
TF Mutiple Hidden Layers: Regression on Boston
Data
Batched, Parameterized, with Dropout
This is adapted from Frossard's tutorial (http://www.cs.toronto.edu/~frossard/post/tensorflow/).
This approach is not batched, and the number of layers is fixed.

D. Thiebaut
August 2016

Import the Libraries and Tools

In [61]:

Import the Boston Data
We don't worry about adding column names to the data.

import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.contrib import learn
from sklearn import cross_validation
from sklearn import preprocessing
from sklearn import metrics
from __future__ import print_function

%matplotlib inline

http://www.cs.toronto.edu/~frossard/post/tensorflow/

In [62]:

We scale the inputs to have mean 0 and standard variation 1.

In [63]:

We verify that we have 13 features...

In [64]:

Input & Output Place-Holders
Define 2 place holders to the graph, one for the inputs one for the outputs...

In [65]:

Define the Coeffs for the Layers
For each layer the input vector will be multiplied by a matrix of dim x , where is the
dimension of the input vector and the dimention of the output vector. Then a bias vector of
dimension is added to the product.

h n m n
m

m

Dimension of Boston test_x = (102, 13)
Dimension of test_y = (102, 1)
Dimension of Boston train_x = (404, 13)
Dimension of train_y = (404, 1)

number of features = 13

boston = learn.datasets.load_dataset('boston')
#print("boston = ", boston)
x, y = boston.data, boston.target
y.resize(y.size, 1) #make y = [[x], [x], [x], ...]

train_x, test_x, train_y, test_y = cross_validation.train_test_split(
 x, y, test_size=0.2, random_state=42)

print("Dimension of Boston test_x = ", test_x.shape)
print("Dimension of test_y = ", test_y.shape)

print("Dimension of Boston train_x = ", train_x.shape)
print("Dimension of train_y = ", train_y.shape)

scaler = preprocessing.StandardScaler()
train_x = scaler.fit_transform(train_x)
test_x = scaler.fit_transform(test_x)

numFeatures = train_x.shape[1]

print("number of features = ", numFeatures)

with tf.name_scope("IO"):
 inputs = tf.placeholder(tf.float32, [None, numFeatures], name="X")
 outputs = tf.placeholder(tf.float32, [None, 1], name="Yhat")

In [66]:

Define the Layer operations as a Python funtion

In [67]:

Define the operations that are performed
We define what happens to the inputs (x), when they are provided, and what we do with the outputs
of the layers (compare them to the y values), and the type of minimization that must be done.

In [68]:

Train the Model

with tf.name_scope("LAYER"):
 # network architecture
 Layers = [numFeatures, 52, 104, 52, 52, 52, 1]
 h = []
 b = []
 for i in range(1, len(Layers)):
 h.append(tf.Variable(tf.random_normal([Layers[i-1], Layers[i]], 0,
 b.append(tf.Variable(tf.random_normal([Layers[i]], 0, 0.1, dtype=tf

 dropout = 0.990 # Dropout, probability to keep units
 keep_prob = tf.placeholder(tf.float32) # dropout (keep probability)

def model(inputs, h, b):
 lastY = inputs
 for i, (hi, bi) in enumerate(zip(h, b)):
 y = tf.add(tf.matmul(lastY, h[i]), b[i])

 if i==len(h)-1:
 return y

 lastY = tf.nn.sigmoid(y)
 lastY = tf.nn.dropout(lastY, dropout)

with tf.name_scope("train"):

 learning_rate = 0.250
 #yout = model2(inputs, [h1, b1, h2, b2, h3, b3, hout, bout])
 yout = model(inputs, h, b)

 cost_op = tf.reduce_mean(tf.pow(yout - outputs, 2))
 #cost_op = tf.reduce_sum(tf.pow(yout - outputs, 2))
 #cost_op = tf.reduce_mean(-tf.reduce_sum(yout * tf.log(outputs)))

 #train_op = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost_op)
 #train_op = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost_op)
 train_op = tf.train.AdagradOptimizer(learning_rate=learning_rate).minimize

We are now ready to go through many sessions, and in each one train the model. Here we train on
the whole x-train and y-train data, rather than batching into smaller groups.

In [69]:

define variables/constants that control the training
epoch = 0 # counter for number of rounds training network
last_cost = 0 # keep track of last cost to measure difference
max_epochs = 20000 # total number of training sessions
tolerance = 1e-6 # we stop when diff in costs less than that
batch_size = 50 # we batch the data in groups of this size
num_samples = train_y.shape[0] # number of samples in training set
num_batches = int(num_samples / batch_size) # compute number of batches, given
 # batch size

print("batch size = ", batch_size)
print("test length= ", num_samples)
print("number batches = ", num_batches)
print("--- Beginning Training ---")

sess = tf.Session() # Create TensorFlow session
with sess.as_default():

 # initialize the variables
 init = tf.initialize_all_variables()
 sess.run(init)

 # start training until we stop, either because we've reached the max
 # number of epochs, or successive errors are close enough to each other
 # (less than tolerance)

 costs = []
 epochs= []
 while True:
 # Do the training
 cost = 0
 for n in range(num_batches):
 batch_x = train_x[n*batch_size : (n+1)*batch_size]
 batch_y = train_y[n*batch_size : (n+1)*batch_size]
 sess.run(train_op, feed_dict={inputs: batch_x, outputs: batch_y
 c = sess.run(cost_op, feed_dict={inputs: batch_x, outputs: batch_y
 cost += c
 cost /= num_batches

 costs.append(cost)
 epochs.append(epoch)

 # Update the user every 1000 epochs
 if epoch % 1000==0:
 print("Epoch: %d - Error diff: %1.8f" %(epoch, cost))

 # time to stop?
 if epoch > max_epochs or abs(last_cost - cost) < tolerance:
 print("--- STOPPING ---")
 break
 last_cost = cost

 epoch += 1

 # we're done...
 # print some statistics...

R2 score

batch size = 50
test length= 404
number batches = 8
--- Beginning Training ---
Epoch: 0 - Error diff: 118.00605869
Epoch: 1000 - Error diff: 1.73801895
Epoch: 2000 - Error diff: 0.71169004
Epoch: 3000 - Error diff: 0.69569829
Epoch: 4000 - Error diff: 0.55786825
Epoch: 5000 - Error diff: 0.42155909
Epoch: 6000 - Error diff: 0.33274260
Epoch: 7000 - Error diff: 0.37239324
Epoch: 8000 - Error diff: 0.35726526
Epoch: 9000 - Error diff: 0.39215576
Epoch: 10000 - Error diff: 0.32150087
Epoch: 11000 - Error diff: 0.35009851
Epoch: 12000 - Error diff: 0.28756304
Epoch: 13000 - Error diff: 0.30331052
Epoch: 14000 - Error diff: 0.31456433
Epoch: 15000 - Error diff: 0.22728056
Epoch: 16000 - Error diff: 0.27345408
Epoch: 17000 - Error diff: 0.24991406
Epoch: 18000 - Error diff: 0.23854101
Epoch: 19000 - Error diff: 0.26857675
Epoch: 20000 - Error diff: 0.22771443
Epoch: 21000 - Error diff: 0.30227334
--- STOPPING ---
Test Cost = 15.7541

A few predictions versus real data from test set
Prediction
real predicted
23.0 28.6
32.0 34.3
13.0 18.0
22.0 23.3
16.0 15.5
20.0 22.0
17.0 21.5
14.0 17.0
19.0 22.3
16.0 20.6

 print("Test Cost =", sess.run(cost_op, feed_dict={inputs: test_x, outputs

 # compute the predicted output for test_x
 pred_y = sess.run(yout, feed_dict={inputs: test_x, outputs: test_y})

 print("\nA few predictions versus real data from test set\nPrediction\nreal\tpredicted"
 for (y, yHat) in zip(test_y, pred_y)[0:10]:
 print("%1.1f\t%1.1f" % (y, yHat))

In [70]:

Plot Prediction vs. Real Housing Price

mean squared error = 15.9532791154
r2 score (coef determination) = 0.783881796368

r2 = metrics.r2_score(test_y, pred_y)
print("mean squared error = ", metrics.mean_squared_error(test_y, pred_y))
print("r2 score (coef determination) = ", metrics.r2_score(test_y, pred_y))

In [71]:
 fig = plt.figure()
 xmin = min(test_y)
 xmax = max(test_y) + 5
 plt.xlim(xmin, xmax)

 x = np.linspace(xmin, xmax)
 plt.scatter(test_y, pred_y)
 plt.plot(x, x)

 plt.text(5, 50, r'r2 = %1.4f' % r2)
 plt.xlabel("Test y")
 plt.ylabel("predicted y")
 plt.title("Prediction vs. Actual Y")
 #plt.save("images/sigmoid_adagrad_52_39_26_13_1.png")
 plt.show()
 fig.savefig('files/PredVsRealBoston.png', bbox_inches='tight')

 fig = plt.figure()
 plt.scatter(test_y, - test_y + pred_y)
 plt.axhline(0, color='black')
 plt.xlabel("Test y")
 plt.ylabel("Test y - Predicted Y")
 plt.title("Residuals")
 plt.show()
 fig.savefig('files/ResidualsBoston.png', bbox_inches='tight')

Plot Cost vs Epochs

In [72]:

In []:

 fig = plt.figure()
 plt.semilogy(epochs, costs)
 plt.xlabel("Epochs")
 plt.ylabel("Cost")
 plt.title("Cost vs. Epochs")
 plt.show()
 fig.savefig('files/CostVsEpochs.png', bbox_inches='tight')

