
1

Tiffany Q. Liu

April 4, 2011

CSC 270

Lab #9

Lab #9: Observing an Endless Loop on the Oscilloscope

Introduction
 The purpose of this lab was to write and assemble an endless loop program to enter into

the 6811 trainer and use the oscilloscope to observe the cycles involved.

Materials

Figure 1. Wiring Kit. Figure 2. 6811 Microprocessor Kit

(Taken from D.Thiebaut).

Figure 3. Oscilloscope Cables.

 Figure 4. Tektronix Oscilloscope

2

Part 1
 To start, we wrote and assembled a program that would increment a variable x by 1

inside an endless loop:

 ;--- data section ---

 ORG 0010

 0010 00 x FCB 0 ; 0 is stored at address 10

 ;--- code section ---

 ORG 0000

 0000 4C LOOP: INCA ; ACCA <- ACCA + 1

 0001 97 10 STAA x ; x <- ACCA

 0003 20 FB BRA LOOP ; branch to LOOP

The second byte of the opcode for the BRA instruction was determined by taking the 2’s

complement of the next address byte, in this case 05, which gives us the result FB. We do this

because when FB is added to the next address byte 05, we get 00, which is the memory address

of where we want to branch to.

 Next, we created a table that gave a cycle by cycle description of the execution of the

instruction:

 Cycle Cycle Name Address Data (LIR)’ LIR

INCA
1 IF 0000 4C 0 1

2 OF/IE 0001? ? 1 0

STAA

3 IF 0001 97 0 1

4 OAF 0002 10 1 0

5 OS/IE 0010 XX 1 0

BRA

6 IF 0003 20 0 1

7 OF 0004 FB 1 0

8 IE 0005? ? 1 0

Then we entered the opcodes into the 6811 trainer and executed the program. Since the program

we entered is just incrementing x inside an infinite loop, and we did not program the 6811 to

output anything to the screen, the trainer display stays blank while the program continues to run.

Part 2
 In order to see the cycles in real-time, we connected the 6811 trainer to the oscilloscope

by connecting the grounds to GND located on the lower block and connecting one probe to the E

clock signal (located on the upper block) and the other probe to the LIR signal (also located on

the upper block). When we did this, we got the following screen capture:

3

Figure 5. Screen Capture of the E Clock Signal (Blue) and the LIR Signal (Yellow).

Since (LIR)’ goes low for the first opcode byte fetch, the LIR signal indicates when the first

opcode byte fetch occurs when the signal goes from low to high. Thus, from the LIR signal, we

can see when a new instruction begins.

 To calculate the average number of instructions executed by the 6811 over time, we used

the oscilloscope to measure one period of the LIR signal since we knew one period of the LIR

signal represented one execution of the loop, which consists of 3 instructions. The measured

period of the LIR signal was 8.65s. Knowing this and the fact that 3 instructions were executed

in that period, we determined that the average number of instructions executed by the 6811 was

equal to 3 instructions divided by 8.65s, which is 346,820 instructions per second or 0.347

MIPS.

Part 3
 We then connected a third probe to the R/W’ (read/write) signal (located on the upper

block) and obtained the following screen capture:

4

Figure 6. Screen Capture of the E Clock Signal (Blue), LIR Signal (Yellow), and the R/W’

Signal (Purple).

The R/W’ signal generates a 1 when the processor is reading from memory and generates a 0

when the processor is writing to memory. The signals between the two yellow cursor lines in

Figure 6 represent a single iteration of the loop. The R/W’ signal between the cursors stays high

(1) throughout most of the loop iteration except for around the middle, where the signal goes low

(0). This makes sense since that is when we programmed the processor to store the value in

Accumulator A to x.

 To calculate the average number of time the loop runs in one second, we measured the

frequency of the LIR signal, which was 117kHz. This indicates that on average, the loop runs

about 117,000 times per second.

Part 4
 Then, we connected a fourth probe to one of the address bus lines. We chose to connect

the probe to the least significant bit of the address bus (A0) since the addresses appeared to alter

between an even value and an odd value fairly frequently, which would be reflected in the least

significant bit changing between 0 and 1. When we connected the probe to the 6811 kit, we

obtained the following:

5

Figure 7. Screen Capture of the E Clock Signal (Blue), LIR Signal (Yellow), the R/W’ Signal

(Purple), and the A0 Signal (Green).

Again, the cursors in Figure 7 indicate the start and the end of one period of the LIR, which is

one iteration of the loop. If we take a look at the A0 signal whenever the LIR signal goes from

low to high (when a new instruction begins), we see that at the first rise of the LIR signal, the A0

signal is low. The address on the address bus at the start of an iteration of the loop should be

0000 according to our cycle-by-cycle table from Part 1. This is consistent with the idea that the

address is even when the least significant bit on the address bus is 0. Next, we see that at the

second rise of the LIR signal, the A0 signal is high. The address on the address bus at this point

in the loop should be 0001 according to the cycle-by-cycle table. This is consistent with the idea

that the address is odd when the least significant bit on the address bus is 1. Finally, if we look at

the final rise of the LIR signal in this period, the A0 signal is high again. The address on the

address bus at this point is 0003. Again, this is consistent with the idea of an odd-valued address

having a 1 as its least significant bit.

Part 5
 Finally, we connected the oscilloscope probes to just the R/W’ signal and one of the data

bus lines. Again, we chose to look at the least significant bit on the data bus since it was

indicative of whether a even or an odd-valued data was being sent on the data bus.

6

Figure 8. Screen Capture of the R/W’ Signal (Yellow) and the D0 Signal (Purple).

From the screen capture in Figure 8, we noticed that in once cycle, the data bit was not stable

(keeps showing 1 and 0 seemingly simultaneously). This is occurring because the processor is

writing to memory, alternating between an even value and an odd value with each iteration of the

loop, so quickly that the signals start to overlap.

 If we take a look at one signal by pressing Single on the oscilloscope, we get the

following:

Figure 9. Screen Capture of a Single R/W’ Signal (Yellow) and D0 Signal (Purple).

7

Knowing that the data written is actually seen during the last half of the write signal, we can see

that during the first write in the screen capture, an odd-valued data (high D0) was written to

memory, during the second write, an even-valued data (low D0) was written to memory, and

then this pattern repeated. This is consistent with the fact that with each iteration of the loop, the

value written to memory altered between being even and odd. However, the D0 signal seen in

Figure 9 did not alter between being low and high while the processor was reading (high R/W’),

which was inconsistent with our cycle-by-cycle table in Part 1, which suggested that the data on

the data bus altered between being an even value and being an odd value more frequently than

what is shown in the screen capture.

