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ABSTRACT 
A popular U.S. talk show host uses “top 10” lists to critique 
events and culture every night. Our HPC industry is captivated by 
another list, the TOP500 list, as a way to track HPC systems’ 
performance based on FLOPS/S assessed by a single, long-lived 
benchmark—Linpack. The TOP500 list has grown in influence 
because of its value as a marketing tool. It simplistically, but 
unrealistically, describes performance of HPC systems. The 
proponents have advocated for the TOP500 list for different 
reasons at different times. This paper critiques the Top 10 
problems with the TOP500 list and provides suggestions on how 
to correct those shortcomings.  It discusses why the TOP500 list is 
limiting the impact of HPC systems on real problems and other 
metrics that may be more meaningful and useful to represent the 
real effectiveness and value of HPC systems.   
 
Categories and Subject Descriptors 
C.4 [Computer Systems Organization]: Performance Of 
Systems - Measurement techniques; Reliability, availability, and 
serviceability  

General Terms 
Measurement, Performance, Economics. 

Keywords 
Performance, Performance, Linpack, Top500, PERCU, 
Benchmarks, System Evaluation, Supercomputing, HPC. 

1. BACKGROUND 
The TOP500 list was introduced almost 20 years ago as a way of 
classifying computer performance. The list is based on the floating 
point computational performance assessed by a single benchmark, 
Linpack. It has grown in influence because it has become a 
marketing tool and a simplistically described measurement of 
performance for high-performance computers. The proponents of 
the list advocate its importance. At first it was presented as an 
important distinguisher of the performance of different systems 

and an indicator of the amount of scientific and/or engineering 
work particular systems could accomplish. In later years, the 
advocates have admitted its shortcomings, but shifted to extolling 
the historic value of the list and its ability to project future trends in 
high-performance computing.   

1.1 The Linpack benchmark 
The widely discussed Linpack benchmark [1] that is used to 
determine the TOP500 List [2][3] is a single test that solves Ax=b 
where matrix A is a dense linear matrix. Linpack uses Gaussian 
elimination with partial pivoting. For matrix A, that is size M x M, 
Linpack requires 2/3 M3 + 2M2 operations. The latest Linpack 
benchmark implementation, HPL [4], can run on any number of 
processors, but uses weak scaling to achieve higher performance. 
In order to provide enough work to each processor, the size of the 
A matrix has to increase, not only taking more memory, but 
increasing the wall clock time of the run. Linpack is the only 
metric the TOP500 uses to assess system performance. 

2. THE TOP 10 PROBLEMS WITH THE 
TOP500 APPROACH 

While initially providing interesting information, for a long time, 
unfortunately, the Top500 list has done more harm than good to 
the high-performance computing community for the following 
reasons, which are presented in reverse order of importance as 
David Letterman does on his Late Show. 

2.1 Number 10: The Linpack benchmark 
serves only one of the four purposes of a good 
benchmark.   
Effective benchmark tests should serve four purposes in one 
implementation. Benchmark tests are representative 
approximations of the real work a computer system can 
accomplish. In other words, benchmark tests estimate the potential 
of computer systems to solve a set of real world problems. 
Benchmark tests are made up of computer programs (codes) and 
one or more input data sets that state a problem the program is to 
solve. One set of computer codes can exhibit different behavior 
based on the problem being solved and the parameters involved. 
Each purpose of the benchmark tests influences the selection and 
the characteristics of the benchmarks as well. The four purposes of 
benchmarks are: 

1. Evaluation and/or selection of a system from among its 
competitors. 

2. Validating that the selected system works as expected 
once it is built and/or arrives at a site.  

Permission to make digital or hard copies of all or part of this work 
for personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit or commercial 
advantage and that copies bear this notice and the full citation on the 
first page. To copy otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission and/or a fee. 
PACT’12, September 19–23, 2012, Minneapolis, Minnesota, USA. 
Copyright 2012 ACM  978-1-4503-1182-3/12/09...$15.00. 

223



3. Assuring the system performance stays as expected 
throughout the systems lifetime (e.g. after upgrades, 
changes, and regular use.) 

4. Helping guide future system designs.  
 

The TOP500 Linpack test, as the Top500 requires it to be run, does 
not serve any of the above purposes well. In fact the Top500 test is 
not able to serve purpose #3 at all because of the long run times 
required. For reasons discussed in the following sections, Linpack 
is seldom very effective in distinguishing between systems either.  
This is because most modern processors are designed to support 
cache-friendly, dense matrix algorithms. Indeed, the efficiency of 
all the systems on the most recent TOP500 list only varied by a 
modest amount that can be examined with other less intrusive tests. 

In a limited way, Linpack can validate whether a system meets 
performance expectations at time of arrival (purpose #2), but is not 
efficient in doing so. The limitation of Linpack for this purpose is 
due to it correlating very well with peak performance. But there are 
many (even most) applications whose performance does not 
correlate with Linpack. Further, running Linpack at scale takes 
very long run times to achieve expected performance, as discussed 
below.  

Linpack also has little to add to future architectural improvements, 
except possibly as a regression test to insure architectures continue 
to do well with dense, cache-friendly computations. But this 
regression test can be achieved by much simpler and less time-
consuming tests, such as DGEMM running on a node. Since 
Linpack only partially addresses purposes #1 and #2, and does not 
address purposes #3 or #4, it is a not a useful indicator of how well 
as system is able to process work. 

2.2 Number 9: The TOP500 list 
disenfranchises many important application 
areas. 
Linpack solves a set of dense linear equations, yet many if not 
most applications involve algorithms that are not well represented 
by dense matrix solvers. Figure 1 shows a collection of scientific 
disciplines and the algorithms that were in use by informed 
applications in science domains at the National Energy Research 
Scientific Computing Center between 1996 and 2008 [5].  Table 2 
is a similar summary of analysis of the applications used by 26 
science teams with initial allocations on the NSF Blue Waters 
system [6]. The methods, or motifs, across the top of the charts 
directly relate to system architectural features. In assessing these 
and similar requirements analysis, well-balanced systems are 
required for most science applications.  

These tables demonstrate that high-end computation involves 
much more than a single method, even within a single science 
domain. While dense linear algebra plays a role in problem solving, 
that role has significantly diminished as new computational 
methods evolve. Methods such as sparse linear algebra and 
adaptive mesh refinement have become increasingly important 
components in the computational scientist’s toolkit but do not 
correlate to Linpack performance. Furthermore, computer 
architectures have changed over the past 15 years. When Linpack 
was introduced, vector processors and high-bandwidth memory 
systems dominated the HPC world. As shown in the table, dense 
methods are only one of many algorithmic methods in use today.  
All science disciplines use multiple methods, if not in one 
application, then in different applications to pursue science goals in 
each area.    

 

 
Table 2. Table showing the analysis of codes used by 26 
science teams with initial allocations on the Blue Waters 

sustained petascale system. Note many teams use more than 
one application to achieve their science goals. 

The TOP500 metric only deals with dense linear systems and gives 
no insight as to how well a system works for most of the 
algorithmic methods (and hence applications) in use today. 

2.3 Number 8: There is no relationship 
between the TOP500 ranking and user 
productivity or system usability for real 
application workloads. 
The TOP500 list does not indicate whether the systems listed are 
usable or productive. In a number of cases, systems have been 
listed while being assembled at factories rather than when installed 
at their host facilities, leaving a gap of months between when a 
system is listed and when it is usable by scientists and engineers. 
Even if the system is installed before being listed, it does not mean 
the system is usable or productive. To demonstrate the disconnect 
between the ranking and how effective a system is for a real 
workload, Figure 1 shows a comparison of the Linpack rating for 
systems procured and installed at NERSC and the NERSC 
Sustained System Performance [7] metrics for a 14-year period. 
The SSP has been shown to be a reasonable representation of the 
actual NERSC workload that covers almost all science disciplines 
and hundreds of applications [8]. As shown in Figure 1, there is an 
increasing discrepancy between the actual sustained performance 

Table 1. This table indicated significant algorithmic 
methods in use for different science areas. System 

architectural features are also indicated according the 
algorithmic method. The TOP500 metric corresponds only 
to one architectural feature since it is dominated by dense 

linear algebra. 
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and both the peak and Linpack performance across a number of 
systems and architectures. 

 

Figure 1. Comparison of NERSC SSP to Linpack 
performance over a 14-year period shows Linpack greatly 
misrepresents the real performance one can expect from a 

computer system. 
In another view of the same data, Figure 2 compares the reported 
Linpack performance with the reported average sustained 
application performance using between six and eight applications 
and multiple input sets. The observer can see that sustained 
performance bears little correlation to Linpack performance.  

 

Figure 2. Comparison of Linpack performance and average 
sustained application performance for 8 systems over 14 years 

at NERSC 
The results seen for NERSC-5 are aligned with the results seen 
using the similar versions of the tools for the DOD Modernization 
Program TI-05 evaluation and acquisition [9] which reports:  

• simple tests are inadequate for predicting or assessing 
application performance on systems, with Linpack being the 
poorest simple test studied;  

• combining simple tests with optimized weights also is 
inadequate for meaningful application performance 
prediction;  

• convolving application traces with metrics derived from a 
specific set of simple tests (the PMaC methodology) can 
predict performance of applications to about 80% accuracy 
for the same system (no comment is made for similar but not 
identical systems); and  

• acquiring the application-specific traces is “painful.” It is 
noted that PMAC has since abandoned this version of the 
framework and has moved to a new framework for 
performance prediction [10] that recently reported 

predictions with 90% accuracy on a limited set of 
applications for the same system as was instrumented. 

2.4 Number 7: The Linpack performance test 
is dominated by single-core, dense linear 
algebra peak performance.  
Over the 16 years of the lists being reported, Linpack results have 
tracked the peak performance of the systems with only a few 
exceptions. Figure 3 shows the ratio of the reported Linpack 
performance (Rmax) to peak performance (Rpeak) for the #1 system 
for each list. It also shows the average ratio across all years.   

 
Figure 3. The 16-year comparison of system peak speed 

(Rpeak) to measured Linpack rates (Rmax) for the number 1 
system on the list. The figure shows only a few times when 

there are any significant deviations, which are mostly 
explained by other causes. 

There are only a few places where the ratios show a move away 
from the long-term average. In the first two lists, this difference is 
probably sites starting to pay attention to the implementation of 
their submitted times once they realized others would notice. The 
next difference in June 1996 is due to a new system that may have 
had limited tuning time. The next major difference in June 1999 is 
informative. It is the ASCI Red Storm system, which was also 
number 1 on the November 1998 list with improved Rmax, probably 
due to additional tuning.  The changes in November 2000 and June 
2001 are both the ASCI White system at Lawrence Livermore 
National Laboratory, but with a percent of peak improvement of 
almost 50% in between the two lists. In this case, the low initial 
performance was good enough to claim the top spot on the list in 
November 2000 when the system was not complete, but the 
system’s performance got much better before it went into service. 
Obviously the improvement in 2002 was the Earth Simulator, 
which was not only a case of vector vs. RISC system but also had 
very significantly more funding than any other system ever on the 
list. The improvement in June 2006 was the Los Alamos National 
Laboratory’s Roadrunner system with a specialized, but limited 
use, Cell architecture, and November 2010  #1 on the list was 
again a specialized system with accelerators.  

2.5 Number 6: The TOP500 metric has not 
kept up with changing algorithmic methods. 
Today, computational scientists have to deal with massive 
parallelism using computational nodes that are often under-
provisioned with memory and memory bandwidth. Therefore, 
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computational methods have evolved significantly since Linpack 
represented the majority of methods used to solve problems.   

The effectiveness of a metric for assessing delivered performance 
is founded on its accurate mapping to the target workload. A static 
benchmark suite will eventually fail to provide an accurate means 
for assessing systems. Several examples, including Linpack, show 
that over time, fixed benchmarks become less of a discriminating 
factor in predicting application workload performance. This is 
because once a simple benchmark gains traction in the community; 
system designers customize their designs to do well on that 
benchmark. The Livermore Loops, SPEC [11], Linpack, NAS 
Parallel Benchmarks (NPB) [12], etc. all have had this issue. It is 
clear Linpack now tracks peak performance in the large majority of 
cases.  

Simon and Strohmaier [13] showed, through statistical correlation 
analysis, that within two Moore’s Law generations of technology 
and despite the expansion of problem sizes, only three of the eight 
NPBs remained statistically significant distinguishers of system 
performance. This was due to system designers making systems 
that responded more favorably to the widely used benchmark tests 
with hardware and software improvements.  

Thus, long-lived benchmarks should not be a goal except possibly 
as regression tests to make sure improvements they generate stay 
in the design scope. There must be a constant 
introduction/validation of the “primary” tests that will drive the 
features for the future, and a constant “retirement” of the 
benchmarks that are no longer strong discriminators. On the other 
hand, consistency of methodology and overlapping of benchmark 
generations are useful so there can be comparison across 
generations of systems. Consequently, the metrics that continue to 
evolve to stay current representative with of current workloads and 
future trends by changing both the application mix and the problem 
sets in a coordinated manner have shown to be useful over longer 
periods. The NAS Parallel Benchmarks partially addressed this by 
providing multiple size versions (Class A thru E) so as systems 
scaled to higher core counts there was some relevancy. Other tests, 
such as the NERSC Sustained System Performance test, SPEC, 
and the DOD Technology Insertion [ 14 ] benchmarks do a 
reasonable job of introducing new applications and methods, while 
at the same time correlating new versions to past versions. It is 
possible to compare the different measures so long-running trends 
can be tracked. 

This lack of relevance to current methods will get worse for 
Linpack as we move from petascale to exascale.  Linpack, and 
therefore the Top500, is highly parallelizable, particularly in the 
weak scaling mode, due to the static properties of the problem. So 
using this relatively simplistic measure may overlook or minimize 
issues with the upcoming "massive parallelism" systems to be 
developed in the next decades. 

2.6 Number 5: The TOP500 measure takes too 
long to run and does not represent strong 
scaling. 
The latest Linpack benchmark implementation, High Performance 
Linpack (HPL), can run on any number of processors, but in order 
to provide enough work to each processor, the size of the A matrix 
has to increase, not only taking more memory, but increasing the 
wall clock time of the run more than linearly. This is memory-
constrained scaling “which is attractive to vendors because such 
speed ups are high” [15]. In order to keep scaling high, as much 
work per processor as possible has to be loaded into the system’s 

memory. The amount of memory used grows at O(N2); the run 
time to do the work grows at O(N3). So for a system such as the 
NERSC Cray XT-4 with ~39,000 cores and ~80 TB of aggregate 
memory, a single run of Linpack may take 17-20 hours on the 
entire system. On large systems today, Linpack takes multiple 
days, and multiple tuning runs are typically done to achieve high 
list rankings. While few sites admit the time used for Top500 
results, informal statements indicate it often takes weeks of 
dedicated system time for a submitted ranking run.  

To address this specific issue, Dongarra recently suggested 
modifications to the TOP500 run rules to allow entries that do not 
complete the entire calculation [16].  This will make the run time 
needed for an entry shorter, but also have impact on the expressed 
performance.  Furthermore, it lowers the probability the Linpack 
run will detect any abnormality in the system (e.g. incorrect 
answers) but is likely to allow people to post results for systems 
above tens of Petaflops. 

2.7 Number 4: The TOP500 is dominated by 
who has the most money to spend–not what 
system is the best. 
The TOP500 list’s proponents represent it as an important 
indicator that is useful for historical purposes and its ability to 
predict the future of HPC technology.   However, the dominant 
factor for list performance is who has the most funding to spend, 
followed by Moore’s Law.  Figure 4 is the typical historical 
graphic showing the Top500 number 1 and number 500 systems, 
with a new line showing known U.S. government spending in HPC 
over the same time period [17]. The funding is adjusted for 
inflation as reported by the Consumer Price Index [18].  While the 
speeds documented in the list are indeed increasing, it is clear that 
a major contributor to the increased speeds reported is the 
increased funding available for HPC systems.   

 
Figure 4. Linpack reported results compared with U.S. 

government funding for the 19-year period 
This chart shows that a major contributing factor to the increases in 
performance on the Top500 is increases increased U.S. 
government funding. The U.S. government funding is 
representative of funding increases for other governments.  For 
example, it is well documented that the Japanese government 
devoted significant resources to HPC over this time period as well, 
at times surpassing the U.S. investments.  Indeed, list sponsors 
sometimes tout the fact that the list increases faster than Moore’s 
Law [19] would predict, but this figure clearly shows that funding 
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increases contribute to that, and in fact, the list is increasing more 
slowly than Moore’s Law acceleration once the funding is factored 
in. 

2.8 Number 3: The TOP500 provides little 
historical value. 
Recently, while people acknowledge the lack of correlation with 
real workloads, the Top500 list is defended as having historical 
value to show changes over time for HPC systems. While there 
may be some historical value for such information, such as the 
number of systems by vendor or geographic region, most of the 
historical insights can come from other information that is more 
meaningful. Since the list convolves multiple factors, 
predominately how much money is available for HPC purchases 
and Moore’s law, the list does nothing to resolve the influences of 
other respective components.  Both of the two main factors are 
clearly available from other sources. 

Another attribute of the list that can lead to historic misinformation 
is that there is no correlation between being able to list a system on 
the Top500 and having it available to perform its mission of 
running science and engineering applications. Systems have been 
known to be listed even though they are still in their factory bring 
up and not close to being shipped and installed. Other systems 
listed have been engineering prototypes that are never intended for 
production use. This gives the appearance of an acceleration of 
performance that is not reality. 

2.9 Number 2: The TOP500 encourages 
organizations to make poor choices. 
There have been notable examples of systems being ill-configured 
in order to increase the ranking on the Top500 list, leaving 
organizations with systems that are imbalanced and less efficient 
for their application workloads. Repeatedly, storage capacity and 
bandwidth and memory capacity are sacrificed in order to increase 
the number of peak (and therefore Linpack) flops in a system. In 
these cases–which include some very large systems–it is often the 
case that the types of applications that can be run are limited.  

Also, the goal of listing a system can be so important to 
organizations that they may actually defer any use of the system. 
The modest example is that runs of the Linpack code take days to 
complete and often require multiple trials to tune–costing sites 
weeks of non-productive time.  But occasionally more significant 
issues arise, such as occurred with the “System X” listed as 
number 3 on the November 2003 list1. After publication, it was 
disclosed that the system was unable to run any other application 
because it had memory without error-correcting hardware and 
could not be trusted to produce correct answers. Furthermore, the 
system had numerous Linpack runs, not for tuning, but to get a 
single correct result. System X was completely disconnected and 
almost all parts replaced with entirely different parts that took a 
year to put into place. Hence, System X did no useful work for 
approximately one year but still holds its place as the number 3 
highest-performing system at the time to this day. The desire to 
gain a notable list rank meant the organization had no recourse to 
pursue their science and engineering work for this time.  

                                                             
1 Private communication with Dr. Wu Feng during presentation at 

LBNL, January 2004. 

2.10 Number 1: The TOP500 gives no 
indication of the cost of value of a system. 
The Number 1 issue of the Top500 is that is gives no indication of 
the cost or value of the systems it lists.  Hence, there is no way to 
compare different system architectures or implementations since 
the dominant factor in performance and list ranking is how much 
money was spent. While the exact cost of the Earth Simulator was 
never fully documented in public, indications are it cost 
substantially more than other contemporary systems.  Indeed, using 
NEC list pricing for equivalent parts at the time, the Earth 
Simulator added up to well over $1 billion.  The next-ranked 
systems cost five to 10 times less. Similar situations exist 
throughout the history of the list where high positions on the list 
can be “bought” if an organization has sufficient funding.  

Value is the ratio of the amount of work a system can do to the 
cost of the system. Even if Linpack were an accurate measure of 
the amount of real work a system is capable of, without an 
expression of cost listed alongside the performance metric it is 
impossible to understand the relative value of the systems. Without 
the ability of assessing value, it is not meaningful to discuss 
comparisons of systems either within a particular list or across 
lists.   

One defense used for not requiring any cost information is that 
different discounting is used and/or the actual cost is not possible 
to know for all systems at high accuracy. While it is unrealistic to 
have an exact cost figure for all systems, it is misleading to say that 
gathering information is impossible and hence should not be 
attempted. For example, many press releases about new systems, a 
cost figure is given, and many procurement documents provide the 
estimated available funds.   Furthermore, an existence proof that 
gathering cost data is possible is in place because the original NAS 
parallel benchmark rules [20] were specific that a system would 
not be listed unless a cost estimate was provided for that system–
and the NPBs were highly successful in capturing meaningful 
performance information for many years.  

3. RECOMMENDATIONS FOR 
IMPROVEMENTS 
Recommendations to improve the state of HPC system 
comparisons over time separate into two classes.  Evolutionary 
improvements are meaningful improvements that can be made 
within the context of the current list structure that do not require 
major effort. Revolutionary improvements are major restructuring 
that will result in new methods to assess systems and community 
progress.  These improvements address one or more of the issues 
discussed above. 

3.1 Evolutionary Improvements 
The most important, immediate improvements are listed below.  

3.1.1 Require cost data for every system listed  
Require all list submissions provide a system cost along with the 
Linpack run submission. The cost estimate can be flexible, as it 
was in the NAS Parallel Benchmark.  It could be the actual cost 
paid or a cost estimated from pricing tables (e.g. U.S. government 
GSA contracts) or other methods. For the latter, it may be that 
large system units are not listed, but smaller ones are so there 
would be some proration. At the worst, a component-wise estimate 
can be done as discussed above for the Earth Simulator.   

It is not necessary to have the cost data as precise as the 
performance run, but having even roughly comparable cost data 
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would begin to allow comparisons of value.  Furthermore, it would 
provide additional historical relevance of the list since then the 
community has readily available information about changing 
investments in HPC.  

This improvement is similar to the change in the list managers 
made recently to request (and possibly eventually require) energy 
consumption information associated with the performance 
information. The measurement method for energy consumption is 
not proscribed, but it is useful data to have. The positive 
experience with this (and the growth of new comparative metrics 
such as the Green 500 list) show some variation in costing 
calculations can be tolerated while still being very meaningful. 

3.1.2 Do not allow a system to be listed until it is 
fully accepted and performing its mission 
Often, one of the very first things a site does is run the Linpack test 
for submission to the list. A system may spend six to 12 months 
before it is in real production service.  So the list gives an 
unrealistic perspective of how much computing capability is being 
delivered to the community.  

It is more realistic to require that any ranked system actually be 
doing its intended work before listing the system. This could mean 
requiring the submitter to verify it is in production use or requiring 
some verification of meaningful scientific results being 
accomplished along with the data of the Linpack run.    

3.1.3 Require a complete description for every 
system listed  
Require sites to fully specify their system capacities and feeds. For 
example, the amount and speed of memory and the amount and 
speeds of the I/O subsystems should be recorded for all entries. 
This improvement would allow assessment of how well balanced a 
system is and would reflect the investment strategy for a system. It 
would also document how different types of components influence 
the performance results. 

3.1.4 Move from weak scaling to strong scaling 
Linpack 
The weak scaling approach of Linpack, essentially requiring more 
and more work to be performed to achieve a certain level of 
performance, makes the metric less meaningful. While in the past 
many applications did increase the amount of work they performed 
as system size and performance increased, that option is less 
practical as we move to the future. Systems are moving into a time 
when parallelism will dominate, but system bottlenecks such as 
memory capacity will not increase as quickly, making strong 
scaling dramatically more important than in the past. Hence a 
simple improvement is for the list to set levels of problem size that 
are independent of system scale. The NAS Parallel Benchmarks 
has introduced five classes of problems over time so that there is 
enough work in the problem set, and the Top500 criteria should 
follow a similar approach. 

3.2 Revolutionary Improvements 
Revolutionary approaches are to make major modifications and/or 
entirely replace the Top500 with a new list(s) that is much more 
realistically aligned with application performance.   

3.2.1 Align the metric to best practices in 
benchmarking 
There are attributes of any benchmark and metric that are generally 
agreed upon. Combining the criteria from [21] and [22] provides 

the following list of good attributes performance measurement 
should have.  

• Proportionality—a linear relationship between the 
metric used to estimate performance and the actual 
performance observed by the workload. In other words, 
if the metric increases by 20%, then the real 
performance of the system should be expected to 
increase by a similar proportion.  
§ A scalar performance measure for a set of 

benchmarks expressed in units of time should be 
directly proportional to the total time consumed by 
the benchmarks.  

§ A scalar performance measure for a set of 
benchmarks expressed as a rate should be inversely 
proportional to the total time consumed by the 
benchmarks.  

• Reliability—if the metric shows System A is faster than 
System B, it would be expected that System A 
outperforms System B in a real workload represented by 
the metric. 

• Consistency—the definition of the metric is the same 
across all systems and configurations. 

• Independence—the metric is not influenced by outside 
factors such as a vendor putting in special instructions 
that just impact the metric and not the workload.  

• Ease of use—so the metric can be used by more people 
and/or more frequently. 

• Repeatability—running the test for the metric multiple 
times should produce close to the same result. 

While the Top500 metric does have some of these attributes, it 
misses several others. Whatever new approach is adapted should 
improve the ability for the metric to have all these attributes and 
also be more closely aligned to the spirit of these attributes.  
Furthermore, it would be beneficial if the metrics could meet the 
goals of any benchmark in representing an evolving workload and 
covering all the purposes of benchmarks discussed in section 2.1 
above. 

3.2.2 Aggregate the HPCC metrics into a single 
value 
Dongarra’s HPCC tests [23] are an attempt to provide a more 
general view of a system and its ability to perform on a wider 
range of applications. While each year individual measures are 
recorded and “winners” announced, this approach has never 
replaced the single metric Top500 list because it is harder to issue 
press releases or make simplified claims by using four values 
rather than one. However, there is no reason most of the HPCC 
measures cannot be generalized into a single composite measure. 
While each test assesses different characteristics, with the 
exception of randomring latency, the tests all have one thing in 
common: They do a certain amount of work in a given time period 
and the work unit is encapsulated in some activity, be the activity a 
floating-point operation or moving data from one location to 
another. Therefore, each test has a given amount of work to be 
done represented by the total number of reference actions that have 
to be carried out to complete the test. If the number of actions is 
deterministic, then the difference between two rates is only the 
wall clock time it takes to carry out all those actions. Hence, an 
appropriate composite function (see PERCU reference for a 
discussion of appropriate compositing functions) can result so that 
time-to-solution for each test is the only variable. As everyone 
agrees, time-to-solution is the only real measure of performance. 
Making this improvement will provide the community with a 
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single “actions/second” measure more representative of realistic 
system use.  

3.2.3 Individualized rankings 
Given enough data—such as the HPCC values and perhaps a few 
others, such as I/O and perhaps a deterministic random access, 
represented by the Graph500 test—it would be possible to create 
meaningful customized rankings. For example, one could set 
weights and create a custom listing—the top 500 machines for the 
workload in which a community is interested. This improvement 
would help our community get away from the mass-market 
rankings and promote personalized rankings that are really useful. 

3.2.4 Weighted composite of actions 
Combining improvements 2 and 3 may be a straightforward way to 
greatly improve the realism of a single metric without tremendous 
effort. As a thought experiment, assume there are three measures 
(from the HPCC or others tests): one for an arithmetic operation 
for a quantum of values, one for moving a quantum of data 
between memory locations, and one for moving a quantum of data 
across the interconnect. Call these actions A1, A2, and A3. Each test 
would have a deterministic number of actions it carries out, 
represented as Na1, Na2, and Na3, and the measurement of the time 
it takes to complete the amount of actions, shown as t1, t2 and t3. 
Then the rate of actions is Φ(Na1/t1, Na2/t2, Na3/t3) where Φ is a 
composite function such as the geometric mean. Since Na1-n are 
deterministic, the only variables are the times to completing the 
work, giving this approach the proportional and other properties 
discussed above.  

Good rates for some actions may be necessary, but not sufficient 
for achieving good overall performance. For example, for large-
scale applications, flops/s are no longer the bottleneck (“flops are 
free”), but memory bandwidth and interconnect bandwidth often 
are. In the future, the shift of the bottleneck will be more true since 
moving data will dominate the use of energy within systems.  

So, one can use a weighted composite function, with weights w1, 
w2 and w3.  Since systems today may have 100 to 1,000 more flops 
than interconnect bandwidth and 10 to 100 times more flops than 
memory bandwidth, it is possible to use 1, 10 and 100 for the 
weighting factors.  Using weights, particularly with some study 
matching the best weights to workloads, could provide a more 
realistic single indicator for real (sustained) performance than just 
a Linpack value.  

3.2.5 Create a new, meaningful suite of 
benchmarks 
Many of the benchmark suites that are held in high regard 
(Livermore Loops [24], NPBs, SPEC) over time are suites of 
pseudo and/or full applications. While the best case for any 
benchmark is to be a statistically representative sample of real 
workload, in realty, this is not possible for community tests. 
Mashey [ 25 ] labels the Workload Characterization Analysis 
(WCA), a statistical study of all the applications in a workload, 
including their frequency of invocation and their performance. 
WCA is equivalent to the methodology outlined in [26]. This type 
of analysis provides a statistically valid random sampling of the 
workload. Of course, WCA takes a lot of effort and is rarely done 
for complex workloads. WCA also cannot be done with standard 
benchmark suites such as NPB or SPEC. While such suites may be 
related to a particular workload, by definition they cannot be 
random samples of a workload. The Workload Analysis with 
Weights (WAW) is possible after extensive WCA because it 
requires knowledge of the workload population. It can predict 

workload behavior under varying circumstances but still is not 
possible for broad community measures. For the goals of 
cataloguing a wide range of workloads, WAC and WAW are 
impracticable. The other type of analysis is the SERPOP (Sample 
Estimation of Relative Performance of Programs) method. In this 
category, a sample of a workload is selected to represent a 
workload. However, the sample is not random and cannot be 
considered a statistical sample. SERPOP methods occur frequently 
in performance analysis and reflect very meaning measures that 
span individual communities.  

Many common benchmark suites—including SPEC, TCP and 
NPB, as well as many acquisition test suites—are SERPOP. In 
SERPOP analysis, the workload should be related to SERPOP 
tests, but SERPOP does not indicate the frequency of usage or 
other characteristics of any individual workload. 

4. A COMMUNITY CALL TO ARMS 
The community desperately needs a new, comprehensive SERPOP 
metric for HPC systems, particularly when extreme architectures 
will be evolving in the face of many technology constraints. 
Several SERPOP metrics exist and are in use today, such as the 
NERSC SSP test series, the DOD Technology Insertion benchmark 
series, and the NSF/Blue Waters SPP test [27]. While none 
represent every possible workload component, all are much more 
representative of real workloads than Linpack.  So, any such 
SERPOP test would be more useful than Linpack.  

It is time the HPC community stop apologizing for a poor and 
misleading metric that we claim we have to run and post. It is clear 
much better measures can do a much better job in representing the 
important advances of HPC technology and investment while 
better representing the end purpose of our systems and programs. 
So, this paper ends by asking all community segments system 
vendors, facility managers, funding stakeholders, and the press—to 
resist using measures that are grossly flawed.  

Rather, we should insist in immediate evolutionary improvements 
while, in a very timely manner, moving to implement 
revolutionary improvements. It should be our shared goal that in 
November 2013, the 20th anniversary of the first release of the 
Top500 list, an entirely re-engineered metric is in place to guide 
our discussions, investment strategies and to record the amazing 
accomplishments of a vibrant segment of computing. 

5. ACKNOWLEDGEMENTS 
First, the author wishes to thank the four originators of the Top500 
list, Jack Dongarra, Hans Meuer, Horst Simon, and Erich 
Strohmaier, for providing many years of data and insight. While 
this paper points out issues that have developed over time with the 
Top500 list it does not in any way indicate ill will or lack of 
respect for  the accomplishment of creating the Top500 list. The 
author also wants to anonymously thank the community members 
for the thoughts and ideas on this topic. Finally, all comments are 
those of the author alone and do not represent any formal view of 
the organizations with which he has been or is associated. 

6. REFERENCES 
                                                             

[1] Dongarra, Jack. Performance of Various Computers Using 
Standard Linear Equations Software. Computer Science , 
University of Tennessee, Knoxville TN, 37996: University of 
Tennessee, 1985 

[2] Top 500 List. 1993-2012. http://www.top500.org (accessed 
2012). 

229



                                                                                                     
[3] http://www.netlib.org/Linpack 

[4] Linpack Download. 2008. http://www.netlib.org/LINPACK 
(accessed 2008). 

[5] Kramer, William T.C., PERCU Results in a Reawakened 
Relationship for NERSC and Cray, Cray User Group (CUG 
2007) Conference, Seattle, WA, May 2007. 

[6] Kramer, William.  Blue Waters – A Super System for Super 
Challenges. Proceedings of the Cray User Group, Stuttgart, 
Germany, April 29-May3, 2012.  

[7] NERSC SSP Project. NERSC Projects. 
http://www.nersc.gov/projects/ssp.php (accessed 2011). 

[8] Kramer, William. PERCU: A Holistic Method for Evaluating 
High Performance Computing Systems, A Dissertation, 
University of California Berkeley, October 2008. 
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-
2008-143.pdf 

[9] Carrington, Laura, M. Laurenzano, Allan Snavely, Roy 
Campbell, and Larry Davis. How Well Can Simple Metrics 
Represent the Performance of HPC Applications? SC 05 - 
The High Performance Computing, Storage, Networking and 
Analysis Conference 2005. Seattle, WA: Association of 
Computing Machinary (ACM), 2005. 

[10] Tikir, M., L. Carrington, E. Strohmaier, and A. Snavely. A 
Genetic Algorithms Approach to Modeling the Performance 
of Memory-bound Computations. Proceedings of SC07. 
Reno, NV: Association of Computing Machinery (ACM), 
2007. 

[11] SPEC Benchmarks. 2000. http://www.spec.org (accessed 
2008). 

[12] Bailey, David H., and el.al. The NAS Parallel Benchmarks. 
Intl. Journal of Supercomputer Applications vol 5, no. 3 (Fall 
1991): 66-73. 

[13] Simon, Horst, and Erich Strohmaier. Statistical Analysis of 
NAS Parallel Benchmarks and LINPACK Results. Vol. 919, 
in Lecture Notes In Computer Science, edited by Bob 
Hertzberger and Guiseppe Serazzi, 626 - 633. London: 
Springer-Verlag, 1995. 

[14] High Performance Technology Insertion 2006 (TI-06). DOD 
Modernization Program. 2005. 
http://www.fbodaily.com/archive/2005/05-May/08-May-
2005/FBO-00802613.htm (accessed 2005). 

[15] Culler, David E., and Jaswinder Pal Singh. Parallel 
Computer Architecture: A Hardware/Software Approach. 
First. Edited by Denise P.M. Penrose. San Francisco, CA: 
Morgan Kaufmann Publishers, Inc., 1999. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[16] Dongarra, Jack, Reduced Linpack to Keep the Run Time 
Manageable for Future TOP500 Lists, invited talk, 
International Supercomputing Conference, ISC 12, 
Homburg, Germany, June 17-21, 2012 

[17] The Networking and Information Technologies Research and 
Development Program, Supplement to the President’s 
Budget FY1993 to FY 2013, 
http://www.nitrd.gov/pubs/2013supplement/FY13NITRDSu
pplement.pdf 

[18] Consumer Price Index – Bureau of Labor Statistics. 
www.bls.gov/cpi/, (Accessed April 2012) 

[19] Moore, Gordon E., Cramming more components onto 
integrated circuits. Electronics Magazine, 1965. 

[20] Saini, Subach and David Bailey, NAS Parallel Benchmark 
Results (Version 1.0) 11-96. NAS Technical Report 96-18, 
Nasa Ames, tables 13-17. 
http://www.nas.nasa.gov/assets/pdf/techreports/1996/nas-96-
018.pdf  - other data is available in similar reports. 

[21] Smith, J. E. Characterizing Computer Performance with a 
Single Number. Communications of the ACM (Association of 
Computing Machinery) 31, no. 10 (October 1988): 1202-
1206. 

[22] Lilja, David. Measuring Computer Performance: A 
Practitioner’s Guide. Cambridge University Press, 2000. 

[23] Dongarra, Jack. Performance of Various Computers Using 
Standard Linear Algebra Software in a Fortran 
Environment. HPCC. 
http://www.netlib.org/benchmarks/performance.ps (accessed 
2012). 

[24] McMahon, F. The Livermore Fortran Kernels: A computer 
test of numerical performance range. Technical Report , 
Lawrence Livermore National Laboratory, Livermore, CA: 
University of California, 1986. 

[25] Mashey, John R. War of the Benchmark Means: Time for a 
Truce. ACM SIGARCH Computer Architecture News 
(Association for Computing Machinery) 32, no. 4 
(September 2004). 

[26] Bucher, Ingrid, and Joanne Martin. Methodology for 
Characterizing a Scientific Workload. Technical Report, Los 
Alamos, NM 87545: Los Alamos National Laboratory, 1982 

[27] Gregory H. Bauer, Torsten Hoefler, William T. Kramer and 
Robert A. Fiedler. Analyses and Modeling of Applications 
Used to Demonstrate Sustained Petascale Performance on 
Blue Waters, Proceedings of the Cray User Group, Stuttgart, 
Germany, April 29-May3, 2012 

230




