
Introduction
To Recursive

Functions
D. Thiebaut — CSC212 

Fall 2014

LARGE TASK

LARGE TASK

LARGE TASK

LARGE TASK

AFTER A WHILE…

AFTER A WHILE…

THE  
ANSWER!

Important Concept: 1

• Recursive step reduces the problem in a small, but
significant way, getting closer to a solution

• Work done during a recursive call builds up on the
partial solution found so far.

Important Concept: 2

• Recursion requires

1. Stopping Condition

2. Recursive Step Reducing Size of Problem
and leading closer to solution.

Examples

Draft Algorithm, then Code
• Factorial!

• Sum up an array

• from N go 1+(N-1)

• from N go N/2 and N/2

• Find the largest element of an array

• Find a key in an unsorted array

• Find a key in a sorted array (binary search)

• Evaluate an RPN expression

Evaluating
Time Complexity

• Factorial 	 private static int factorial(int n) {	
	 	 if (n <= 1)	
	 	 	 return 1;	
	 	 	
	 	 return n * factorial(n - 1);	
	 }

Evaluating
Time Complexity

• Binary Search

	 private static int binSearch(ArrayList A, int low, int high, int key) {	
	 	 if (low > high) 	
	 	 	 return -1;	
	 	 	
	 	 int mid = (low+high)/2;	
	 	 if ((int) A.get(mid) == key)	
	 	 	 return mid;	
	 	 	
	 	 if ((int) A.get(mid) < key)	
	 	 	 return binSearch(A, mid+1, high, key);	
	 	 else	
	 	 	 return binSearch(A, low, mid-1, key);	
	 }

Recursion is Not Required
	 private static int loopingBinSearch(int key, int[] A) {	
	 	 int l = 0, h = A.length-1;	
	 	 int index = -1;	
	 	 	
	 	 while (l <= h) {	
	 	 	 int m = (l+h)/2;	
	 	 	 if (A[m] == key) {	
	 	 	 	 index = m;	
	 	 	 	 break;	
	 	 	 }	
	 	 	 if (key < A[m])	
	 	 	 	 h = m-1;	
	 	 	 else	
	 	 	 	 l = m+1;	
	 	 }	
	 	 return index;	
	 }	

Non-recursive version of BinarySearch
using a while-loop to move

the “low” and “high” indexes…

Tail Recursion

Let's Revisit Fibonacci
	 private static long computeFibRecursively(int n) {	
 	
 	 if (n <= 1) 	
 return 1;	
	 	 	
	 	 return computeFibRecursively(n-1) + computeFibRecursively(n-2);	
	 }

Fib's Call Tree

Image taken from http://www.cs.ucr.edu/~neal/2005/cs141/wikidb/uploads/fib_call_graph_8.gif

http://www.cs.ucr.edu/~neal/2005/cs141/wikidb/uploads/fib_call_graph_8.gif

Observations:

• So Many leaves!!

• Most of the work in the lower part of the
tree, where the leaves are…

• If we could "prune" the tree, we could
reduce the amount of work done…

Solution? Cut the
Tail-End Recursion!

	 private static long computeFibRecursively(int n) {	
 long[] f10 = new long[] {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89};	
 	
 if (n<= 10) 	
	 	 	 return f10[n];	
	 	 	
	 	 return computeFibRecursively(n-1) 	
	 	 	 	 	 + computeFibRecursively(n-2);	
	 }

The N-Queens
Problem

Question: Can one
put 8 queens

on a chess board,
such that no two queens

can take each other?

TRY IT!

Questions Before
Coding

• What data structure can we use?

• How do we represent a placed queen?

• How do we represent a cell "covered" by a queen?

• How do we represent an empty cell?

Important Concept
Of the Day

• Back-Tracking: the action of returning from
recursive exploration of a sub-problem, undoing
some computation, selecting a new unexplored
path, and starting exploring it recursively.

2D Maze Traversal

Class Exercise
• Think of a recursive way of visiting the maze…

• You have to make sure that we keep exploring until
we find the exit

• There might be dead-ends

• There might not be an exit

• We can only see 1 cell of the array at a time…

