*** Solution for Homework 7 ***

CSC270 Homework7

Zoey Jingyi Sun

April 4, 2016

The 6800 program I got through reverse engineering is shown in the following code session.

hw7.asm ;;; ;;; Zoey Jingyi Sun ;;; This program compares the data stored in address 0001 and 0002 and ;;; store the bigger number in address 0003 and the smaller one to ;;; ;;; address 0004. ;;; include Macros.asm data **SEGMENT** ORG 0000 ;specifies starting address 0000 DΒ 3 ; 3 is stored in 0000 a DB 4 ; 4 is stored in 0001 b DB С DΒ d DΒ е f DB **ENDS** code SEGMENT 0006 ;specifies starting address 0006 ORG LDAA b ; ACCA = mem[0001](3 cycles) start: CMPA c; compare ACCA to mem[0002] (3 cycles) BLE to; go to the location of "to" if AccA is ; less than or equal to the value in mem[0002] (3 cycles) STAA d ; Mem[0003]<-AccA</pre> (3 cycles) LDAB c; ACCB = mem[0002] (3 cycles) e ; mem[0004]<-AccB (3 cycles) STAB JMP next; jump to the "next" position ; (equivalent to return to the start of program) (3 cycles) STAA ; mem[0004] < -AccA(3 cycles) to: LDAB ; AccB = mem[0002](3 cycles) STAB ; mem[0003]<- AccB (3 cycles) start; jump back to the start of the program (3 cycles) next: JMP

Assume that the clock of the 6811 is 1 MHz, regardless of the unknown value c, each loop at most will go through 3*8 = 24 cycles. Time for 1 loop is : $24*1*10^-6 = 2.4*10^-5s$ In one second, there will be $1/(2.4*10^-5) = 41666$ cycles.

ENDS END Similar Program in Pentium assembly language:

```
;;; pentium.asm
;;; Zoey Jingyi Sun
;;;
;;; Simulation of hw7 6811 program in pentium version.
;;; to assemble and run:
;;;
    nasm -f elf -F stabs pentium.asm
;;;
    ld -melf_i386 -o pentium pentium.o
;;;
         ./pentium
;;;
     data areas
;;; -----
               section .data
       a
             db
                    3
             db
       b
       С
             db
                               ; unkown value
       d
             db
                               ; unknown value
             db
                    0
                               ; unknown value
       е
                                ; unknown value
       f
              db
                     0
                                  ; (randomly assigned to make sure the program compile)
;;;
;;;
               section .text
               global _start
_start:
               mov
                      eax, b
                      eax, dword[c]
               cmp
                               ; jump if b is below or equal to c
               jbe
                      other
               mov
                      dword[d],eax
                      ebx,c
               mov
                      dword[e],ebx
               mov
               jmp
                      done
    other: mov
                  ebx,c
                     dword[d],ebx
               mov
                     dword[e],eax
               mov
;;;
    exit()
       done:
                       eax,1
               mov
                   mov
                           ebx,0
                           08x0
                   int
                                   ; final system call
```

There are 13 lines of instructions. Assume each instruction is 1 cycle, and assume runs at 1MHz per cycle. Each loop will take $13 * 1 * 10^{-6} = 1.3 * 10^{-5}$ seconds. There will be roughly $1s/(1.3 * 10^{-5}) = 76923$ loops per second.

Using the real frequency of Pentium which is 3.2 GHz. Each cycle will take $1/3.2GHz=3.125*10^{-8}$ seconds. Each loop will take $13*3.125*10^{-8}=4.0625*10^{-7}$ seconds. There will be roughly $1s/(4.0625*10^{-7})=2.46*10^6$ loops per second.