
Kaitlyn Stumpf
CSC231, Fall 2015
10/2/2015

Problem 2: When performing arithmetic, is using BigIntegers slower, or faster than using ints,
and how much faster or slower? Please include supporting evidence in your answer.

 To answer this question, I took the arithmetic problem written in Java and used to
compare Java, C++, Nasm, and Python in a previous class exercise and created two (slightly,
consistently modified) versions, one where the numbers were stored as BigIntegers and another
where the numbers were stored as ints. I compiled and ran both programs ssh-ed to the Aurora
server. Below is a copy of the code from both programs, and my results after running the two.

 As expected, the code
containing the class BigIntegers
took a much longer time
(12,756ms) to execute, whereas
the code working with integers
took only 94ms. Integers in Java

are always 64 bits and unsigned. BigIntegers, however, act as an array, in that their size depends
on the size of the number stored within. If the int became overflowed, it would still be working
(incorrectly) within its 64 bit parameters, whereas BigInteger would continue to accommodate
the growing number, slowing performance speeds but providing a more reliable result.
 According to the Javamex BigInteger tutorial found at (http://www.javamex.com/
tutorials/math/BigDecimal_BigInteger_performance.shtml) BigInteger’s add() and subtract()
methods also “scale linearly as a function of the number of digits in the (larger) number being
added”, while the performance of its multiply() method scales exponentially. What sets
BigInteger and int apart is simply the amount of space allocated to contain the numerical values
being worked with.

http://www.javamex.com/tutorials/math/BigDecimal_BigInteger_performance.shtml

