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Verilog Tutorial  
 
1.0 Syntax – comments, punctuation, variable names, signal values, constants, 

parameters, and memory. 
 
• Comments – Verilog comments are the same as in C++.  Use // for a single line 

comment or /* … */ for a multiline comment. 
• Punctuation – white spaces are ignored in Verilog.  A semicolon is used to indicate the 

end of a command line and commas are typically used to separate elements in a list.  
Like C++, Verilog is case sensitive. 

• Identifiers – An identifier is usually a variable.  You can use any letter, digit, the 
underscore, or $.  Identifiers may not begin with a digit and may not be the same as a 
Verilog key word.  As in C++ variable names should be chosen to assist in 
documentation. 

• Signal values – signals in Verilog have one of four values.  These are 0 (logic 0), 1 
(logic 1), X, or x ( don’t care or unknown), and Z or z for high impedance tri-state. 

• Constants – The generic declaration for a constant in Verilog is  
[size]['radix] constant_value 

In this declaration size indicates the number of bits and 'radix gives the number 
base (d = decimal, b = binary, o = octal, h = hex).  The default radix is decimal.  
Examples 

16          //The number 16 base 10 
4'b1010     //The binary number 1010 
8'bx        //An 8-bit binary number of unknown value 
12'habc     //The hex number abc = 1010 1011 1100 in binary 
8'b10       //The binary number 0000 0010 

• Parameters – a parameter in Verilog can be any Verilog constant.  Parameters are used 
to generalize a design.  For example a 4-bit adder becomes more useful as a design if 
it is put together as an n-bit adder where n is a parameter specified by the user before 
compilation.  Parameter declarations are done immediately after the module 
declaration.  Here are some typical parameter examples: 

parameter n = 12; 
parameter [3:0]p1 = 4'b1011; 
parameter n = 12, m = 32; 

• Memory – Verilog allows for two dimensional arrays which typically get used for 
memory spaces.  For example reg[7:0] m[63:0]; declares m to be a two-
dimensional array consisting of 64 eight-bit words.  You can access any word as m[2] 
for example, but you do not get access to the bits in the word unless you copy the 
word to another 8-bit reg variable.1   

 
2.0 Structure – Modules, ports, and signals. 
 
• Module – A module in Verilog is used to define a circuit or a sub-circuit.  The module 

is the fundamental circuit building block in Verilog.  Modules have the following 

                                                 
1 Verilog 2001 supports 2-level addressing such as m[2][3] so you can get at individual bits.  Verilog 2001 
also adds more than two dimensions for arrays. 
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structure: (keywords in bold).  Note that the module declaration ends with a 
semicolon but the keyword endmodule does not. 

module module_name (port_name list); 
[declarations] 
[assign statements] 
[initial block] 
[always block] 
[gate instantiations] 
[other module instantiations] 

endmodule  
• Ports – Ports in Verilog can be of type input, output¸ or inout.  The module ports are 

given in the port name list and are declared in the beginning of the module.  Here is a 
sample module with input and output ports. 

module MyModule(aIn, bOut); 
  input aIn; 
  output bOut; 
  … 
endmodule 

The port names input and output default to type wire.  Either can be a vector and the 
output variables can be of redeclared to type reg.  The output and input variables in a 
module are typically names for the output and input pins on the implementation chip. 

• Signals – a signal is represented by either a net type or a variable type in Verilog.  The 
net type represents a circuit node and these can be of several types.  The two net types 
most often used are wire and tri.  Type nets do not have to be declared in Verilog 
since Verilog assumes that all signals are nets unless they are declared otherwise.  
Variables are either of type reg or integer.  Integers are always 32-bits where the reg 
type of variables may be of any length.  Typically we use integers as loop counters 
and reg variables for all other variables.  The generic form for representing a signal in 
Verilog is:  

type[range] signal_name 
The range is omitted for scalar variables but used for vectors.   
The net types are typically used for input signals and for intermediate signals within 
combinational logic.  Variables are used for sequential circuits or for outputs which 
are assigned a value within a sequential always block. 
Examples: 

wire w;          //w is a single net of type wire 
wire[2:0] wVect; //Declares wVect[2], wVect[1], wVect[0] 
tri[7:0] bus     //An 8-bit tri state bus  
integer i;       //i is a 32-bit integer used for loop control 
reg r;           //r is a 1-bit register 
reg[7:0] buf;    //buf is an 8-bit register 
reg[3:0] r1, r2  //r1 and r2 are both 4-bit registers 

 
3.0 Combinational Circuits – Gates, continuous assignment, and operators. 
 
• Gate – The general form for declaring the instance of a gate in Verilog is  

gate_type [gate_name](out_port, in_port …); 
The gate_type specifies the type of gate you want to use such as and, or, xor, etc.  
The gate name is optional and is user assigned.  The port list in parenthesis, typically 
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consists of an output port (always first) followed by a comma separated list of input 
ports.  Here are some gate instantiation examples: 
 

module AndOr(f, u, v, s); 
  input s, u, v; 
  output f; 
  wire w1, w2; 
  wire ns; 
  and A1(w1, u, s); 
  not N1(ns, s); 
  and A2(w2, v, ns); 
  or O1(f, w1, w2); 
endmodule 

 

 

Figure 1 
Verilog code for a 2 to 1 multiplexer 

 
module Mux4To1(f, s0, s1, aIn); 
  output f; 
  input s0, s1; 
  input [3:0]aIn; 
  wire ns0, ns1; 
  wire a0, a1, a2, a3; 
  // 
  not nots0(ns0, s0); 
  not nots1(ns1, s1); 
  // 
  and and0(a0, ns0, ns1, aIn[0]); 
  and and1(a1, s0, ns1, aIn[1]); 
  and and2(a2, ns0, s1, aIn[2]); 
  and and3(a3, s0, s1, aIn[3]); 
  // 
  or or1(f, a0, a1, a2, a3); 
endmodule 

 
 

 

Figure 2 
Verilog code for a 4 to 1 multiplexer 

 
Note that gates declared in this fashion are said to be concurrent.  In other words, 
sequential ordering of gates is not considered; all gates are done in parallel.  Table 3, 
in the Appendix,  gives a list of gates supported by Verilog. 

• Continuous Assignment Statement – In Verilog the assign statement is used to assign a 
value to a net type (wire or tri) outside of an always block.  The assign statement is 
implied when you assign a value to a wire during its declaration.  Thus wire w1 = a 
^ b; is the same as wire w1; assign w1 = a ^ b;  Note that continuous 
assignment statements are concurrent.  In other words, if we write two assignment 
statements such as: 

assign w1 = a ^ b; 
assign w2 = c | d; 

Verilog takes the two assignment statements as happening at the same time in parallel 
and not sequentially as shown.  This is very different from most programming 
languages.  The three modules in Figure 3 have the same result.  The order of 
assignment statements is of no importance since all assignment statements are done in 
parallel. 
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module abs(f,a,b,c); 
  input a, b, c; 
  output f; 
  wire w1; 
  and A1(w1, a, b); 
  or(f, w1, c); 
endmodule 

module abc(f,a,b,c); 
  input a, b, c; 
  output f; 
  wire w1 = a & b; 
  assign f = w1 | c; 
endmodule 

module abc(f,a,b,c); 
  input a, b, c; 
  output f; 
  assign f = a&b | c; 
endmodule 

Figure 3 
Three examples of a circuit which implements the logic function cbaf +⋅= .   

 
module mux4to1Asn(f, s1, s0, aIn); 
  output f; 
  input s1, s0; 
  input [3:0]aIn; 
  assign f = ~s1&~s0&~aIn[0] | ~s1&s0&aIn[1] |    
                     s1&~s0&aIn[2] | s1&s0&aIn[3]; 
endmodule 

Figure 4 
The Verilog code for the 4 to 1 multiplexer of Figure 2 using the assignment operator. 

 
• Operators – Operators in Verilog are similar to those in C++.  Table 1 gives the most 

often used operators in summary form and Table 2 gives their precedence order 
(Tables are in the appendix).  The list below shows some examples and notes 
differences from what would be expected in C++. 
Bitwise operators – The bitwise operators work as in C++.  The don't care (x) and 

high impedance (z) states can also be used with these operators.  The result is 
always another variable. 

Logical operators – These operators work the same as C++ and return either true(1) 
or false (0).  If an operand has an x or z bit the result is x or z.  Note that the 
logical not operator inverts true or false and that x inverts to x.  This is different 
from the bitwise not operator (~) which returns an inverted bit. 

Reduction operators – These operators are not in C++.  They operate in a unary 
fashion on all of the bits in a single variable.  For example y = &x would make y 
become the logical AND of all of the bits in x.  xor and xnor can be used to 
quickly determine parity. 

Arithmetic operators – These operators work the same as in C++ except if any bit in 
an operand is x (a don't care) the result is x. 

Relational operators – The relational operators return true (1) or false (0).  If any bit is 
an x (a don't care) these operators return x.  If any bit is a z, these operators fail.  

Equality operators – The == and the != operators are the same as in C++ with the 
exception that if any operand has an x bit then the result is x.  The === and !== 
operators compare x to x and z to z and return true (1) or false (0).  (=== and !== 
are for simulation only.) 

Miscellaneous operators – The shift operators work the same as in C++.  The 
concatenation operator allows you to stick words or bits together to form new 
words.  For example  

c = {a[0], b[7:1]}; 
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forms a new 8-bit word consisting of the 0th bit of a and the most significant 7 bits 
of b.  The repetition operator allows you to concatenate multiple words.  For 
example 

c = {3{a}}; 
makes c the same as {a, a, a}    

 
4.0 Control Structures – Control constructs, always, if, case, for, and while 
 
• Control Constructs – Verilog's control constructs can be thought of as existing in two 

categories called concurrent constructs and sequential constructs.  Concurrent 
constructs happen in parallel and sequential constructs happen like they are written as 
in a computer program.  The two concurrent constructs we will discuss here are gate 
instantiation and the continuous assignment statement.  The sequential constructs 
commonly used in Verilog include the always and initial blocks, the if and case 
structures, and the for and while loops. 
Always and Initial blocks – The always and initial blocks are similar in structure.  

The Initial block provides initial values for simulation purposes and does not play 
a role in circuit synthesis.  The initial block, then is used in conjunction with a 
Verilog simulator to establish initial values.  For example, initial values may be 
needed for testing purposes in a simulated environment.  For circuit synthesis we 
use the Always block and such a block must contain all sequential constructs.  
Thus the if, case, for loop, and while loop must appear inside an always block.  
The general syntax for an Always block looks like this: 

Always @(sensitivity_list) 
[begin] 
  [sequential statements consisting of assignment, if, case, 
      while, and for loops.  May also include task and  
      function calls. 
  ] 
[end] 

The sensitivity list is a list of the variables which, if changed, would produce a 
different output in the always block.  The @ sign is referred to as event control 
operator.  The sensitivity list is used by Verilog simulators to determine when the 
always block should be executed and updated.   The sensitivity list consists of 
variables separated by the word or as in always @(a or b or c).  Verilog 2001 
allows for a comma separated list as in always @(a, b, c) 
 
Note that the statements in an always block between begin/end are executed 
sequentially just as they are written.  For modules that have multiple always 
blocks however, all of the always blocks are executed in parallel. 
Variables assigned a value inside and always block must be of type reg or 
integer.  You may not assign type wire or tri (nets) a value inside an always 
block.  (This would be very confusing since continuous assignments to wires are 
concurrent operations and the code inside an always block is sequential.)   

   
If block – The if structure works the same as it does in C++ with the exception that 

Verilog uses the words begin and end to designate code blocks instead of braces { 
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and } (braces are used for the concatenation operator.)  A typical if structure 
might look like this: 

if(t == y) 
  begin 
    z = 12; 
  end 
else 
  begin 
    z = 22; 
  end 

As in C++, the begin and end key words are not needed if the block has only one 
line.   Thus the above example could be written as: 

if(t == y) 
  z = 12; 
else 
  z = 22; 

The if construct can be used inside an always block to implement combinational 
or sequential logic.  Figure 5 shows a 2 to 4 decoder implemented a sequence of if 
statements inside an always block. 

 
Figure 5 

A 2 to 4 decoder circuit.  
 

module Decode2To4(aIn, yOut, enable); 
  input [1:0]aIn; 
  input enable; 
  output [3:0]yOut; 
  reg [3:0] yOut; 
  always@(aIn or enable) 
    begin 
      if(enable == 1) 
        begin     
          if(~aIn[1] && ~aIn[0]) yOut = 4'b0111; 
          if(~aIn[1] && aIn[0]) yOut = 4'b1011; 
          if(aIn[1] && ~aIn[0]) yOut = 4'b1101; 
          if(aIn[1] && aIn[0]) yOut = 4'b1110;   
        end 
      else 
        yOut = 4'b1111;   
    end 
endmodule 

Figure 6 
A 2 to 4 decoder in Verilog.  An always block and if statements are used for this implementation. 
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Case structure – the case structure has a slightly different syntax than its counterpart 
in C++ in that no break statement is necessary and the word switch is not used.   A 
typical case structure might look like this: 

case (t) 
  0: y = w[0]; 
  1: y = w[1]; 
  … 
  7: y = w[n]; 
  default: y = x; 
endcase 

In this example each alternative in the case statement takes up only one line.  
Multiline blocks can be used with begin and end statements. 
There are two other "flavors" of the case statement in Verilog.  These are called 
casex and casez.  The original case statement checks the alternatives for an exact 
match of 0, 1, x, or z.  The casex statement treats both x and z as true don't cares.  
The casez statement treats x as a don't care but demands that the z digit have an 
exact match.   
 

module SevSegCase(aIn, sOut); 
  input [3:0]aIn; 
  output [6:0]sOut; 
  reg [6:0]sOut; 
  always @(aIn) 
    begin 
      case (aIn) 
        //                abcdefg 
        4'b0000:sOut = 7'b0000001; //0 
        4'b0001:sOut = 7'b1001111; //1 
        4'b0010:sOut = 7'b0010010; //2 
        4'b0011:sOut = 7'b0000110; //3 
        4'b0100:sOut = 7'b1001100; //4 
        4'b0101:sOut = 7'b0100100; //5 
        4'b0110:sOut = 7'b0100000; //6 
        4'b0111:sOut = 7'b0001111; //7 
        4'b1000:sOut = 7'b0000000; //8 
        4'b1001:sOut = 7'b0001100; //9 
        4'b1010:sOut = 7'b0001000; //A 
        4'b1011:sOut = 7'b1000010; //B 
        4'b1100:sOut = 7'b0000111; //C 
        4'b1101:sOut = 7'b0000001; //D 
        4'b1110:sOut = 7'b0110000; //E 
        4'b1111:sOut = 7'b0000110; //F 
      endcase 
  end 
endmodule 

Figure 7 
The Verilog code for a 7-segment decoder with active low outputs.  This implementation uses a case 

structure. 
 

For loop – The for loop in Verilog has the same structure that it does in C++.  The 
braces in the C++ structure are replaced by a begin/end block and the ++ operator 
is not used for the loop counter variable.  A typical for loop might look like this: 
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for(i=0;i<10;i=i+1) 
  begin 
    s[i] = p[i] ^ q[i]; 
  end 

Note that integers are typically used for counter variables. 
 

module Decode3To8For(yOut, aIn, enable); 
  output [7:0]yOut; 
  input [2:0]aIn; 
  input enable; 
  reg [7:0] yOut; 
  integer k; 
  always@(aIn or enable) 
    begin 
      if(enable == 1) 
        begin 
          for(k=0;k<8;k=k+1) 
            begin 
              if(aIn == k) 
                yOut[k] = 0; 
              else 
                yOut[k] = 1; 
            end 
         end 
    end 
 endmodule 

Figure 8 
A Verilog implementation of a 3 to 8 decoder with active low outputs.  This 

implementation uses a for loop. 
 

While loop – The while loop in Verilog is much the same as it is in C++.  As in the 
case of the for loop, the braces in the C++ structure are replaced by a begin/end 
block.  The general form for the Verilog while loop is as follows: 

initialize condition 
while(condition) 
  begin 
    … 
    update condition 
  end 

 
5.0 Sequential Circuits – non blocking assignment, sequential circuit elements, and 

registers 
• Non blocking assignment statement – The equals sign is used for the blocking 

assignment statement as in 
a = b; 
c = a; 

where we assume that a, b, and c are inside and always block and are of type reg.  
The result of these two statements is that both variables a and c take on the value of b.  
Verilog has another type of assignment statement called the non blocking assignment 
statement which uses the <= operator instead of the = operator.  If a, b, and c are of 
type reg and they are inside an always block then the statements 

a <= b; 
c <= a; 
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make a take on the value of b in the first statement but c takes on the value that a had 
at the beginning of the block as if the first statement never occurred.  In other words, 
the non blocking assignment statement evaluates variables by using the value those 
variables had at the beginning of the block.  The non blocking assignment operator 
allows the two statements to execute concurrently instead of sequentially.  In general, 
in Verilog you should use the non blocking assignment statement for combinational 
logic and the blocking assignment statement for sequential logic.  Likewise, for 
sanity, you should never mix blocking and non blocking assignment statements in the 
same always block.   

 
• Sequential circuit elements – The flip-flop is the basic building block of any sequential 

circuit.  Verilog supports many types of flip-flops in library functions and provides a 
means for a user to define flip-flops for a variety of needs.  Consider the classic D 
flip-flop in which the Q output follows the D input as long as the clock is high.  When 
the clock goes low, the D input value is locked in.  (The classic D flip-flop is often 
referred to as a D latch.)  The figure below shows how we can implement the classic 
D flip-flop in Verilog code. 

module classicD(D, clk, Q, Qn); 
  input D, clk; 
  output Q, Qn; 
  reg Q, Qn; 
  always@(D or clk) 
    if(clk) 
      begin 
        Q <= D; 
        Qn <= ~D; 
      end   
endmodule    
 

 
 

 

Figure 9 
Implementation of a classic D flip-flop in Verilog. 

 
The if statement in this figure incompletely specifies the behavior of the Q output 
since there is no else clause with the if.  This implies memory and Verilog 
implements this construct with a flip-flop.   
 
The classic D flip-flop is controlled by the level of the clock.  That is, when the clock 
is high the Q output follows the D input.  Many other types of flip-flops work on the 
clock edge which may be either positive going or negative going edges.  In Verilog 
such behavior is modeled using the event controls called posedge and negedge in the 
always block sensitivity list.  The figure below shows a positive edge triggered D 
flip-flop with an asynchronous reset and preset.  The always declaration in this figure 
includes the negedge specifier on both resetn and presetn even though these two 
signals are supposed to be asynchronous.  This is because an always block sensitivity 
list may not contain both edge triggered and level sensitive signals.       
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module DFFAsyncClr(D, clk, resetn, Q, presetn); 
  input D, clk, resetn, presetn; 
  output Q; 
  reg Q; 
  always@(posedge clk or negedge resetn or negedge presetn) 
    if(!resetn) 
      Q <= 0; 
    else if(!presetn) 
      Q <= 1; 
    else 
      Q <= D; 
endmodule 

Figure 10 
An positive edge triggered D flip-flop with asynchronous reset and preset. 

 
To make a D flip-flop with a synchronous reset and preset we can simply omit the 
negedge event controller from the resetn and presetn signals in the sensitivity list.  
This causes the system to only look at changing the flip-flop when the clock edge 
occurs. 
 
A JK master/slave flip flop (JKMSFF) is actually two flip flops in one package.  The 
first is a master flip flop which locks in the data on the rising edge of the clock signal.  
The second is the slave flip flop which gets data from the master flip flop on the 
falling edge of the clock.  Implementation in Verilog requires two always blocks 
since one block may not contain both the posedge and the negedge event control for 
the same variable (clk in this case).  The figure below shows one implementation for 
a JKMSFF.   

 
module jkff(J, K, clk, Q); 
  input J, K, clk; 
  output Q; 
  reg Q; 
  reg Qm; 
  always @(posedge clk) 
    if(J == 1 && K == 0) 
      Qm <= 1; 
    else if(J == 0 && K == 1) 
      Qm <= 0; 
    else if(J == 1 && K == 1) 
      Qm <= ~Qm; 
  // 
  always @(negedge clk) 
    Q <= Qm;   
endmodule 

 
 

 

Figure 11 
Verilog code for a JK flip-flop.  This implementation makes us of two always blocks. 

 
• Registers – a register is by definition a collection of flip-flops or latches that share a 

common clock and often, a common reset or preset line and a common tri-state output 
control.  The figure below shows an 8-bit register with a tri-state control and its 
Verilog implementation.   
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//RegnBit 
//n-bit parallel in/parallel out  
//  register with tri-state out. 
module RegnBit(dIn, dOut, clk, enable); 
  parameter n = 8; 
  input [n-1:0]dIn; 
  input clk, enable; 
  output [n-1:0] dOut; 
  reg [n-1:0] dOut; 
  reg [n-1:0] state; 
  always @(enable) 
    begin 
      if(enable) 
        dOut = state; //data to out 
      else 
        dOut = n'bz;   //tri-state out 
    end 
  always @(posedge clk) 
    state <= dIn;   
endmodule     

 
 

 

Figure 12 
A parallel in/parallel out 8-bit register with a tri-state output control. 

 
Shift registers can be implemented efficiently in Verilog using the concatenation 
operator.  If the variable state represents an n-bit shift register then the two 
statements: 

                   sOut <= state[n-1];  
                   state <= {state[n-2:0], sIn}; 

move the n-1st bit to the output and create a new state by concatenating the n-1 bits of 
the old state with the new input from sIn.  The figure below shows a complete 
Verilog implementation. 

//Shiftn 
//n-bit shift register serial in serial out 
module Shiftn(clk, sIn, sOut); 
  parameter n = 60;           //number of stages 
  input sIn, clk; 
  output sOut; 
  reg sOut; 
  reg [n-1:0]state; 
  always @(posedge clk)    //sIn -> [0|1|...|n-1] -> sOut 
    begin 
      sOut <= state[n-1];  
      state <= {state[n-2:0], sIn}; 
    end 
endmodule 

Figure 13 
Verilog implementation of an n-bit shift register.  In this case n is set to 60.   

 
Registers can also be put together with some glue logic to form counters.  In this case, 
Verilog figures out what logic is needed so that designing a counter is a matter of 
setting up a register variable that counts on the clock edge.  The figure below shows 
an n-bit counter with a mod count parameter.  The modCnt variable is set to 11 so that 
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the counter shown counts from 0 to 10 and rolls over.  This particular counter does 
not have parallel load but it does have a clr input to initialize it to zero. 

//Cnt4bit 
//n-bit counter with clear 
module Cnt4Bit(clk, state, clr); 
  parameter n = 4; 
  parameter modCnt = 11; 
  input clk, clr; 
  output [n-1:0]state; 
  reg [n-1:0]state; 
  always@(posedge clk) 
    if(clr) 
      state <= 0; 
    else 
      state <= (state + 1) % modCnt; 
endmodule 

Figure 14 
A 4-bit counter with a modulus.  The modCnt variable is set to 11 so that this counter 

counts 0 to 10 before rolling over. 
 

A sequence counter is one which can count in any sequence.  The case structure make 
implementation of such a counter easy in Verilog.  The figure below shows a counter 
which runs through counts 0, 1, 2, 4, 9, 10, 5, 6, 8, 7, 0, … 

 
//CntSeq.v 
//Sequence counter 
module CntSeq(clk, reset, state); 
  parameter n = 4; 
  input clk, reset; 
  output [n-1:0]state; 
  reg [n-1:0]state; 
  // 
  always @(posedge clk) 
    if(reset) 
      state = 0; 
    else 
      begin 
        case (state) 
          4'b0000:state = 4'b0001;   //0 -> 1 
          4'b0001:state = 4'b0010;   //1 -> 2  
          4'b0010:state = 4'b0100;   //2 -> 4 
          4'b0100:state = 4'b1001;   //4 -> 9 
          4'b1001:state = 4'b1010;   //9 -> 10 
          4'b1010:state = 4'b0101;   //10-> 5 
          4'b0101:state = 4'b0110;   //5 -> 6 
          4'b0110:state = 4'b1000;   //6 -> 8 
          4'b1000:state = 4'b0111;   //8 -> 7 
          default:state = 4'b0000; 
        endcase 
     end   
endmodule 
 

Figure 14 
A case statement is used to implement a sequence counter. 
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6.0 Modular Programming – Modularization, parameterized modules, functions, 
and tasks. 

 
• Modularization – Verilog can be modularized in several ways including functions, 

multiple parameterized modules, and tasks.  
Multiple parameterized modules – Parameters may be added to modules in 

Verilog to make them more general.  To add a parameter to a module we use 
the keyword parameter as in the Shiftn example used above which had the 
following lines: 

        //Shiftn 
        //n-bit shift register serial in serial out 
        module Shiftn(clk, sIn, sOut); 
          parameter n = 60;           //number of stages 
               … 

A parameterized module can then be added to a project and instantiated 
multiple times with different parameters.  Figure 15 shows how this can be 
done. 

//ShiftMultiple 
//This file uses multiple modules for dual shift registers 
//   of differing lengths 
module ShiftMultiple(sIn, sOut, clk); 
  input [2:0] sIn; 
  input clk; 
  output [2:0]sOut; 
  Shiftn Shift4 (clk, sIn[0], sOut[0]); //defaults to n = 4 
  Shiftn Shift6(clk, sIn[1], sOut[1]); 
    defparam Shift6.n = 6;              //resets n to 6 
  Shiftn Shift12(clk, sIn[2], sOut[2]); 
    defparam Shift12.n = 12;            //resets n to 12 
endmodule 
// 
//Shiftn 
//n-bit shift register serial in serial out 
module Shiftn(clk, sIn, sOut); 
  parameter n = 4;           //number of stages 
  input sIn, clk; 
  output sOut; 
  reg sOut; 
  reg [n-1:0]state; 
  always @(posedge clk)      //  sIn -> [0|1|...|n-1] -> sOut 
    begin 
      sOut <= state[n-1];  
      state <= {state[n-2:0], sIn}; 
    end 
endmodule 

Figure 15 
The second module in this program creates an n-bit shift register where n is a parameter.  The first 

module uses the second module to create three shift registers of differing lengths.   
 

Functions – Functions in Verilog have some rather severe limitations but are useful 
for small pieces of code that must be repeated.  Function declarations are similar 
to that of module declarations.  In general a function declaration looks like this: 

function name; 
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input arguments; 
reg variables; 
parameter parameters; 
integer integers; 
   Function body  
endfunction 

The function name is like any other variable name and may be a vector.  A 
function can only return the value assigned to its name but this is just an 
inconvenience and not a serious limitation since values can be concatenated 
together and packed into a single name.  A more serious limitation of functions is 
that functions must contain only combinatorial logic so that latches and flip-flops 
may not be coded into functions.  Functions may call other functions but they may 
not call other tasks.    Figure 16 shows a Verilog file with an example of a 
function. 

module fundecode(aIn, yOut, enable); 
  input [1:0] aIn; 
  input enable; 
  output [3:0]yOut; 
  reg [3:0] yOut; 
  // 
  function [3:0]FindOutput; 
    input [1:0]xIn; 
    if(~xIn[1] && ~xIn[0]) FindOutput = 4'b0111; 
    if(~xIn[1] && xIn[0]) FindOutput = 4'b1011; 
    if(xIn[1] && ~xIn[0]) FindOutput = 4'b1101; 
    if(xIn[1] && xIn[0]) FindOutput = 4'b1110;   
  endfunction 
  // 
  always@(aIn or enable) 
    begin 
      if(enable == 1) 
        begin     
          yOut = FindOutput(aIn); 
        end 
      else 
        yOut = 4'b1111;   
    end 
endmodule 

Figure 16 
This is the 2:4 decoder of Figures 5 and 6 implemented using a function. 

 
All functions must have at least one input but functions may not have any output 
or inout variables.  Functions may call other functions but functions may not call 
other tasks. 

Tasks – The task was created for Verilog to alleviate some of the limitations of 
functions.  Tasks may have multiple inputs but unlike functions may be written 
with zero inputs.  Tasks may also have multiple outputs and they may contain 
events so that they are not limited to combinatorial logic.  Tasks may call 
functions or other tasks in some implementations tasks may be recursive and call 
themselves.  Figure 17 shows a simple implementation of a task. 

module taskdecode(aIn, yOut, enable); 
  input [1:0] aIn; 
  input enable; 
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  output [3:0]yOut; 
  reg [3:0] yOut; 
  // 
  task FindOutput; 
    input [1:0]xIn; 
    output [3:0] tOut 
    if(~xIn[1] && ~xIn[0]) tOut = 4'b0111; 
    if(~xIn[1] && xIn[0]) tOut = 4'b1011; 
    if(xIn[1] && ~xIn[0]) tOut = 4'b1101; 
    if(xIn[1] && xIn[0]) tOut = 4'b1110;   
  endtask 
  // 
  always@(aIn or enable) 
    begin 
      if(enable == 1) 
        begin     
          FindOutput(aIn, yOut); 
        end 
      else 
        yOut = 4'b1111;   
    end 
endmodule 

Figure 17 
This is the same 2:4 decoder as shown in Figure 16 except that the function has been 

replaced by a task.   
 
7.0 Examples 
 
Example 1 – A four-bit adder/subtractor.   
 

 
Figure E-1.1 

A four-bit adder/subtractor.  If Sign = 0 then S = A + B.  If Sign = 1 then S = A – B. 
 

//AddSub.v 
//4-bit adder/subtractor 
module addsub(aIn, bIn, sum, cOut, sign); 
   input sign; 
   input [3:0]aIn, bIn; 
   output [3:0]sum; 
   output cOut; 
   reg [3:0]sum; 
   reg [3:0]bExOr; 



EE 254                                                                                                                        University of Evansville 

 17 

   reg cOut; 
   // 
   always @(aIn or bIn or sign) 
   begin 
      bExOr = bIn ^ {4{sign}}; 
      {cOut, sum} = aIn + bExOr + sign; 
   end 
   // 
endmodule       

Figure E-1.2 
A four-bit adder/subtractor implemented in Verilog 

 
 

Example 2 – Manchester data encoder 
 
//Manchester.v 
//Does Manchester encoding 
module manchester(clk, dIn, dOut); 
  input clk; 
  input dIn; 
  output dOut; 
  reg Qa, Qb; 
  wire dA, dB, dOut; 
  assign dA = dIn & (~Qa); 
  assign dB = (~dIn) & (~Qb); 
  assign dOut = (~Qa)& (dIn | Qb); 
  always@(posedge clk) 
    begin 
      Qa <= dA; 
      Qb <= dB; 
    end 
endmodule     

 

Figure E2-1 
A Mealy machine for Manchester encoding.  

 
 
Example 3 – An n-bit ALU with 16 functions. 

module ALUnbit(aIn, bIn, sIn, cIn, bOut, cOut); 
  parameter n = 4; 
  input [n-1:0] aIn; 
  input [n-1:0] bIn; 
  input [n-1:0] sIn; 
  input cIn; 
  output [n-1:0] bOut; 
  output cOut; 
  reg cOut; 
  reg [n-1:0] bOut; 
  reg [n:0]tmp; 
  always @(aIn or bIn or cIn or sIn) 
    begin 
      cOut = 1'b0; 
      case(sIn) 
        0:bOut = ~aIn;            //not a 
        1:bOut = ~(aIn | bIn);    //nor 
        2:bOut = ~aIn & bIn;      //not a and b 
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        3:bOut = 0;               //zero 
        4:bOut = ~(aIn & bIn);    //nand 
        5:bOut = ~bIn;            //not b 
        6:bOut = aIn ^ bIn;       //ex or 
        7:bOut = aIn & ~bIn;      //a and not b 
        8:bOut = ~aIn | bIn;      //not a or b 
        9:begin                   //aIn plus bIn 
            tmp = {1'b0,aIn} + {1'b0,bIn};  
            bOut = tmp[n-1:0]; 
            cOut = tmp[n]; 
          end 
       10:begin                   //aIn plus bIn + cIn 
            tmp = {1'b0,aIn} + {1'b0,bIn} + {8'b0,cIn}; 
            bOut = tmp[n-1:0]; 
            cOut = tmp[n]; 
          end 
       11:begin                  //aIn minus bIn 
            tmp = {1'b0,aIn} - {1'b0,bIn}; 
            bOut = tmp[n-1:0]; 
            cOut = tmp[n]; 
          end 
       12:begin                //aIn minus bIn minus cIn 
            tmp = {1'b0,aIn} - {1'b0,bIn} - {7'b0, cIn}; 
            bOut = tmp[n-1:0]; 
            cOut = tmp[n]; 
          end 
       13:bOut = ~(aIn ^ bIn);   //exclusive NOR 
       14:bOut = -aIn;           //twos complement 
       15:bOut = 4'b1;           //all ones 
      endcase 
    end 
endmodule 

Figure E3-1 
An n-bit ALU with 16 logical and arithmetic functions. 

 
 

 
Example 4: A Leading ones detector 
This circuit detects the first one in a sequence.  It has two inputs , x and y.  When y is  1 it 
resets. 
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module SeqLeadingOnes(xIn, yIn, z, clk); 
   input clk, xIn, yIn; 
   output z; 
   reg [1:0] out; 
   reg state; 
   reg z; 
   always @(posedge clk) 
     begin 
       if(yIn) 
         begin 
           state = 0; 
           z = 0; 
         end 
       else 
         case (state) 
           0: 
             if(xIn)  
               begin 
                 state = 1; 
                 z = 1; 
               end 
             else 
               begin 
                 state = 0; 
                 z = 0; 
               end   
           1: 
             begin 
               state = 1; 
               z = 0; 
             end   
          endcase 
     end 
endmodule
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Appendix A 
 

 Symbol Comment 

B
itw

is
e 

~ ones complement unary operator 
& and 
| or 
^ exclusive or 

~& nand 
~| nor 
~^ exclusive nor 

 L
og

ic
al

 ! not unary operator also called logical negation 
&& logical and  

|| logical or  

R
ed

uc
tio

n 

& and  unary operator 
~& nand  unary operator 

| or  unary operator 
~| Nor  unary operator 
^ exclusive or unary operator 

~^ exclusive nor  unary operator 

A
ri

th
m

et
ic

 

+ add 
- subtract 
- two's complement – unary operator 
* multiply 
/ divide 

% mod operator 

R
el

at
io

na
l > greater than 

< less than 
>= greater than or equals 
<= less than or equals 

E
qu

al
ity

 === case equals, compares x and z, simulation only 
!== case not equals, compares x and z, simulation only 
== equals, produces x if bits are x or z 
!= not equals, produces x if bits are x or z 

M
isc

 

>> shift right 
<< shift left 
? : (cond)?(statements if true):(statements if false) 
{,} concatenation 

{m{}} repetition where m is repetition number 
Table 1 

This table lists the most often used operators in Verilog.  See the discussion for examples. 
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 Operator Comment 
1 !  &  ~&  |  ~|  ^  ~^  +  -  unary                   highest precedence 
2 *  /  % arithmetic 
3 +  - 
4 <<   >> shifts 
5 <  <=  >  >= relational 
6 ==  !=  ===  ~== equality 
7 &  ~&  ^  ~^ bitwise and reduction 
8 |  ~| 
9 && logical 
10 || logical                   lowest precedence 

Table 2 
The precedence of operators in Verilog.  Operators on one line in this table are of 

equal precedence with the one on the left in an expression taking precedence.  
Parenthesis override all precedence operators and can be used to effectively reorder 

the precedence. 
 

Gate Function Comment 
and(f, a, b, …) ⋅⋅= baf  and function 
or(f, a, b, …) ++= baf  or function 
not(f, a) af =  inverter function 
xor(f, a, b, …) ⊕⊕= baf  exclusive or function 
nand(f, a, b, …) ⋅⋅= baf  nand function 
nor(f, a, b, …) ++= baf  nor function 
xnor(f, a, b, …) ⊕⊕= baf  exclusive nor function 
buf(f, a) af =  buffer 
notif0(f, a, cond)* 

bzelseacondif ')(!  if(cond not true) then a else high z 
notif1(f, a, cond)* 

bzelseacondif ')(  if(cond true) then a else high z 
bufif0(f, a, cond)* bzelseacondif ')(!  if(cond not true) then a else high z 
bufif1(f, a, cond)* bzelseacondif ')(  if(cond not true) then a else high z 

      *notif and bufif are inverting and noninverting tri-state gates with active low and active high enables. 
Table 3 

Gates available in Verilog and their logical definition. 
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