AUTOMATIC EVALUATION OF COMPUTER PROGRAMS
USING MOODLE’S VIRTUAL PROGRAMMING LAB (VPL) MODULE

Dominique Thiebaut
Dept. Computer Science
Smith College, Northampton, MA 01064, USA

ABSTRACT

With the increasing enrollments in CS courses and the growing interest in
providing MOOCs, automated grading of student programs is becoming a necessity.
This paper describes our first experience of using Moodle’s Virtual Programming
Lab (VPL) for the automatic evaluation of students’ program in two of our
programming courses. Early experimentation in several courses show the module
to be flexible and robust, allowing for sophisticated ways to test student programs.
The automatic grading requires a significant shift of faculty time, putting the bulk of
the effort up-front, preparing not only the assignment, but also the solution
program, the testing environment, and its validation. However, once this phase is
over, very little attention is needed.

INTRODUCTION

As enrollments are steadily increasing in computer science courses
nationwide [3], faculty and assisting staff find themselves having to spend an
increasing amount of time grading and evaluating student programs on a regular
basis. To cope, the choice is to, either, lower the frequency with which students
return assignments, evaluate only a random sample of assignments, include
teaching assistants in the grading process, hire graders, devote more personal time
to the grading, or use automated evaluation systems. All have drawbacks and
advantages.

There are a few different automated grading systems on the market [4], and
this paper presents an early evaluation of the use of Virtual Programming Lab (VPL),
a module for the learning management system Moodle. We are currently using it in
three different courses; Introduction to Computer Science in Python, Data
Structures in Java, and Assembly Language in Intel assembly, all taught during the
Fall 2014 semester. VPL is a project spearheaded by Prof. Juan Carlos Rodriguez-
del-Pino at the University of las Palma de Gran Canaria, in Spain.

Although the module documentation is succinct, the on-line support
provided by Rodriguez-del-Pino is remarkable. Furthermore, the richness of
options VPL provides, its overall robustness, and its ability to incorporate the
instructor’s code as part of the test frame, have contributed to a successful
experience at our institution, and growing expertise, and we plan on adopting the
module more widely in the future.

There are many caveats, though. The most noticeable is a time shift,
requiring a significant amount of work before releasing an assignment, and
practically none after the assignment is released. The instructor’s time must now
include the preparation of the assignment, the preparation of the solution program,
the creation of scripts that will evaluate the student program, the testing of the

Accepted for presentation at CCSCNE 2015.

setup, and the creation of a new VPL activity on Moodle. Once these actions are
performed, the instructor’s attention to the assignment is minimal. After the
assignment is closed, a brief review of the submissions will ensure that everybody
received a grade, and a quick scan of submitted programs will help detect fraudulent
attempts (such a writing a program that prints the solution instead of computing it).
The VPL module provides a similarity test to flag submitted programs that have a
high level of similitude, a useful feature for spotting possible fraud. After this half-
hour intervention, the instructor is basically free of the assignment.

VPL Setup and Operation

VPL is one of many Moodle modules. It requires a typical two-step
installation process to integrate with this Learning Management System. Although it
doesn’t require it, a dedicated separate execution server, or jail server for short, is
highly recommended. This jail server runs the test scripts along with the programs
submitted by the students. Should a student program crash the jail server, the
Moodle server is unaffected.

We provide a quick summary of the VPL operations now. Interested readers
can find additional information on the VPL Web site[1].

Student M Moodle M’ Jail

Browser Server Server

Ajax xmlrpc
WS/WSS

Figure 1: technologies used in student to Moodle VPL connections.

A student interacts with the system as illustrated in Figure 1. The students
interact with VPL through a browser. When a student submits her program
(copy/paste, edit, upload), the Moodle server packages the instructor’s test script
along with the student program in an archive, and ships it to the VPL jail server.
There, the test scripts are executed in a sandbox environment, and the captured
output is sent back to the Moodle server. The output typically contains feedback

(e

comments generated by the test scripts (“Output OK”, “Your function is not
recursive”, “Your program timed out (infinite loop?)”), along with a grade, also
computed by the test scripts. These comments and grades are formatted following a
simple syntax supported by the module. A window in the student browser reports
the feedback and the grade, as illustrated in Figure 2. The grade is automatically
incorporated in the student’s internal record, under the rubric selected by the
instructor (lab, homework, quiz, etc.). Note that VPL has an automated feature that
allows the instructor to define the input that must be fed to the student program,

and the expected output for each input. VPL automatically assigns a grade between

Accepted for presentation at CCSCNE 2015.

0 and 100% proportional to the number of outputs that correctly match the
expected outputs. This feature can be used for very simple assignments.

VPL Features and Options

VPL sports many features. We list here those options we believe computer
science instructors will find most interesting.

* The number of languages supported is quite large. The VPL Web site [1] lists
Ada, C, C++, C#, Fortran, Haskell, Java, Matlab, Octave, Pascal, Perl, Php,
Prolog, Python, Ruby, Scheme, SQL, and VHD languages as supported. We
have successfully implemented VPL assignments for Python, Java, and
assembly language. Any language with a compiler or interpreter supported
by Linux with executable that output text can be evaluated. Testing
programs outputting graphics requires additional tools and expertise.

* The instructor defines how the student program is evaluated and graded.
This allows for testing properties of a program other than its output to a
given input. For example, in assembly language, it may be important for an
assignment to generate a program with as small a footprint in memory as
possible. The instructor can create a script that will measure the static
footprint of the student program and assign a grade inversely proportional to
the program’s byte size.

¢ VPL uses HTMLS5, Ajax, and WebSocket, in an effort to free students from
having to use Java-enabled browsers.

* The instructor can define the rubric under which a VPL grade is assigned.
This is controlled per VPL-assignment.

* The instructor can make the grade visible to the student, or not, and reveal it
only after the due date.

* The instructor can limit the number of submissions for a given program, or
set of programs. A survey of some 30 VPL assignments given this semester
indicates that approximately 85% of the students submit a given program
less than 10 times, while the remaining 15% fall in a long tail of recorded
submission clicks. The largest recorded number of submission for a given
assignment is 51 times.

* The instructor controls the resources needed by the jail server, including
stack or dynamic space.

* Foragiven VPL activity, the programs submitted can be those of an
individual student, or from a group of students.

* Access to the submission page can be restricted by IP address, a feature
probably more useful in a MOOC environment, or protected by a password.

EXAMPLE VPL MODULE

We now present a simple VPL module for evaluating a Python assignment.
The requirement for the student is to create a Python program containing a function
called randomInt() that returns a random integer. The given grade depends on
several criteria: 1) the file exists and has the right name, and 2) the file contains a
function named randomInt(), and 3) the function returns an integer. Two programs

Accepted for presentation at CCSCNE 2015.

form the evaluation system provided by the instructor: a python program that
attempts to use the student’s function, and a bash script that launches the python
program. VPL requires that the main script, vpl_evaluate.sh, must generate a second
script, vpl_execution, and it is this second script that is executed on the jail server.
The vpl_evaluate.sh script, below, is remarkably short:

#! /bin/bash
vpl_evaluate.sh

echo "#! /bin/bash" > vpl execution
echo "python3.4 customEval.py">> vpl_execution

chmod +x vpl_execution

CustomEval.py, below, tests the student program and its function. It also
outputs the final grade that will be picked-up by the VPL module and added to the
student’s record. Special prefixes must be added to each output line for VPL to
parse it correctly.

customEval.py
comment(s):
''"'formats strings to create VPL comments
('Comment :=>> ' + s)

grade (num) :
'''formats a number to create a VPL grade
('Grade :=>> ' + str(num))

randomInts

comment ("unable to import randomInts")
grade(0)
exit()

randomInts.randomInt

comment ("randomInts.randomInt isn't defined")
grade(25)
exit()

(type(randomInts.randomInt()) int):
comment ("great job!")
grade(100)

comment ("randomInt doesn't return an int as required.")
grade(90)

comment ("randomInts.randomInt crashes")
grade(75)

Note that the main bash script is extremely short and relies on the python
test program for doing the heavy lifting. It is possible to generate a testing system
where the bash script does most of the evaluation work, and the attached programs
just provide an infrastructure for the testing. We provide several longer and more
sophisticated VPL examples on our own Web site[5].

Accepted for presentation at CCSCNE 2015.

FEEDBACK
FROM
VPL EVALUATION

Description Submissions list Simila

STUDENT

Search all Courses Submission Edit Submission vie

File > Edit> Options > Fullscreen Run Debug Evaluate Consol®

ADMINISTRATION
: 100 / 100

Hwa_3 java » Proposed grade

VPL administrat 1+ pee ~ Comments
administration 2 '+ Hwe_3.java

* @author thiebaut TEST O

Your program ran to completion.
Congrats, your output is correct.

Edit settings
Test cases

3
4 * Reads 4 arguments from the command line, a min distance, a min number o
5 * and two files containing (t, X, y) triplets.
Executiol 6 */
7
8
9

STUDENT
PROGRAM

import java.io.File;
import java.io.FileNotFoundException;
import java.util.Arraylist;

gport java.util.Scanner;

Advanced
Test activity'
Submission

3 TEST 2
Edit 13 * Contains a pair of ints Your program ran to completion.
Submission view /

15+ class MyPair{ e
Grade 16 public int x; CONTACT
Previous submissions list 17 public int y; TEST 3
) 18 MyPair(int xx, int yy) { x = xx; yy; } Your program ran to completion.
Virtual programming labs 19 public String toString() { return "(" + x sy s M} Congrats, your output is correct.
Locally assigned roles L
21 » Execution
Permissions 22+ /o
Check permissions 73 * The clasc onenc +wn files that contain +he <ame numher of linec

y =
Cexs

VPL3.1

Figure 2: Student view of VPL module in the browser.

OBSERVATIONS

A couple of months of practice with VPL have been satisfying enough to
warrant continuing this experiment. We see VPL as a good solution to cope with
our growing enrollments. We share here some of our early observations, and
provide additional comments.

* Adopting VPL requires a major pedagogical shift for the faculty used to
grading by hand the weekly or bimonthly assignments. One loses an
important connection to the students, and to a sense of their acquisition of
the class material. Students become more anonymous and disconnected
from the teaching experience. Colleagues teaching large classes are familiar
with this situation, but those of us teaching at smaller institutions must adapt
to this shift. Steps must be taken to maintain some level of connection. This
can be accomplished through quick reviews of the submitted work after each
deadline. Because the work is already graded, a quick scan is sufficient to
get a sense of the students performance.

* The bulk of the time spent on an assignment is concentrated prior to the
release of the assignment. This time is considerable the first time one sets up
new VPL activities, as one has to anticipate many different ways for student
programs to fail, or to miss the idea behind the assignment. Specialized tests
must be written to capture all possible shortcomings in student submissions.

* Randomization of inputs is necessary, as well as maintaining a semi-
opaqueness of the way the programs are tested. Invariably, some students
will be tempted to bypass the assignment and create programs that spit out
the expected answer. This can be circumvented by randomizing the input
data used to test the programs, and by not fully disclosing the manner in
which programs are tested. However, a completely opaque test that does not
show the input used for testing, the output generated in response to the test,

Accepted for presentation at CCSCNE 2015.

nor the expected output, has proven to be a solid recipe for creating mob
scenes outside one’s office. Some explanatory feedback is necessary, but
should not be a blueprint followed by students to create hacks that bypass
the mission of the assignment. We found that provided a simplified version
of the test program with the assignment greatly helps students. Giving fully
documented test programs at the beginning of the semester and slowly
reducing them to simple explanations of what the test programs will do will
hopefully satisfy the students while helping them acquire the skills required
for testing their own programs well.

* Limiting the number of submissions allowed by students for an assignment is
tempting, but should be done with care. Allowing for an unlimited number
of submissions encourages students to develop their programs directly in the
edit window of the VPL module, and bypass the IDE used in class.
Recognizing that some students need the flexibility of submitting many
times, and value the feedback provided by VPL, the limit should be greater
than 1, but probably less than 10. Slowly decreasing the number of
submissions allowed as the semester progresses is probably wise.

CONCLUSIONS

The financial appeal MOOCs have on officials of educational institution, and
the fast increase we see in CS courses nationwide are two pressures that require
solutions. One option is to adapt the way we teach and evaluate students in
programming intensive classes. Our early experience with VPL is positive. The
wide array of programming languages VPL supports, its robustness of
implementation, and the flexibility it offers compensate for its complexity of use,
and its currently sparse documentation. We have started releasing scripts we have
generated for various assignments in an effort to share ideas, and solutions, hoping
others can benefit from our experience.

REFERENCES

[1] Juan Carlos Rodriguez-del-Pino , VPL General Documentation, on-line document,
http://vpl.dis.ulpgc.es/index.php/en/support, captured Nov 2014.

[2] Gray, I. M., Hyde, D. R,, Jekyll, M. R.,, NP-complete problems with no known
optimal solutions, Proc. 1st Conference on Hard, Hard Problems, 1 (1), 100-799, 1999.
[3] Graduate Education, Enrollment, and Degrees in the United States, National
Science Foundation, Feb. 2014, on-line document,
http://www.nsf.gov/statistics/seind14/index.cfm/chapter-2 /c2s3.htm, captured
Nov 2014.

[4]].M. del Alamo, A. Alonso, M. Cortés, Automated Grading and Feedback Providing
Assignments Management Module, Proc. Int’l Conf. Educ., Research, & Innov., Nov.
2012, Madrid, Spain.

[5] D. Thiebaut, Moodle VPL Tutorials, on-line repository,
http://cs.smith.edu/dftwiki/index.php/Moodle_VPL_Tutorials

Accepted for presentation at CCSCNE 2015.

