

EE 254

Verilog Tutorial

Dr. D. K. Blandford
Department of Electrical Engineering and Computer Science

University of Evansville
February 23, 2012

Copyright © 2012

EE 254 University of Evansville

 2

Verilog Tutorial

1.0 Syntax – comments, punctuation, variable names, signal values, constants,

parameters, and memory.

• Comments – Verilog comments are the same as in C++. Use // for a single line

comment or /* … */ for a multiline comment.
• Punctuation – white spaces are ignored in Verilog. A semicolon is used to indicate the

end of a command line and commas are typically used to separate elements in a list.
Like C++, Verilog is case sensitive.

• Identifiers – An identifier is usually a variable. You can use any letter, digit, the
underscore, or $. Identifiers may not begin with a digit and may not be the same as a
Verilog key word. As in C++ variable names should be chosen to assist in
documentation.

• Signal values – signals in Verilog have one of four values. These are 0 (logic 0), 1
(logic 1), X, or x (don’t care or unknown), and Z or z for high impedance tri-state.

• Constants – The generic declaration for a constant in Verilog is
[size]['radix] constant_value

In this declaration size indicates the number of bits and 'radix gives the number
base (d = decimal, b = binary, o = octal, h = hex). The default radix is decimal.
Examples

16 //The number 16 base 10
4'b1010 //The binary number 1010
8'bx //An 8-bit binary number of unknown value
12'habc //The hex number abc = 1010 1011 1100 in binary
8'b10 //The binary number 0000 0010

• Parameters – a parameter in Verilog can be any Verilog constant. Parameters are used
to generalize a design. For example a 4-bit adder becomes more useful as a design if
it is put together as an n-bit adder where n is a parameter specified by the user before
compilation. Parameter declarations are done immediately after the module
declaration. Here are some typical parameter examples:

parameter n = 12;
parameter [3:0]p1 = 4'b1011;
parameter n = 12, m = 32;

• Memory – Verilog allows for two dimensional arrays which typically get used for
memory spaces. For example reg[7:0] m[63:0]; declares m to be a two-
dimensional array consisting of 64 eight-bit words. You can access any word as m[2]
for example, but you do not get access to the bits in the word unless you copy the
word to another 8-bit reg variable.1

2.0 Structure – Modules, ports, and signals.

• Module – A module in Verilog is used to define a circuit or a sub-circuit. The module

is the fundamental circuit building block in Verilog. Modules have the following

1 Verilog 2001 supports 2-level addressing such as m[2][3] so you can get at individual bits. Verilog 2001
also adds more than two dimensions for arrays.

EE 254 University of Evansville

 3

structure: (keywords in bold). Note that the module declaration ends with a
semicolon but the keyword endmodule does not.

module module_name (port_name list);
[declarations]
[assign statements]
[initial block]
[always block]
[gate instantiations]
[other module instantiations]

endmodule
• Ports – Ports in Verilog can be of type input, output¸ or inout. The module ports are

given in the port name list and are declared in the beginning of the module. Here is a
sample module with input and output ports.

module MyModule(aIn, bOut);
 input aIn;
 output bOut;
 …
endmodule

The port names input and output default to type wire. Either can be a vector and the
output variables can be of redeclared to type reg. The output and input variables in a
module are typically names for the output and input pins on the implementation chip.

• Signals – a signal is represented by either a net type or a variable type in Verilog. The
net type represents a circuit node and these can be of several types. The two net types
most often used are wire and tri. Type nets do not have to be declared in Verilog
since Verilog assumes that all signals are nets unless they are declared otherwise.
Variables are either of type reg or integer. Integers are always 32-bits where the reg
type of variables may be of any length. Typically we use integers as loop counters
and reg variables for all other variables. The generic form for representing a signal in
Verilog is:

type[range] signal_name
The range is omitted for scalar variables but used for vectors.
The net types are typically used for input signals and for intermediate signals within
combinational logic. Variables are used for sequential circuits or for outputs which
are assigned a value within a sequential always block.
Examples:

wire w; //w is a single net of type wire
wire[2:0] wVect; //Declares wVect[2], wVect[1], wVect[0]
tri[7:0] bus //An 8-bit tri state bus
integer i; //i is a 32-bit integer used for loop control
reg r; //r is a 1-bit register
reg[7:0] buf; //buf is an 8-bit register
reg[3:0] r1, r2 //r1 and r2 are both 4-bit registers

3.0 Combinational Circuits – Gates, continuous assignment, and operators.

• Gate – The general form for declaring the instance of a gate in Verilog is

gate_type [gate_name](out_port, in_port …);
The gate_type specifies the type of gate you want to use such as and, or, xor, etc.
The gate name is optional and is user assigned. The port list in parenthesis, typically

EE 254 University of Evansville

 4

consists of an output port (always first) followed by a comma separated list of input
ports. Here are some gate instantiation examples:

module AndOr(f, u, v, s);
 input s, u, v;
 output f;
 wire w1, w2;
 wire ns;
 and A1(w1, u, s);
 not N1(ns, s);
 and A2(w2, v, ns);
 or O1(f, w1, w2);
endmodule

Figure 1
Verilog code for a 2 to 1 multiplexer

module Mux4To1(f, s0, s1, aIn);
 output f;
 input s0, s1;
 input [3:0]aIn;
 wire ns0, ns1;
 wire a0, a1, a2, a3;
 //
 not nots0(ns0, s0);
 not nots1(ns1, s1);
 //
 and and0(a0, ns0, ns1, aIn[0]);
 and and1(a1, s0, ns1, aIn[1]);
 and and2(a2, ns0, s1, aIn[2]);
 and and3(a3, s0, s1, aIn[3]);
 //
 or or1(f, a0, a1, a2, a3);
endmodule

Figure 2
Verilog code for a 4 to 1 multiplexer

Note that gates declared in this fashion are said to be concurrent. In other words,
sequential ordering of gates is not considered; all gates are done in parallel. Table 3,
in the Appendix, gives a list of gates supported by Verilog.

• Continuous Assignment Statement – In Verilog the assign statement is used to assign a
value to a net type (wire or tri) outside of an always block. The assign statement is
implied when you assign a value to a wire during its declaration. Thus wire w1 = a
^ b; is the same as wire w1; assign w1 = a ^ b; Note that continuous
assignment statements are concurrent. In other words, if we write two assignment
statements such as:

assign w1 = a ^ b;
assign w2 = c | d;

Verilog takes the two assignment statements as happening at the same time in parallel
and not sequentially as shown. This is very different from most programming
languages. The three modules in Figure 3 have the same result. The order of
assignment statements is of no importance since all assignment statements are done in
parallel.

EE 254 University of Evansville

 5

module abs(f,a,b,c);
 input a, b, c;
 output f;
 wire w1;
 and A1(w1, a, b);
 or(f, w1, c);
endmodule

module abc(f,a,b,c);
 input a, b, c;
 output f;
 wire w1 = a & b;
 assign f = w1 | c;
endmodule

module abc(f,a,b,c);
 input a, b, c;
 output f;
 assign f = a&b | c;
endmodule

Figure 3
Three examples of a circuit which implements the logic function cbaf +⋅= .

module mux4to1Asn(f, s1, s0, aIn);
 output f;
 input s1, s0;
 input [3:0]aIn;
 assign f = ~s1&~s0&~aIn[0] | ~s1&s0&aIn[1] |
 s1&~s0&aIn[2] | s1&s0&aIn[3];
endmodule

Figure 4
The Verilog code for the 4 to 1 multiplexer of Figure 2 using the assignment operator.

• Operators – Operators in Verilog are similar to those in C++. Table 1 gives the most

often used operators in summary form and Table 2 gives their precedence order
(Tables are in the appendix). The list below shows some examples and notes
differences from what would be expected in C++.
Bitwise operators – The bitwise operators work as in C++. The don't care (x) and

high impedance (z) states can also be used with these operators. The result is
always another variable.

Logical operators – These operators work the same as C++ and return either true(1)
or false (0). If an operand has an x or z bit the result is x or z. Note that the
logical not operator inverts true or false and that x inverts to x. This is different
from the bitwise not operator (~) which returns an inverted bit.

Reduction operators – These operators are not in C++. They operate in a unary
fashion on all of the bits in a single variable. For example y = &x would make y
become the logical AND of all of the bits in x. xor and xnor can be used to
quickly determine parity.

Arithmetic operators – These operators work the same as in C++ except if any bit in
an operand is x (a don't care) the result is x.

Relational operators – The relational operators return true (1) or false (0). If any bit is
an x (a don't care) these operators return x. If any bit is a z, these operators fail.

Equality operators – The == and the != operators are the same as in C++ with the
exception that if any operand has an x bit then the result is x. The === and !==
operators compare x to x and z to z and return true (1) or false (0). (=== and !==
are for simulation only.)

Miscellaneous operators – The shift operators work the same as in C++. The
concatenation operator allows you to stick words or bits together to form new
words. For example

c = {a[0], b[7:1]};

EE 254 University of Evansville

 6

forms a new 8-bit word consisting of the 0th bit of a and the most significant 7 bits
of b. The repetition operator allows you to concatenate multiple words. For
example

c = {3{a}};
makes c the same as {a, a, a}

4.0 Control Structures – Control constructs, always, if, case, for, and while

• Control Constructs – Verilog's control constructs can be thought of as existing in two

categories called concurrent constructs and sequential constructs. Concurrent
constructs happen in parallel and sequential constructs happen like they are written as
in a computer program. The two concurrent constructs we will discuss here are gate
instantiation and the continuous assignment statement. The sequential constructs
commonly used in Verilog include the always and initial blocks, the if and case
structures, and the for and while loops.
Always and Initial blocks – The always and initial blocks are similar in structure.

The Initial block provides initial values for simulation purposes and does not play
a role in circuit synthesis. The initial block, then is used in conjunction with a
Verilog simulator to establish initial values. For example, initial values may be
needed for testing purposes in a simulated environment. For circuit synthesis we
use the Always block and such a block must contain all sequential constructs.
Thus the if, case, for loop, and while loop must appear inside an always block.
The general syntax for an Always block looks like this:

Always @(sensitivity_list)
[begin]
 [sequential statements consisting of assignment, if, case,
 while, and for loops. May also include task and
 function calls.
]
[end]

The sensitivity list is a list of the variables which, if changed, would produce a
different output in the always block. The @ sign is referred to as event control
operator. The sensitivity list is used by Verilog simulators to determine when the
always block should be executed and updated. The sensitivity list consists of
variables separated by the word or as in always @(a or b or c). Verilog 2001
allows for a comma separated list as in always @(a, b, c)

Note that the statements in an always block between begin/end are executed
sequentially just as they are written. For modules that have multiple always
blocks however, all of the always blocks are executed in parallel.
Variables assigned a value inside and always block must be of type reg or
integer. You may not assign type wire or tri (nets) a value inside an always
block. (This would be very confusing since continuous assignments to wires are
concurrent operations and the code inside an always block is sequential.)

If block – The if structure works the same as it does in C++ with the exception that

Verilog uses the words begin and end to designate code blocks instead of braces {

EE 254 University of Evansville

 7

and } (braces are used for the concatenation operator.) A typical if structure
might look like this:

if(t == y)
 begin
 z = 12;
 end
else
 begin
 z = 22;
 end

As in C++, the begin and end key words are not needed if the block has only one
line. Thus the above example could be written as:

if(t == y)
 z = 12;
else
 z = 22;

The if construct can be used inside an always block to implement combinational
or sequential logic. Figure 5 shows a 2 to 4 decoder implemented a sequence of if
statements inside an always block.

Figure 5

A 2 to 4 decoder circuit.

module Decode2To4(aIn, yOut, enable);
 input [1:0]aIn;
 input enable;
 output [3:0]yOut;
 reg [3:0] yOut;
 always@(aIn or enable)
 begin
 if(enable == 1)
 begin
 if(~aIn[1] && ~aIn[0]) yOut = 4'b0111;
 if(~aIn[1] && aIn[0]) yOut = 4'b1011;
 if(aIn[1] && ~aIn[0]) yOut = 4'b1101;
 if(aIn[1] && aIn[0]) yOut = 4'b1110;
 end
 else
 yOut = 4'b1111;
 end
endmodule

Figure 6
A 2 to 4 decoder in Verilog. An always block and if statements are used for this implementation.

EE 254 University of Evansville

 8

Case structure – the case structure has a slightly different syntax than its counterpart
in C++ in that no break statement is necessary and the word switch is not used. A
typical case structure might look like this:

case (t)
 0: y = w[0];
 1: y = w[1];
 …
 7: y = w[n];
 default: y = x;
endcase

In this example each alternative in the case statement takes up only one line.
Multiline blocks can be used with begin and end statements.
There are two other "flavors" of the case statement in Verilog. These are called
casex and casez. The original case statement checks the alternatives for an exact
match of 0, 1, x, or z. The casex statement treats both x and z as true don't cares.
The casez statement treats x as a don't care but demands that the z digit have an
exact match.

module SevSegCase(aIn, sOut);
 input [3:0]aIn;
 output [6:0]sOut;
 reg [6:0]sOut;
 always @(aIn)
 begin
 case (aIn)
 // abcdefg
 4'b0000:sOut = 7'b0000001; //0
 4'b0001:sOut = 7'b1001111; //1
 4'b0010:sOut = 7'b0010010; //2
 4'b0011:sOut = 7'b0000110; //3
 4'b0100:sOut = 7'b1001100; //4
 4'b0101:sOut = 7'b0100100; //5
 4'b0110:sOut = 7'b0100000; //6
 4'b0111:sOut = 7'b0001111; //7
 4'b1000:sOut = 7'b0000000; //8
 4'b1001:sOut = 7'b0001100; //9
 4'b1010:sOut = 7'b0001000; //A
 4'b1011:sOut = 7'b1000010; //B
 4'b1100:sOut = 7'b0000111; //C
 4'b1101:sOut = 7'b0000001; //D
 4'b1110:sOut = 7'b0110000; //E
 4'b1111:sOut = 7'b0000110; //F
 endcase
 end
endmodule

Figure 7
The Verilog code for a 7-segment decoder with active low outputs. This implementation uses a case

structure.

For loop – The for loop in Verilog has the same structure that it does in C++. The
braces in the C++ structure are replaced by a begin/end block and the ++ operator
is not used for the loop counter variable. A typical for loop might look like this:

EE 254 University of Evansville

 9

for(i=0;i<10;i=i+1)
 begin
 s[i] = p[i] ^ q[i];
 end

Note that integers are typically used for counter variables.

module Decode3To8For(yOut, aIn, enable);
 output [7:0]yOut;
 input [2:0]aIn;
 input enable;
 reg [7:0] yOut;
 integer k;
 always@(aIn or enable)
 begin
 if(enable == 1)
 begin
 for(k=0;k<8;k=k+1)
 begin
 if(aIn == k)
 yOut[k] = 0;
 else
 yOut[k] = 1;
 end
 end
 end
 endmodule

Figure 8
A Verilog implementation of a 3 to 8 decoder with active low outputs. This

implementation uses a for loop.

While loop – The while loop in Verilog is much the same as it is in C++. As in the
case of the for loop, the braces in the C++ structure are replaced by a begin/end
block. The general form for the Verilog while loop is as follows:

initialize condition
while(condition)
 begin
 …
 update condition
 end

5.0 Sequential Circuits – non blocking assignment, sequential circuit elements, and

registers
• Non blocking assignment statement – The equals sign is used for the blocking

assignment statement as in
a = b;
c = a;

where we assume that a, b, and c are inside and always block and are of type reg.
The result of these two statements is that both variables a and c take on the value of b.
Verilog has another type of assignment statement called the non blocking assignment
statement which uses the <= operator instead of the = operator. If a, b, and c are of
type reg and they are inside an always block then the statements

a <= b;
c <= a;

EE 254 University of Evansville

 10

make a take on the value of b in the first statement but c takes on the value that a had
at the beginning of the block as if the first statement never occurred. In other words,
the non blocking assignment statement evaluates variables by using the value those
variables had at the beginning of the block. The non blocking assignment operator
allows the two statements to execute concurrently instead of sequentially. In general,
in Verilog you should use the non blocking assignment statement for combinational
logic and the blocking assignment statement for sequential logic. Likewise, for
sanity, you should never mix blocking and non blocking assignment statements in the
same always block.

• Sequential circuit elements – The flip-flop is the basic building block of any sequential

circuit. Verilog supports many types of flip-flops in library functions and provides a
means for a user to define flip-flops for a variety of needs. Consider the classic D
flip-flop in which the Q output follows the D input as long as the clock is high. When
the clock goes low, the D input value is locked in. (The classic D flip-flop is often
referred to as a D latch.) The figure below shows how we can implement the classic
D flip-flop in Verilog code.

module classicD(D, clk, Q, Qn);
 input D, clk;
 output Q, Qn;
 reg Q, Qn;
 always@(D or clk)
 if(clk)
 begin
 Q <= D;
 Qn <= ~D;
 end
endmodule

Figure 9
Implementation of a classic D flip-flop in Verilog.

The if statement in this figure incompletely specifies the behavior of the Q output
since there is no else clause with the if. This implies memory and Verilog
implements this construct with a flip-flop.

The classic D flip-flop is controlled by the level of the clock. That is, when the clock
is high the Q output follows the D input. Many other types of flip-flops work on the
clock edge which may be either positive going or negative going edges. In Verilog
such behavior is modeled using the event controls called posedge and negedge in the
always block sensitivity list. The figure below shows a positive edge triggered D
flip-flop with an asynchronous reset and preset. The always declaration in this figure
includes the negedge specifier on both resetn and presetn even though these two
signals are supposed to be asynchronous. This is because an always block sensitivity
list may not contain both edge triggered and level sensitive signals.

EE 254 University of Evansville

 11

module DFFAsyncClr(D, clk, resetn, Q, presetn);
 input D, clk, resetn, presetn;
 output Q;
 reg Q;
 always@(posedge clk or negedge resetn or negedge presetn)
 if(!resetn)
 Q <= 0;
 else if(!presetn)
 Q <= 1;
 else
 Q <= D;
endmodule

Figure 10
An positive edge triggered D flip-flop with asynchronous reset and preset.

To make a D flip-flop with a synchronous reset and preset we can simply omit the
negedge event controller from the resetn and presetn signals in the sensitivity list.
This causes the system to only look at changing the flip-flop when the clock edge
occurs.

A JK master/slave flip flop (JKMSFF) is actually two flip flops in one package. The
first is a master flip flop which locks in the data on the rising edge of the clock signal.
The second is the slave flip flop which gets data from the master flip flop on the
falling edge of the clock. Implementation in Verilog requires two always blocks
since one block may not contain both the posedge and the negedge event control for
the same variable (clk in this case). The figure below shows one implementation for
a JKMSFF.

module jkff(J, K, clk, Q);
 input J, K, clk;
 output Q;
 reg Q;
 reg Qm;
 always @(posedge clk)
 if(J == 1 && K == 0)
 Qm <= 1;
 else if(J == 0 && K == 1)
 Qm <= 0;
 else if(J == 1 && K == 1)
 Qm <= ~Qm;
 //
 always @(negedge clk)
 Q <= Qm;
endmodule

Figure 11
Verilog code for a JK flip-flop. This implementation makes us of two always blocks.

• Registers – a register is by definition a collection of flip-flops or latches that share a

common clock and often, a common reset or preset line and a common tri-state output
control. The figure below shows an 8-bit register with a tri-state control and its
Verilog implementation.

EE 254 University of Evansville

 12

//RegnBit
//n-bit parallel in/parallel out
// register with tri-state out.
module RegnBit(dIn, dOut, clk, enable);
 parameter n = 8;
 input [n-1:0]dIn;
 input clk, enable;
 output [n-1:0] dOut;
 reg [n-1:0] dOut;
 reg [n-1:0] state;
 always @(enable)
 begin
 if(enable)
 dOut = state; //data to out
 else
 dOut = n'bz; //tri-state out
 end
 always @(posedge clk)
 state <= dIn;
endmodule

Figure 12
A parallel in/parallel out 8-bit register with a tri-state output control.

Shift registers can be implemented efficiently in Verilog using the concatenation
operator. If the variable state represents an n-bit shift register then the two
statements:

 sOut <= state[n-1];
 state <= {state[n-2:0], sIn};

move the n-1st bit to the output and create a new state by concatenating the n-1 bits of
the old state with the new input from sIn. The figure below shows a complete
Verilog implementation.

//Shiftn
//n-bit shift register serial in serial out
module Shiftn(clk, sIn, sOut);
 parameter n = 60; //number of stages
 input sIn, clk;
 output sOut;
 reg sOut;
 reg [n-1:0]state;
 always @(posedge clk) //sIn -> [0|1|...|n-1] -> sOut
 begin
 sOut <= state[n-1];
 state <= {state[n-2:0], sIn};
 end
endmodule

Figure 13
Verilog implementation of an n-bit shift register. In this case n is set to 60.

Registers can also be put together with some glue logic to form counters. In this case,
Verilog figures out what logic is needed so that designing a counter is a matter of
setting up a register variable that counts on the clock edge. The figure below shows
an n-bit counter with a mod count parameter. The modCnt variable is set to 11 so that

EE 254 University of Evansville

 13

the counter shown counts from 0 to 10 and rolls over. This particular counter does
not have parallel load but it does have a clr input to initialize it to zero.

//Cnt4bit
//n-bit counter with clear
module Cnt4Bit(clk, state, clr);
 parameter n = 4;
 parameter modCnt = 11;
 input clk, clr;
 output [n-1:0]state;
 reg [n-1:0]state;
 always@(posedge clk)
 if(clr)
 state <= 0;
 else
 state <= (state + 1) % modCnt;
endmodule

Figure 14
A 4-bit counter with a modulus. The modCnt variable is set to 11 so that this counter

counts 0 to 10 before rolling over.

A sequence counter is one which can count in any sequence. The case structure make
implementation of such a counter easy in Verilog. The figure below shows a counter
which runs through counts 0, 1, 2, 4, 9, 10, 5, 6, 8, 7, 0, …

//CntSeq.v
//Sequence counter
module CntSeq(clk, reset, state);
 parameter n = 4;
 input clk, reset;
 output [n-1:0]state;
 reg [n-1:0]state;
 //
 always @(posedge clk)
 if(reset)
 state = 0;
 else
 begin
 case (state)
 4'b0000:state = 4'b0001; //0 -> 1
 4'b0001:state = 4'b0010; //1 -> 2
 4'b0010:state = 4'b0100; //2 -> 4
 4'b0100:state = 4'b1001; //4 -> 9
 4'b1001:state = 4'b1010; //9 -> 10
 4'b1010:state = 4'b0101; //10-> 5
 4'b0101:state = 4'b0110; //5 -> 6
 4'b0110:state = 4'b1000; //6 -> 8
 4'b1000:state = 4'b0111; //8 -> 7
 default:state = 4'b0000;
 endcase
 end
endmodule

Figure 14
A case statement is used to implement a sequence counter.

EE 254 University of Evansville

 14

6.0 Modular Programming – Modularization, parameterized modules, functions,
and tasks.

• Modularization – Verilog can be modularized in several ways including functions,

multiple parameterized modules, and tasks.
Multiple parameterized modules – Parameters may be added to modules in

Verilog to make them more general. To add a parameter to a module we use
the keyword parameter as in the Shiftn example used above which had the
following lines:

 //Shiftn
 //n-bit shift register serial in serial out
 module Shiftn(clk, sIn, sOut);
 parameter n = 60; //number of stages
 …

A parameterized module can then be added to a project and instantiated
multiple times with different parameters. Figure 15 shows how this can be
done.

//ShiftMultiple
//This file uses multiple modules for dual shift registers
// of differing lengths
module ShiftMultiple(sIn, sOut, clk);
 input [2:0] sIn;
 input clk;
 output [2:0]sOut;
 Shiftn Shift4 (clk, sIn[0], sOut[0]); //defaults to n = 4
 Shiftn Shift6(clk, sIn[1], sOut[1]);
 defparam Shift6.n = 6; //resets n to 6
 Shiftn Shift12(clk, sIn[2], sOut[2]);
 defparam Shift12.n = 12; //resets n to 12
endmodule
//
//Shiftn
//n-bit shift register serial in serial out
module Shiftn(clk, sIn, sOut);
 parameter n = 4; //number of stages
 input sIn, clk;
 output sOut;
 reg sOut;
 reg [n-1:0]state;
 always @(posedge clk) // sIn -> [0|1|...|n-1] -> sOut
 begin
 sOut <= state[n-1];
 state <= {state[n-2:0], sIn};
 end
endmodule

Figure 15
The second module in this program creates an n-bit shift register where n is a parameter. The first

module uses the second module to create three shift registers of differing lengths.

Functions – Functions in Verilog have some rather severe limitations but are useful
for small pieces of code that must be repeated. Function declarations are similar
to that of module declarations. In general a function declaration looks like this:

function name;

EE 254 University of Evansville

 15

input arguments;
reg variables;
parameter parameters;
integer integers;
 Function body
endfunction

The function name is like any other variable name and may be a vector. A
function can only return the value assigned to its name but this is just an
inconvenience and not a serious limitation since values can be concatenated
together and packed into a single name. A more serious limitation of functions is
that functions must contain only combinatorial logic so that latches and flip-flops
may not be coded into functions. Functions may call other functions but they may
not call other tasks. Figure 16 shows a Verilog file with an example of a
function.

module fundecode(aIn, yOut, enable);
 input [1:0] aIn;
 input enable;
 output [3:0]yOut;
 reg [3:0] yOut;
 //
 function [3:0]FindOutput;
 input [1:0]xIn;
 if(~xIn[1] && ~xIn[0]) FindOutput = 4'b0111;
 if(~xIn[1] && xIn[0]) FindOutput = 4'b1011;
 if(xIn[1] && ~xIn[0]) FindOutput = 4'b1101;
 if(xIn[1] && xIn[0]) FindOutput = 4'b1110;
 endfunction
 //
 always@(aIn or enable)
 begin
 if(enable == 1)
 begin
 yOut = FindOutput(aIn);
 end
 else
 yOut = 4'b1111;
 end
endmodule

Figure 16
This is the 2:4 decoder of Figures 5 and 6 implemented using a function.

All functions must have at least one input but functions may not have any output
or inout variables. Functions may call other functions but functions may not call
other tasks.

Tasks – The task was created for Verilog to alleviate some of the limitations of
functions. Tasks may have multiple inputs but unlike functions may be written
with zero inputs. Tasks may also have multiple outputs and they may contain
events so that they are not limited to combinatorial logic. Tasks may call
functions or other tasks in some implementations tasks may be recursive and call
themselves. Figure 17 shows a simple implementation of a task.

module taskdecode(aIn, yOut, enable);
 input [1:0] aIn;
 input enable;

EE 254 University of Evansville

 16

 output [3:0]yOut;
 reg [3:0] yOut;
 //
 task FindOutput;
 input [1:0]xIn;
 output [3:0] tOut
 if(~xIn[1] && ~xIn[0]) tOut = 4'b0111;
 if(~xIn[1] && xIn[0]) tOut = 4'b1011;
 if(xIn[1] && ~xIn[0]) tOut = 4'b1101;
 if(xIn[1] && xIn[0]) tOut = 4'b1110;
 endtask
 //
 always@(aIn or enable)
 begin
 if(enable == 1)
 begin
 FindOutput(aIn, yOut);
 end
 else
 yOut = 4'b1111;
 end
endmodule

Figure 17
This is the same 2:4 decoder as shown in Figure 16 except that the function has been

replaced by a task.

7.0 Examples

Example 1 – A four-bit adder/subtractor.

Figure E-1.1

A four-bit adder/subtractor. If Sign = 0 then S = A + B. If Sign = 1 then S = A – B.

//AddSub.v
//4-bit adder/subtractor
module addsub(aIn, bIn, sum, cOut, sign);
 input sign;
 input [3:0]aIn, bIn;
 output [3:0]sum;
 output cOut;
 reg [3:0]sum;
 reg [3:0]bExOr;

EE 254 University of Evansville

 17

 reg cOut;
 //
 always @(aIn or bIn or sign)
 begin
 bExOr = bIn ^ {4{sign}};
 {cOut, sum} = aIn + bExOr + sign;
 end
 //
endmodule

Figure E-1.2
A four-bit adder/subtractor implemented in Verilog

Example 2 – Manchester data encoder

//Manchester.v
//Does Manchester encoding
module manchester(clk, dIn, dOut);
 input clk;
 input dIn;
 output dOut;
 reg Qa, Qb;
 wire dA, dB, dOut;
 assign dA = dIn & (~Qa);
 assign dB = (~dIn) & (~Qb);
 assign dOut = (~Qa)& (dIn | Qb);
 always@(posedge clk)
 begin
 Qa <= dA;
 Qb <= dB;
 end
endmodule

Figure E2-1
A Mealy machine for Manchester encoding.

Example 3 – An n-bit ALU with 16 functions.

module ALUnbit(aIn, bIn, sIn, cIn, bOut, cOut);
 parameter n = 4;
 input [n-1:0] aIn;
 input [n-1:0] bIn;
 input [n-1:0] sIn;
 input cIn;
 output [n-1:0] bOut;
 output cOut;
 reg cOut;
 reg [n-1:0] bOut;
 reg [n:0]tmp;
 always @(aIn or bIn or cIn or sIn)
 begin
 cOut = 1'b0;
 case(sIn)
 0:bOut = ~aIn; //not a
 1:bOut = ~(aIn | bIn); //nor
 2:bOut = ~aIn & bIn; //not a and b

EE 254 University of Evansville

 18

 3:bOut = 0; //zero
 4:bOut = ~(aIn & bIn); //nand
 5:bOut = ~bIn; //not b
 6:bOut = aIn ^ bIn; //ex or
 7:bOut = aIn & ~bIn; //a and not b
 8:bOut = ~aIn | bIn; //not a or b
 9:begin //aIn plus bIn
 tmp = {1'b0,aIn} + {1'b0,bIn};
 bOut = tmp[n-1:0];
 cOut = tmp[n];
 end
 10:begin //aIn plus bIn + cIn
 tmp = {1'b0,aIn} + {1'b0,bIn} + {8'b0,cIn};
 bOut = tmp[n-1:0];
 cOut = tmp[n];
 end
 11:begin //aIn minus bIn
 tmp = {1'b0,aIn} - {1'b0,bIn};
 bOut = tmp[n-1:0];
 cOut = tmp[n];
 end
 12:begin //aIn minus bIn minus cIn
 tmp = {1'b0,aIn} - {1'b0,bIn} - {7'b0, cIn};
 bOut = tmp[n-1:0];
 cOut = tmp[n];
 end
 13:bOut = ~(aIn ^ bIn); //exclusive NOR
 14:bOut = -aIn; //twos complement
 15:bOut = 4'b1; //all ones
 endcase
 end
endmodule

Figure E3-1
An n-bit ALU with 16 logical and arithmetic functions.

Example 4: A Leading ones detector
This circuit detects the first one in a sequence. It has two inputs , x and y. When y is 1 it
resets.

EE 254 University of Evansville

 19

module SeqLeadingOnes(xIn, yIn, z, clk);
 input clk, xIn, yIn;
 output z;
 reg [1:0] out;
 reg state;
 reg z;
 always @(posedge clk)
 begin
 if(yIn)
 begin
 state = 0;
 z = 0;
 end
 else
 case (state)
 0:
 if(xIn)
 begin
 state = 1;
 z = 1;
 end
 else
 begin
 state = 0;
 z = 0;
 end
 1:
 begin
 state = 1;
 z = 0;
 end
 endcase
 end
endmodule

EE 254 University of Evansville

 20

Appendix A

 Symbol Comment

B
itw

is
e

~ ones complement unary operator
& and
| or
^ exclusive or

~& nand
~| nor
~^ exclusive nor

 L
og

ic
al

 ! not unary operator also called logical negation
&& logical and

|| logical or

R
ed

uc
tio

n

& and unary operator
~& nand unary operator

| or unary operator
~| Nor unary operator
^ exclusive or unary operator

~^ exclusive nor unary operator

A
ri

th
m

et
ic

+ add
- subtract
- two's complement – unary operator
* multiply
/ divide

% mod operator

R
el

at
io

na
l > greater than

< less than
>= greater than or equals
<= less than or equals

E
qu

al
ity

 === case equals, compares x and z, simulation only
!== case not equals, compares x and z, simulation only
== equals, produces x if bits are x or z
!= not equals, produces x if bits are x or z

M
isc

>> shift right
<< shift left
? : (cond)?(statements if true):(statements if false)
{,} concatenation

{m{}} repetition where m is repetition number
Table 1

This table lists the most often used operators in Verilog. See the discussion for examples.

EE 254 University of Evansville

 21

 Operator Comment
1 ! & ~& | ~| ^ ~^ + - unary highest precedence
2 * / % arithmetic
3 + -
4 << >> shifts
5 < <= > >= relational
6 == != === ~== equality
7 & ~& ^ ~^ bitwise and reduction
8 | ~|
9 && logical
10 || logical lowest precedence

Table 2
The precedence of operators in Verilog. Operators on one line in this table are of

equal precedence with the one on the left in an expression taking precedence.
Parenthesis override all precedence operators and can be used to effectively reorder

the precedence.

Gate Function Comment
and(f, a, b, …) ⋅⋅= baf and function
or(f, a, b, …) ++= baf or function
not(f, a) af = inverter function
xor(f, a, b, …) ⊕⊕= baf exclusive or function
nand(f, a, b, …) ⋅⋅= baf nand function
nor(f, a, b, …) ++= baf nor function
xnor(f, a, b, …) ⊕⊕= baf exclusive nor function
buf(f, a) af = buffer
notif0(f, a, cond)*

bzelseacondif ')(! if(cond not true) then a else high z
notif1(f, a, cond)*

bzelseacondif ')(if(cond true) then a else high z
bufif0(f, a, cond)* bzelseacondif ')(! if(cond not true) then a else high z
bufif1(f, a, cond)* bzelseacondif ')(if(cond not true) then a else high z

 *notif and bufif are inverting and noninverting tri-state gates with active low and active high enables.
Table 3

Gates available in Verilog and their logical definition.

EE 254 University of Evansville

 22

References
1. Smith, David R. and Franzon, Paul D., Verilog Styles for Synthesis of Digital Systems,

Prentice-Hall, 2000.
2. Mano, M. Morris and Kime, Charles R., Logic and Computer Design Fundamentals,

3rd edition, Pearson Prentice-Hall, 2004.
3. Brown, Stephen and Vranesic, Zvonko, Fundamentals of Digital Logic with Verilog

Design, McGraw-Hill, 2003.
4. Hyde, Daniel C., "CSCI 320 Computer Architecture Handbook on Verilog HDL",

1997, http://www.eg.bucknell.edu/~cs320/1995-fall/verilog-manual.html
5. Ciletti, Michael D., Advanced Digital Design with Verilog HDL, Prentice-Hall, 2003.

