INntroduction
1o Recursive
Functions

D. Thiebaut — CSC212
Fall 2014

AFTER A WHILE...

N

S

AFTER A WHILE...

N

S

THE
ANSWER!

lmportant Concept: 1

* Recursive step reduces the problem in a small, but
significant way, getting closer to a solution

* Work done during a recursive call builds up on the
partial solution found so far.

Important Concept: 2

* Recursion requires
1. Stopping Condition

2. Recursive Step Reducing Size of Problem
and leading closer to solution.

Examples

Draft Algorithm, then Code

- Factorial

e« Sum up an array

e from N go 1+(N-1)

e from N go N/2 and N/2

* Find the largest element of an array

 Find a key in an unsorted array

 Find a key in a sorted array (binary search)

« Evaluate an RPN expression

Evaluating
Time Complexity

private static int factorial(int n) {
if (nh<=1)
return 1;

e Factorial

return n * factorial(n - 1);

}

Evaluating
Time Complexity

e Binary Search

private static int binSearch(Arraylist A, int low, int high, int key) {
if (low > high)
return -1;

int mid = (low+high)/2;
1f C (int) A.get(mid) == key)
return mid;

1f C (int) A.get(mid) < key)

return binSearch(A, mid+1l, high, key);
else

return binSearch(A, low, mid-1, key);

Recursion is Not Required

private static int loopingBinSearch(int key, int[] A) {
int 1L = 0, h = A.length-1;
int index = -1;

while (1 <= h) {
int m = (1+h)/2;
1f (A[m] == key) {
index = m;
break;
by
1f (key < A[m])
h = m-1;
else
1 = m+l;
by

return index;

}

Non-recursive version of BinarySearch
using a while-loop to move
the “low™ and “high” indexes...

lall Recursion

| et's Revisit Fibonacci

private static long computeFibRecursively(int n) {

if (n<=1)
return 1;

return computeFibRecursively(n-1) + computeFibRecursively(n-2);

Fib's Call Tree

3 2 2121102110102 1101010

Image taken from http://www.cs.ucr.edu/~neal/2005/cs141/wikidb/uploads/fib_call_graph_8.gif

http://www.cs.ucr.edu/~neal/2005/cs141/wikidb/uploads/fib_call_graph_8.gif

Observations:

o 3 2 e e e e
372 2121102110102 110101°0
21101010 10 10
10

- S0 Many leaves!

 Most of the work in the lower part of the
tree, where the leaves are...

e |f we could "prune” the tree, we could
reduce the amount of work done...

Solution? Cut the
lall-End Recursion!

private static long computeFibRecursively(int n) {
1f ()
return

return computeFibRecursively(n-1)
+ computeFibRecursively(n-2);

Desktop — Beowulf2 — ssh — 71x24

4
[beowulf2]

[07:07:35] ~/public_html/classes/212%:

[beowulf2]

[07:07:36] ~/public_html/classes/212$:

[beowulf2]

[07:07:36] ~/public_html/classes/212%:

[beowulf2]

[07:07:36] ~/public_html/classes/212%$: figlet DEMO TIME

N]V Y P BV —
I\/] I N I I AV I B

| 11

I I ||

/

[beowulf2]
[07:07:38] ~/public_html/classes/212$%:

The N-Queens
Problem

Question: Can one
out 8 queens
ONn a chess board,
such that no two gueens
can take each other?

~
&

Questions Before
Coding

What data structure can we use”?
How do we represent a placed queen?
How do we represent a cell "covered” by a queen?

How do we represent an empty cell”

Important Concept
Of the Day

* Back-Tracking: the action of returning from
recursive exploration of a sub-problem, undoing
some computation, selecting a new unexplored
path, and starting exploring it recursively.

2D Maze lraversal

HARHAREARHARHHH

H O O H R

HOH O O R HE K
H H M O H K W

#.o.o.o.... #...
BHAHB BB R R
Success, found a path!

. <

£ thiebaut — Beowulf2 — ssh — 77x16

ik bil Sk it

et e e

O S S P T S S S S S VO Sy

Class Exercise

Think of a recursive way of visiting the maze...

You have to make sure that we keep exploring until
we find the exit

There might be dead-ends
There might not be an exit

We can only see 1 cell of the array at a time...

