
Top500 Versus Sustained Performance – the Top
Problems with the TOP500 List – And What to Do About

Them
William Kramer

National Center for Supercomputing Applications
University of Illinois
1205 W Clark Street

Urbana, Illinois 61821
217 333-6260

wtkramer@illinois.edu

ABSTRACT
A popular U.S. talk show host uses “top 10” lists to critique
events and culture every night. Our HPC industry is captivated by
another list, the TOP500 list, as a way to track HPC systems’
performance based on FLOPS/S assessed by a single, long-lived
benchmark—Linpack. The TOP500 list has grown in influence
because of its value as a marketing tool. It simplistically, but
unrealistically, describes performance of HPC systems. The
proponents have advocated for the TOP500 list for different
reasons at different times. This paper critiques the Top 10
problems with the TOP500 list and provides suggestions on how
to correct those shortcomings. It discusses why the TOP500 list is
limiting the impact of HPC systems on real problems and other
metrics that may be more meaningful and useful to represent the
real effectiveness and value of HPC systems.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance Of
Systems - Measurement techniques; Reliability, availability, and
serviceability

General Terms
Measurement, Performance, Economics.

Keywords
Performance, Performance, Linpack, Top500, PERCU,
Benchmarks, System Evaluation, Supercomputing, HPC.

1. BACKGROUND
The TOP500 list was introduced almost 20 years ago as a way of
classifying computer performance. The list is based on the floating
point computational performance assessed by a single benchmark,
Linpack. It has grown in influence because it has become a
marketing tool and a simplistically described measurement of
performance for high-performance computers. The proponents of
the list advocate its importance. At first it was presented as an
important distinguisher of the performance of different systems

and an indicator of the amount of scientific and/or engineering
work particular systems could accomplish. In later years, the
advocates have admitted its shortcomings, but shifted to extolling
the historic value of the list and its ability to project future trends in
high-performance computing.

1.1 The Linpack benchmark
The widely discussed Linpack benchmark [1] that is used to
determine the TOP500 List [2][3] is a single test that solves Ax=b
where matrix A is a dense linear matrix. Linpack uses Gaussian
elimination with partial pivoting. For matrix A, that is size M x M,
Linpack requires 2/3 M3 + 2M2 operations. The latest Linpack
benchmark implementation, HPL [4], can run on any number of
processors, but uses weak scaling to achieve higher performance.
In order to provide enough work to each processor, the size of the
A matrix has to increase, not only taking more memory, but
increasing the wall clock time of the run. Linpack is the only
metric the TOP500 uses to assess system performance.

2. THE TOP 10 PROBLEMS WITH THE
TOP500 APPROACH

While initially providing interesting information, for a long time,
unfortunately, the Top500 list has done more harm than good to
the high-performance computing community for the following
reasons, which are presented in reverse order of importance as
David Letterman does on his Late Show.

2.1 Number 10: The Linpack benchmark
serves only one of the four purposes of a good
benchmark.
Effective benchmark tests should serve four purposes in one
implementation. Benchmark tests are representative
approximations of the real work a computer system can
accomplish. In other words, benchmark tests estimate the potential
of computer systems to solve a set of real world problems.
Benchmark tests are made up of computer programs (codes) and
one or more input data sets that state a problem the program is to
solve. One set of computer codes can exhibit different behavior
based on the problem being solved and the parameters involved.
Each purpose of the benchmark tests influences the selection and
the characteristics of the benchmarks as well. The four purposes of
benchmarks are:

1. Evaluation and/or selection of a system from among its
competitors.

2. Validating that the selected system works as expected
once it is built and/or arrives at a site.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
PACT’12, September 19–23, 2012, Minneapolis, Minnesota, USA.
Copyright 2012 ACM 978-1-4503-1182-3/12/09...$15.00.

223

3. Assuring the system performance stays as expected
throughout the systems lifetime (e.g. after upgrades,
changes, and regular use.)

4. Helping guide future system designs.

The TOP500 Linpack test, as the Top500 requires it to be run, does
not serve any of the above purposes well. In fact the Top500 test is
not able to serve purpose #3 at all because of the long run times
required. For reasons discussed in the following sections, Linpack
is seldom very effective in distinguishing between systems either.
This is because most modern processors are designed to support
cache-friendly, dense matrix algorithms. Indeed, the efficiency of
all the systems on the most recent TOP500 list only varied by a
modest amount that can be examined with other less intrusive tests.

In a limited way, Linpack can validate whether a system meets
performance expectations at time of arrival (purpose #2), but is not
efficient in doing so. The limitation of Linpack for this purpose is
due to it correlating very well with peak performance. But there are
many (even most) applications whose performance does not
correlate with Linpack. Further, running Linpack at scale takes
very long run times to achieve expected performance, as discussed
below.

Linpack also has little to add to future architectural improvements,
except possibly as a regression test to insure architectures continue
to do well with dense, cache-friendly computations. But this
regression test can be achieved by much simpler and less time-
consuming tests, such as DGEMM running on a node. Since
Linpack only partially addresses purposes #1 and #2, and does not
address purposes #3 or #4, it is a not a useful indicator of how well
as system is able to process work.

2.2 Number 9: The TOP500 list
disenfranchises many important application
areas.
Linpack solves a set of dense linear equations, yet many if not
most applications involve algorithms that are not well represented
by dense matrix solvers. Figure 1 shows a collection of scientific
disciplines and the algorithms that were in use by informed
applications in science domains at the National Energy Research
Scientific Computing Center between 1996 and 2008 [5]. Table 2
is a similar summary of analysis of the applications used by 26
science teams with initial allocations on the NSF Blue Waters
system [6]. The methods, or motifs, across the top of the charts
directly relate to system architectural features. In assessing these
and similar requirements analysis, well-balanced systems are
required for most science applications.

These tables demonstrate that high-end computation involves
much more than a single method, even within a single science
domain. While dense linear algebra plays a role in problem solving,
that role has significantly diminished as new computational
methods evolve. Methods such as sparse linear algebra and
adaptive mesh refinement have become increasingly important
components in the computational scientist’s toolkit but do not
correlate to Linpack performance. Furthermore, computer
architectures have changed over the past 15 years. When Linpack
was introduced, vector processors and high-bandwidth memory
systems dominated the HPC world. As shown in the table, dense
methods are only one of many algorithmic methods in use today.
All science disciplines use multiple methods, if not in one
application, then in different applications to pursue science goals in
each area.

Table 2. Table showing the analysis of codes used by 26
science teams with initial allocations on the Blue Waters

sustained petascale system. Note many teams use more than
one application to achieve their science goals.

The TOP500 metric only deals with dense linear systems and gives
no insight as to how well a system works for most of the
algorithmic methods (and hence applications) in use today.

2.3 Number 8: There is no relationship
between the TOP500 ranking and user
productivity or system usability for real
application workloads.
The TOP500 list does not indicate whether the systems listed are
usable or productive. In a number of cases, systems have been
listed while being assembled at factories rather than when installed
at their host facilities, leaving a gap of months between when a
system is listed and when it is usable by scientists and engineers.
Even if the system is installed before being listed, it does not mean
the system is usable or productive. To demonstrate the disconnect
between the ranking and how effective a system is for a real
workload, Figure 1 shows a comparison of the Linpack rating for
systems procured and installed at NERSC and the NERSC
Sustained System Performance [7] metrics for a 14-year period.
The SSP has been shown to be a reasonable representation of the
actual NERSC workload that covers almost all science disciplines
and hundreds of applications [8]. As shown in Figure 1, there is an
increasing discrepancy between the actual sustained performance

Table 1. This table indicated significant algorithmic
methods in use for different science areas. System

architectural features are also indicated according the
algorithmic method. The TOP500 metric corresponds only
to one architectural feature since it is dominated by dense

linear algebra.

Science
areas

Multi-
physics,
Multi-
scale

Dense
linear
algebra
(DLA)

Sparse
linear
algebra
(SLA)

Spectral
Methods
(FFT)s
(SM-FFT)

N-Body
Methods
(N-Body)

Structured
Grids
(S-Grids)

Unstructured
Grids
(U-Grids)

Data
Intensive

Nanoscience X X X X X X

Chemistry X X X X X

Fusion X X X X X X

Climate X X X X X X

Combustion X X X X X

Astrophysics X X X X X X X X

Biology X X X X

Nuclear X X X X
System
Balance

Implications

General
Purpose
balanced
System

High
Speed
CPU,
High

Flop/s
rate

High
Performance

Memory

High
Interconnect

Bisection
bandwidth

High
Performance

Memory

High
Speed
CPU,
High

Flop/s
rate

Irregular
Data and
Control
Flow

High
Storage

and
Network

bandwidth

224

and both the peak and Linpack performance across a number of
systems and architectures.

Figure 1. Comparison of NERSC SSP to Linpack
performance over a 14-year period shows Linpack greatly
misrepresents the real performance one can expect from a

computer system.
In another view of the same data, Figure 2 compares the reported
Linpack performance with the reported average sustained
application performance using between six and eight applications
and multiple input sets. The observer can see that sustained
performance bears little correlation to Linpack performance.

Figure 2. Comparison of Linpack performance and average
sustained application performance for 8 systems over 14 years

at NERSC
The results seen for NERSC-5 are aligned with the results seen
using the similar versions of the tools for the DOD Modernization
Program TI-05 evaluation and acquisition [9] which reports:

• simple tests are inadequate for predicting or assessing
application performance on systems, with Linpack being the
poorest simple test studied;

• combining simple tests with optimized weights also is
inadequate for meaningful application performance
prediction;

• convolving application traces with metrics derived from a
specific set of simple tests (the PMaC methodology) can
predict performance of applications to about 80% accuracy
for the same system (no comment is made for similar but not
identical systems); and

• acquiring the application-specific traces is “painful.” It is
noted that PMAC has since abandoned this version of the
framework and has moved to a new framework for
performance prediction [10] that recently reported

predictions with 90% accuracy on a limited set of
applications for the same system as was instrumented.

2.4 Number 7: The Linpack performance test
is dominated by single-core, dense linear
algebra peak performance.
Over the 16 years of the lists being reported, Linpack results have
tracked the peak performance of the systems with only a few
exceptions. Figure 3 shows the ratio of the reported Linpack
performance (Rmax) to peak performance (Rpeak) for the #1 system
for each list. It also shows the average ratio across all years.

Figure 3. The 16-year comparison of system peak speed

(Rpeak) to measured Linpack rates (Rmax) for the number 1
system on the list. The figure shows only a few times when

there are any significant deviations, which are mostly
explained by other causes.

There are only a few places where the ratios show a move away
from the long-term average. In the first two lists, this difference is
probably sites starting to pay attention to the implementation of
their submitted times once they realized others would notice. The
next difference in June 1996 is due to a new system that may have
had limited tuning time. The next major difference in June 1999 is
informative. It is the ASCI Red Storm system, which was also
number 1 on the November 1998 list with improved Rmax, probably
due to additional tuning. The changes in November 2000 and June
2001 are both the ASCI White system at Lawrence Livermore
National Laboratory, but with a percent of peak improvement of
almost 50% in between the two lists. In this case, the low initial
performance was good enough to claim the top spot on the list in
November 2000 when the system was not complete, but the
system’s performance got much better before it went into service.
Obviously the improvement in 2002 was the Earth Simulator,
which was not only a case of vector vs. RISC system but also had
very significantly more funding than any other system ever on the
list. The improvement in June 2006 was the Los Alamos National
Laboratory’s Roadrunner system with a specialized, but limited
use, Cell architecture, and November 2010 #1 on the list was
again a specialized system with accelerators.

2.5 Number 6: The TOP500 metric has not
kept up with changing algorithmic methods.
Today, computational scientists have to deal with massive
parallelism using computational nodes that are often under-
provisioned with memory and memory bandwidth. Therefore,

225

computational methods have evolved significantly since Linpack
represented the majority of methods used to solve problems.

The effectiveness of a metric for assessing delivered performance
is founded on its accurate mapping to the target workload. A static
benchmark suite will eventually fail to provide an accurate means
for assessing systems. Several examples, including Linpack, show
that over time, fixed benchmarks become less of a discriminating
factor in predicting application workload performance. This is
because once a simple benchmark gains traction in the community;
system designers customize their designs to do well on that
benchmark. The Livermore Loops, SPEC [11], Linpack, NAS
Parallel Benchmarks (NPB) [12], etc. all have had this issue. It is
clear Linpack now tracks peak performance in the large majority of
cases.

Simon and Strohmaier [13] showed, through statistical correlation
analysis, that within two Moore’s Law generations of technology
and despite the expansion of problem sizes, only three of the eight
NPBs remained statistically significant distinguishers of system
performance. This was due to system designers making systems
that responded more favorably to the widely used benchmark tests
with hardware and software improvements.

Thus, long-lived benchmarks should not be a goal except possibly
as regression tests to make sure improvements they generate stay
in the design scope. There must be a constant
introduction/validation of the “primary” tests that will drive the
features for the future, and a constant “retirement” of the
benchmarks that are no longer strong discriminators. On the other
hand, consistency of methodology and overlapping of benchmark
generations are useful so there can be comparison across
generations of systems. Consequently, the metrics that continue to
evolve to stay current representative with of current workloads and
future trends by changing both the application mix and the problem
sets in a coordinated manner have shown to be useful over longer
periods. The NAS Parallel Benchmarks partially addressed this by
providing multiple size versions (Class A thru E) so as systems
scaled to higher core counts there was some relevancy. Other tests,
such as the NERSC Sustained System Performance test, SPEC,
and the DOD Technology Insertion [14] benchmarks do a
reasonable job of introducing new applications and methods, while
at the same time correlating new versions to past versions. It is
possible to compare the different measures so long-running trends
can be tracked.

This lack of relevance to current methods will get worse for
Linpack as we move from petascale to exascale. Linpack, and
therefore the Top500, is highly parallelizable, particularly in the
weak scaling mode, due to the static properties of the problem. So
using this relatively simplistic measure may overlook or minimize
issues with the upcoming "massive parallelism" systems to be
developed in the next decades.

2.6 Number 5: The TOP500 measure takes too
long to run and does not represent strong
scaling.
The latest Linpack benchmark implementation, High Performance
Linpack (HPL), can run on any number of processors, but in order
to provide enough work to each processor, the size of the A matrix
has to increase, not only taking more memory, but increasing the
wall clock time of the run more than linearly. This is memory-
constrained scaling “which is attractive to vendors because such
speed ups are high” [15]. In order to keep scaling high, as much
work per processor as possible has to be loaded into the system’s

memory. The amount of memory used grows at O(N2); the run
time to do the work grows at O(N3). So for a system such as the
NERSC Cray XT-4 with ~39,000 cores and ~80 TB of aggregate
memory, a single run of Linpack may take 17-20 hours on the
entire system. On large systems today, Linpack takes multiple
days, and multiple tuning runs are typically done to achieve high
list rankings. While few sites admit the time used for Top500
results, informal statements indicate it often takes weeks of
dedicated system time for a submitted ranking run.

To address this specific issue, Dongarra recently suggested
modifications to the TOP500 run rules to allow entries that do not
complete the entire calculation [16]. This will make the run time
needed for an entry shorter, but also have impact on the expressed
performance. Furthermore, it lowers the probability the Linpack
run will detect any abnormality in the system (e.g. incorrect
answers) but is likely to allow people to post results for systems
above tens of Petaflops.

2.7 Number 4: The TOP500 is dominated by
who has the most money to spend–not what
system is the best.
The TOP500 list’s proponents represent it as an important
indicator that is useful for historical purposes and its ability to
predict the future of HPC technology. However, the dominant
factor for list performance is who has the most funding to spend,
followed by Moore’s Law. Figure 4 is the typical historical
graphic showing the Top500 number 1 and number 500 systems,
with a new line showing known U.S. government spending in HPC
over the same time period [17]. The funding is adjusted for
inflation as reported by the Consumer Price Index [18]. While the
speeds documented in the list are indeed increasing, it is clear that
a major contributor to the increased speeds reported is the
increased funding available for HPC systems.

Figure 4. Linpack reported results compared with U.S.

government funding for the 19-year period
This chart shows that a major contributing factor to the increases in
performance on the Top500 is increases increased U.S.
government funding. The U.S. government funding is
representative of funding increases for other governments. For
example, it is well documented that the Japanese government
devoted significant resources to HPC over this time period as well,
at times surpassing the U.S. investments. Indeed, list sponsors
sometimes tout the fact that the list increases faster than Moore’s
Law [19] would predict, but this figure clearly shows that funding

226

increases contribute to that, and in fact, the list is increasing more
slowly than Moore’s Law acceleration once the funding is factored
in.

2.8 Number 3: The TOP500 provides little
historical value.
Recently, while people acknowledge the lack of correlation with
real workloads, the Top500 list is defended as having historical
value to show changes over time for HPC systems. While there
may be some historical value for such information, such as the
number of systems by vendor or geographic region, most of the
historical insights can come from other information that is more
meaningful. Since the list convolves multiple factors,
predominately how much money is available for HPC purchases
and Moore’s law, the list does nothing to resolve the influences of
other respective components. Both of the two main factors are
clearly available from other sources.

Another attribute of the list that can lead to historic misinformation
is that there is no correlation between being able to list a system on
the Top500 and having it available to perform its mission of
running science and engineering applications. Systems have been
known to be listed even though they are still in their factory bring
up and not close to being shipped and installed. Other systems
listed have been engineering prototypes that are never intended for
production use. This gives the appearance of an acceleration of
performance that is not reality.

2.9 Number 2: The TOP500 encourages
organizations to make poor choices.
There have been notable examples of systems being ill-configured
in order to increase the ranking on the Top500 list, leaving
organizations with systems that are imbalanced and less efficient
for their application workloads. Repeatedly, storage capacity and
bandwidth and memory capacity are sacrificed in order to increase
the number of peak (and therefore Linpack) flops in a system. In
these cases–which include some very large systems–it is often the
case that the types of applications that can be run are limited.

Also, the goal of listing a system can be so important to
organizations that they may actually defer any use of the system.
The modest example is that runs of the Linpack code take days to
complete and often require multiple trials to tune–costing sites
weeks of non-productive time. But occasionally more significant
issues arise, such as occurred with the “System X” listed as
number 3 on the November 2003 list1. After publication, it was
disclosed that the system was unable to run any other application
because it had memory without error-correcting hardware and
could not be trusted to produce correct answers. Furthermore, the
system had numerous Linpack runs, not for tuning, but to get a
single correct result. System X was completely disconnected and
almost all parts replaced with entirely different parts that took a
year to put into place. Hence, System X did no useful work for
approximately one year but still holds its place as the number 3
highest-performing system at the time to this day. The desire to
gain a notable list rank meant the organization had no recourse to
pursue their science and engineering work for this time.

1 Private communication with Dr. Wu Feng during presentation at

LBNL, January 2004.

2.10 Number 1: The TOP500 gives no
indication of the cost of value of a system.
The Number 1 issue of the Top500 is that is gives no indication of
the cost or value of the systems it lists. Hence, there is no way to
compare different system architectures or implementations since
the dominant factor in performance and list ranking is how much
money was spent. While the exact cost of the Earth Simulator was
never fully documented in public, indications are it cost
substantially more than other contemporary systems. Indeed, using
NEC list pricing for equivalent parts at the time, the Earth
Simulator added up to well over $1 billion. The next-ranked
systems cost five to 10 times less. Similar situations exist
throughout the history of the list where high positions on the list
can be “bought” if an organization has sufficient funding.

Value is the ratio of the amount of work a system can do to the
cost of the system. Even if Linpack were an accurate measure of
the amount of real work a system is capable of, without an
expression of cost listed alongside the performance metric it is
impossible to understand the relative value of the systems. Without
the ability of assessing value, it is not meaningful to discuss
comparisons of systems either within a particular list or across
lists.

One defense used for not requiring any cost information is that
different discounting is used and/or the actual cost is not possible
to know for all systems at high accuracy. While it is unrealistic to
have an exact cost figure for all systems, it is misleading to say that
gathering information is impossible and hence should not be
attempted. For example, many press releases about new systems, a
cost figure is given, and many procurement documents provide the
estimated available funds. Furthermore, an existence proof that
gathering cost data is possible is in place because the original NAS
parallel benchmark rules [20] were specific that a system would
not be listed unless a cost estimate was provided for that system–
and the NPBs were highly successful in capturing meaningful
performance information for many years.

3. RECOMMENDATIONS FOR
IMPROVEMENTS
Recommendations to improve the state of HPC system
comparisons over time separate into two classes. Evolutionary
improvements are meaningful improvements that can be made
within the context of the current list structure that do not require
major effort. Revolutionary improvements are major restructuring
that will result in new methods to assess systems and community
progress. These improvements address one or more of the issues
discussed above.

3.1 Evolutionary Improvements
The most important, immediate improvements are listed below.

3.1.1 Require cost data for every system listed
Require all list submissions provide a system cost along with the
Linpack run submission. The cost estimate can be flexible, as it
was in the NAS Parallel Benchmark. It could be the actual cost
paid or a cost estimated from pricing tables (e.g. U.S. government
GSA contracts) or other methods. For the latter, it may be that
large system units are not listed, but smaller ones are so there
would be some proration. At the worst, a component-wise estimate
can be done as discussed above for the Earth Simulator.

It is not necessary to have the cost data as precise as the
performance run, but having even roughly comparable cost data

227

would begin to allow comparisons of value. Furthermore, it would
provide additional historical relevance of the list since then the
community has readily available information about changing
investments in HPC.

This improvement is similar to the change in the list managers
made recently to request (and possibly eventually require) energy
consumption information associated with the performance
information. The measurement method for energy consumption is
not proscribed, but it is useful data to have. The positive
experience with this (and the growth of new comparative metrics
such as the Green 500 list) show some variation in costing
calculations can be tolerated while still being very meaningful.

3.1.2 Do not allow a system to be listed until it is
fully accepted and performing its mission
Often, one of the very first things a site does is run the Linpack test
for submission to the list. A system may spend six to 12 months
before it is in real production service. So the list gives an
unrealistic perspective of how much computing capability is being
delivered to the community.

It is more realistic to require that any ranked system actually be
doing its intended work before listing the system. This could mean
requiring the submitter to verify it is in production use or requiring
some verification of meaningful scientific results being
accomplished along with the data of the Linpack run.

3.1.3 Require a complete description for every
system listed
Require sites to fully specify their system capacities and feeds. For
example, the amount and speed of memory and the amount and
speeds of the I/O subsystems should be recorded for all entries.
This improvement would allow assessment of how well balanced a
system is and would reflect the investment strategy for a system. It
would also document how different types of components influence
the performance results.

3.1.4 Move from weak scaling to strong scaling
Linpack
The weak scaling approach of Linpack, essentially requiring more
and more work to be performed to achieve a certain level of
performance, makes the metric less meaningful. While in the past
many applications did increase the amount of work they performed
as system size and performance increased, that option is less
practical as we move to the future. Systems are moving into a time
when parallelism will dominate, but system bottlenecks such as
memory capacity will not increase as quickly, making strong
scaling dramatically more important than in the past. Hence a
simple improvement is for the list to set levels of problem size that
are independent of system scale. The NAS Parallel Benchmarks
has introduced five classes of problems over time so that there is
enough work in the problem set, and the Top500 criteria should
follow a similar approach.

3.2 Revolutionary Improvements
Revolutionary approaches are to make major modifications and/or
entirely replace the Top500 with a new list(s) that is much more
realistically aligned with application performance.

3.2.1 Align the metric to best practices in
benchmarking
There are attributes of any benchmark and metric that are generally
agreed upon. Combining the criteria from [21] and [22] provides

the following list of good attributes performance measurement
should have.

• Proportionality—a linear relationship between the
metric used to estimate performance and the actual
performance observed by the workload. In other words,
if the metric increases by 20%, then the real
performance of the system should be expected to
increase by a similar proportion.
§ A scalar performance measure for a set of

benchmarks expressed in units of time should be
directly proportional to the total time consumed by
the benchmarks.

§ A scalar performance measure for a set of
benchmarks expressed as a rate should be inversely
proportional to the total time consumed by the
benchmarks.

• Reliability—if the metric shows System A is faster than
System B, it would be expected that System A
outperforms System B in a real workload represented by
the metric.

• Consistency—the definition of the metric is the same
across all systems and configurations.

• Independence—the metric is not influenced by outside
factors such as a vendor putting in special instructions
that just impact the metric and not the workload.

• Ease of use—so the metric can be used by more people
and/or more frequently.

• Repeatability—running the test for the metric multiple
times should produce close to the same result.

While the Top500 metric does have some of these attributes, it
misses several others. Whatever new approach is adapted should
improve the ability for the metric to have all these attributes and
also be more closely aligned to the spirit of these attributes.
Furthermore, it would be beneficial if the metrics could meet the
goals of any benchmark in representing an evolving workload and
covering all the purposes of benchmarks discussed in section 2.1
above.

3.2.2 Aggregate the HPCC metrics into a single
value
Dongarra’s HPCC tests [23] are an attempt to provide a more
general view of a system and its ability to perform on a wider
range of applications. While each year individual measures are
recorded and “winners” announced, this approach has never
replaced the single metric Top500 list because it is harder to issue
press releases or make simplified claims by using four values
rather than one. However, there is no reason most of the HPCC
measures cannot be generalized into a single composite measure.
While each test assesses different characteristics, with the
exception of randomring latency, the tests all have one thing in
common: They do a certain amount of work in a given time period
and the work unit is encapsulated in some activity, be the activity a
floating-point operation or moving data from one location to
another. Therefore, each test has a given amount of work to be
done represented by the total number of reference actions that have
to be carried out to complete the test. If the number of actions is
deterministic, then the difference between two rates is only the
wall clock time it takes to carry out all those actions. Hence, an
appropriate composite function (see PERCU reference for a
discussion of appropriate compositing functions) can result so that
time-to-solution for each test is the only variable. As everyone
agrees, time-to-solution is the only real measure of performance.
Making this improvement will provide the community with a

228

single “actions/second” measure more representative of realistic
system use.

3.2.3 Individualized rankings
Given enough data—such as the HPCC values and perhaps a few
others, such as I/O and perhaps a deterministic random access,
represented by the Graph500 test—it would be possible to create
meaningful customized rankings. For example, one could set
weights and create a custom listing—the top 500 machines for the
workload in which a community is interested. This improvement
would help our community get away from the mass-market
rankings and promote personalized rankings that are really useful.

3.2.4 Weighted composite of actions
Combining improvements 2 and 3 may be a straightforward way to
greatly improve the realism of a single metric without tremendous
effort. As a thought experiment, assume there are three measures
(from the HPCC or others tests): one for an arithmetic operation
for a quantum of values, one for moving a quantum of data
between memory locations, and one for moving a quantum of data
across the interconnect. Call these actions A1, A2, and A3. Each test
would have a deterministic number of actions it carries out,
represented as Na1, Na2, and Na3, and the measurement of the time
it takes to complete the amount of actions, shown as t1, t2 and t3.
Then the rate of actions is Φ(Na1/t1, Na2/t2, Na3/t3) where Φ is a
composite function such as the geometric mean. Since Na1-n are
deterministic, the only variables are the times to completing the
work, giving this approach the proportional and other properties
discussed above.

Good rates for some actions may be necessary, but not sufficient
for achieving good overall performance. For example, for large-
scale applications, flops/s are no longer the bottleneck (“flops are
free”), but memory bandwidth and interconnect bandwidth often
are. In the future, the shift of the bottleneck will be more true since
moving data will dominate the use of energy within systems.

So, one can use a weighted composite function, with weights w1,
w2 and w3. Since systems today may have 100 to 1,000 more flops
than interconnect bandwidth and 10 to 100 times more flops than
memory bandwidth, it is possible to use 1, 10 and 100 for the
weighting factors. Using weights, particularly with some study
matching the best weights to workloads, could provide a more
realistic single indicator for real (sustained) performance than just
a Linpack value.

3.2.5 Create a new, meaningful suite of
benchmarks
Many of the benchmark suites that are held in high regard
(Livermore Loops [24], NPBs, SPEC) over time are suites of
pseudo and/or full applications. While the best case for any
benchmark is to be a statistically representative sample of real
workload, in realty, this is not possible for community tests.
Mashey [25] labels the Workload Characterization Analysis
(WCA), a statistical study of all the applications in a workload,
including their frequency of invocation and their performance.
WCA is equivalent to the methodology outlined in [26]. This type
of analysis provides a statistically valid random sampling of the
workload. Of course, WCA takes a lot of effort and is rarely done
for complex workloads. WCA also cannot be done with standard
benchmark suites such as NPB or SPEC. While such suites may be
related to a particular workload, by definition they cannot be
random samples of a workload. The Workload Analysis with
Weights (WAW) is possible after extensive WCA because it
requires knowledge of the workload population. It can predict

workload behavior under varying circumstances but still is not
possible for broad community measures. For the goals of
cataloguing a wide range of workloads, WAC and WAW are
impracticable. The other type of analysis is the SERPOP (Sample
Estimation of Relative Performance of Programs) method. In this
category, a sample of a workload is selected to represent a
workload. However, the sample is not random and cannot be
considered a statistical sample. SERPOP methods occur frequently
in performance analysis and reflect very meaning measures that
span individual communities.

Many common benchmark suites—including SPEC, TCP and
NPB, as well as many acquisition test suites—are SERPOP. In
SERPOP analysis, the workload should be related to SERPOP
tests, but SERPOP does not indicate the frequency of usage or
other characteristics of any individual workload.

4. A COMMUNITY CALL TO ARMS
The community desperately needs a new, comprehensive SERPOP
metric for HPC systems, particularly when extreme architectures
will be evolving in the face of many technology constraints.
Several SERPOP metrics exist and are in use today, such as the
NERSC SSP test series, the DOD Technology Insertion benchmark
series, and the NSF/Blue Waters SPP test [27]. While none
represent every possible workload component, all are much more
representative of real workloads than Linpack. So, any such
SERPOP test would be more useful than Linpack.

It is time the HPC community stop apologizing for a poor and
misleading metric that we claim we have to run and post. It is clear
much better measures can do a much better job in representing the
important advances of HPC technology and investment while
better representing the end purpose of our systems and programs.
So, this paper ends by asking all community segments system
vendors, facility managers, funding stakeholders, and the press—to
resist using measures that are grossly flawed.

Rather, we should insist in immediate evolutionary improvements
while, in a very timely manner, moving to implement
revolutionary improvements. It should be our shared goal that in
November 2013, the 20th anniversary of the first release of the
Top500 list, an entirely re-engineered metric is in place to guide
our discussions, investment strategies and to record the amazing
accomplishments of a vibrant segment of computing.

5. ACKNOWLEDGEMENTS
First, the author wishes to thank the four originators of the Top500
list, Jack Dongarra, Hans Meuer, Horst Simon, and Erich
Strohmaier, for providing many years of data and insight. While
this paper points out issues that have developed over time with the
Top500 list it does not in any way indicate ill will or lack of
respect for the accomplishment of creating the Top500 list. The
author also wants to anonymously thank the community members
for the thoughts and ideas on this topic. Finally, all comments are
those of the author alone and do not represent any formal view of
the organizations with which he has been or is associated.

6. REFERENCES

[1] Dongarra, Jack. Performance of Various Computers Using
Standard Linear Equations Software. Computer Science ,
University of Tennessee, Knoxville TN, 37996: University of
Tennessee, 1985

[2] Top 500 List. 1993-2012. http://www.top500.org (accessed
2012).

229

[3] http://www.netlib.org/Linpack

[4] Linpack Download. 2008. http://www.netlib.org/LINPACK
(accessed 2008).

[5] Kramer, William T.C., PERCU Results in a Reawakened
Relationship for NERSC and Cray, Cray User Group (CUG
2007) Conference, Seattle, WA, May 2007.

[6] Kramer, William. Blue Waters – A Super System for Super
Challenges. Proceedings of the Cray User Group, Stuttgart,
Germany, April 29-May3, 2012.

[7] NERSC SSP Project. NERSC Projects.
http://www.nersc.gov/projects/ssp.php (accessed 2011).

[8] Kramer, William. PERCU: A Holistic Method for Evaluating
High Performance Computing Systems, A Dissertation,
University of California Berkeley, October 2008.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-
2008-143.pdf

[9] Carrington, Laura, M. Laurenzano, Allan Snavely, Roy
Campbell, and Larry Davis. How Well Can Simple Metrics
Represent the Performance of HPC Applications? SC 05 -
The High Performance Computing, Storage, Networking and
Analysis Conference 2005. Seattle, WA: Association of
Computing Machinary (ACM), 2005.

[10] Tikir, M., L. Carrington, E. Strohmaier, and A. Snavely. A
Genetic Algorithms Approach to Modeling the Performance
of Memory-bound Computations. Proceedings of SC07.
Reno, NV: Association of Computing Machinery (ACM),
2007.

[11] SPEC Benchmarks. 2000. http://www.spec.org (accessed
2008).

[12] Bailey, David H., and el.al. The NAS Parallel Benchmarks.
Intl. Journal of Supercomputer Applications vol 5, no. 3 (Fall
1991): 66-73.

[13] Simon, Horst, and Erich Strohmaier. Statistical Analysis of
NAS Parallel Benchmarks and LINPACK Results. Vol. 919,
in Lecture Notes In Computer Science, edited by Bob
Hertzberger and Guiseppe Serazzi, 626 - 633. London:
Springer-Verlag, 1995.

[14] High Performance Technology Insertion 2006 (TI-06). DOD
Modernization Program. 2005.
http://www.fbodaily.com/archive/2005/05-May/08-May-
2005/FBO-00802613.htm (accessed 2005).

[15] Culler, David E., and Jaswinder Pal Singh. Parallel
Computer Architecture: A Hardware/Software Approach.
First. Edited by Denise P.M. Penrose. San Francisco, CA:
Morgan Kaufmann Publishers, Inc., 1999.

[16] Dongarra, Jack, Reduced Linpack to Keep the Run Time
Manageable for Future TOP500 Lists, invited talk,
International Supercomputing Conference, ISC 12,
Homburg, Germany, June 17-21, 2012

[17] The Networking and Information Technologies Research and
Development Program, Supplement to the President’s
Budget FY1993 to FY 2013,
http://www.nitrd.gov/pubs/2013supplement/FY13NITRDSu
pplement.pdf

[18] Consumer Price Index – Bureau of Labor Statistics.
www.bls.gov/cpi/, (Accessed April 2012)

[19] Moore, Gordon E., Cramming more components onto
integrated circuits. Electronics Magazine, 1965.

[20] Saini, Subach and David Bailey, NAS Parallel Benchmark
Results (Version 1.0) 11-96. NAS Technical Report 96-18,
Nasa Ames, tables 13-17.
http://www.nas.nasa.gov/assets/pdf/techreports/1996/nas-96-
018.pdf - other data is available in similar reports.

[21] Smith, J. E. Characterizing Computer Performance with a
Single Number. Communications of the ACM (Association of
Computing Machinery) 31, no. 10 (October 1988): 1202-
1206.

[22] Lilja, David. Measuring Computer Performance: A
Practitioner’s Guide. Cambridge University Press, 2000.

[23] Dongarra, Jack. Performance of Various Computers Using
Standard Linear Algebra Software in a Fortran
Environment. HPCC.
http://www.netlib.org/benchmarks/performance.ps (accessed
2012).

[24] McMahon, F. The Livermore Fortran Kernels: A computer
test of numerical performance range. Technical Report ,
Lawrence Livermore National Laboratory, Livermore, CA:
University of California, 1986.

[25] Mashey, John R. War of the Benchmark Means: Time for a
Truce. ACM SIGARCH Computer Architecture News
(Association for Computing Machinery) 32, no. 4
(September 2004).

[26] Bucher, Ingrid, and Joanne Martin. Methodology for
Characterizing a Scientific Workload. Technical Report, Los
Alamos, NM 87545: Los Alamos National Laboratory, 1982

[27] Gregory H. Bauer, Torsten Hoefler, William T. Kramer and
Robert A. Fiedler. Analyses and Modeling of Applications
Used to Demonstrate Sustained Petascale Performance on
Blue Waters, Proceedings of the Cray User Group, Stuttgart,
Germany, April 29-May3, 2012

230

