that the y4 output (Yellow) gets activated twice,

while the R/W’ (Blue) gets activated only once. Since we load to the flip-flop first, the y4 output

gets activated since that’s the output that corresponds to 8000H, but the R/W’ signal at that time

remains high since the processor is reading when executing a load instruction. The second time

the y4 output gets activated, the R/W’ signal goes low. This corresponds to the instruction that

stores to the flip-flop since the y4 output gets activated when 8000H gets put on the address bus

and the processor is writing when executing a store instruction.

Step 4: First-Phase Testing
 At this point we are still not ready to connect our tri-state driver output to D0 yet. We

connected a probe to the enable input of the driver to monitor the driver enable’s signal on the

oscilloscope with the y4 and R/W’ signals. We obtained the following screen capture:

7

Figure 14. Screen Capture of y4 Output Signal (Yellow), R/W’ Signal (Blue), and Driver Enable

Signal (Purple) of 1-Bit Input Controller.

From this screen capture we verified that the driver was activated (Purple) only when the R/W’

signal (Blue) was high and the y4 signal (Yellow) was low.

Step 5: Connection to Data-Bus
 Once we observed and verified the correct timing of the signals, we connected the output

of the driver to D0 and the input of the driver to one of the switches on the kit. Using a small

screwdriver, we verified that the LED connected to the output of the flip-flop turned on with the

switch was on and the LED turned off when the switch was off.

Step 6: Understanding Address Decoding
 After verifying that our circuit works, we modified our program such that the address of

the I/O port was at something other than 8000H:

 ;--- data section ---

 ;--- code section ---

 ORG 0000

 LOOP:

 0000 B6 80 00 LDAA 9000 ; ACCA <-XXXXXXXb

 0003 B7 80 00 STAA 9000 ; flip-flop <- b

 0006 7E 00 00 JMP LOOP ; loop infinitely

8

When we entered the assembled program into our kit, we were still able to turn the LED on and

off by turning the switch on and off respectively. This was because we were using address

9000H, which fell in the range that can be controlled by the y4 output (8000H to 9FFFH) and

also fell in the range that we are able to work with in terms of programmable memory space

(7000H to AFFFH). In total there are 1FFFH + 1 addresses that can be assigned to the flip-flop,

which is equal to 8192 addresses.

Step 7: More Programming
 Finally, we wrote a program that makes the LED blink when the switch is on and then

keeps the LED at the state it was previously in when the switch is off:

 ;--- data section ---

 ;--- code section ---

 ORG 0000

 0000 86 00 LDAA #00 ; ACCA <- 0

 LOOP:

 0002 F6 80 00 LDAB 8000 ; ACCB <-XXXXXXXb

 0005 C4 01 ANDB #01 ; ACCB <- b

 0007 1B ABA ; ACCA <- ACCA + b

 0008 B7 80 00 STAA 8000 ; flip-flop <- ACCA

 000B 36 PSHA ; save ACCA

 000C 37 PSHB ; save ACCB

 000D BD C0 27 JSR pause ; wait for 1 second

 0010 33 PULB ; restore ACCB

 0011 32 PULA ; restore ACCA

 0012 7E 00 02 JMP LOOP ; loop infinitely

When we entered the program into the kit and ran it, we saw that the LED light continued to

blink when the switch was activated, and when we deactivated the switch the LED light stayed in

the state that it was in immediately prior to the deactivation of the switch (ie. LED light stayed

off if the light was off before the switch was deactivated and LED light stayed on if the light was

on before the switch was deactivated).

