
Core Development > PEP Index > PEP 371 -- Addition of the multiprocessing package to the
standard library

PEP: 371

Title: Addition of the multiprocessing package to the standard library

Version: 70469

Last-Modified: 2009-03-19 04:35:27 +0100 (Thu, 19 Mar 2009)

Author:
Jesse Noller <jnoller at gmail.com>, Richard Oudkerk <r.m.oudkerk at
googlemail.com>

Status: Final

Type: Standards Track

Content-Type: text/plain

Created: 06-May-2008

Python-
Version:

2.6 / 3.0

Post-History:

Abstract

 This PEP proposes the inclusion of the pyProcessing [1] package
 into the Python standard library, renamed to "multiprocessing".

 The processing package mimics the standard library threading
 module functionality to provide a process-based approach to
 threaded programming allowing end-users to dispatch multiple
 tasks that effectively side-step the global interpreter lock.

 The package also provides server and client functionality
 (processing.Manager) to provide remote sharing and management of
 objects and tasks so that applications may not only leverage
 multiple cores on the local machine, but also distribute objects
 and tasks across a cluster of networked machines.

 While the distributed capabilities of the package are beneficial,
 the primary focus of this PEP is the core threading-like API and
 capabilities of the package.

Rationale

 The current CPython interpreter implements the Global Interpreter
 Lock (GIL) and barring work in Python 3000 or other versions
 currently planned [2], the GIL will remain as-is within the
 CPython interpreter for the foreseeable future. While the GIL
 itself enables clean and easy to maintain C code for the
 interpreter and extensions base, it is frequently an issue for
 those Python programmers who are leveraging multi-core machines.

 The GIL itself prevents more than a single thread from running
 within the interpreter at any given point in time, effectively
 removing Python's ability to take advantage of multi-processor
 systems.

PEP 371 -- Addition of the multiprocessing package to the standard l... http://www.python.org/dev/peps/pep-0371/

1 of 8 2/10/10 10:38 PM

 The pyprocessing package offers a method to side-step the GIL
 allowing applications within CPython to take advantage of
 multi-core architectures without asking users to completely change
 their programming paradigm (i.e.: dropping threaded programming
 for another "concurrent" approach - Twisted, Actors, etc).

 The Processing package offers CPython a "known API" which mirrors
 albeit in a PEP 8 compliant manner, that of the threading API,
 with known semantics and easy scalability.

 In the future, the package might not be as relevant should the
 CPython interpreter enable "true" threading, however for some
 applications, forking an OS process may sometimes be more
 desirable than using lightweight threads, especially on those
 platforms where process creation is fast and optimized.

 For example, a simple threaded application:

 from threading import Thread as worker

 def afunc(number):
 print number * 3

 t = worker(target=afunc, args=(4,))
 t.start()
 t.join()

 The pyprocessing package mirrored the API so well, that with a
 simple change of the import to:

 from processing import process as worker

 The code would now execute through the processing.process class.
 Obviously, with the renaming of the API to PEP 8 compliance there
 would be additional renaming which would need to occur within
 user applications, however minor.

 This type of compatibility means that, with a minor (in most cases)
 change in code, users' applications will be able to leverage all
 cores and processors on a given machine for parallel execution.
 In many cases the pyprocessing package is even faster than the
 normal threading approach for I/O bound programs. This of course,
 takes into account that the pyprocessing package is in optimized C
 code, while the threading module is not.

The "Distributed" Problem

 In the discussion on Python-Dev about the inclusion of this
 package [3] there was confusion about the intentions this PEP with
 an attempt to solve the "Distributed" problem - frequently
 comparing the functionality of this package with other solutions
 like MPI-based communication [4], CORBA, or other distributed
 object approaches [5].

 The "distributed" problem is large and varied. Each programmer
 working within this domain has either very strong opinions about
 their favorite module/method or a highly customized problem for
 which no existing solution works.

PEP 371 -- Addition of the multiprocessing package to the standard l... http://www.python.org/dev/peps/pep-0371/

2 of 8 2/10/10 10:38 PM

 The acceptance of this package does not preclude or recommend that
 programmers working on the "distributed" problem not examine other
 solutions for their problem domain. The intent of including this
 package is to provide entry-level capabilities for local
 concurrency and the basic support to spread that concurrency
 across a network of machines - although the two are not tightly
 coupled, the pyprocessing package could in fact, be used in
 conjunction with any of the other solutions including MPI/etc.

 If necessary - it is possible to completely decouple the local
 concurrency abilities of the package from the
 network-capable/shared aspects of the package. Without serious
 concerns or cause however, the author of this PEP does not
 recommend that approach.

Performance Comparison

 As we all know - there are "lies, damned lies, and benchmarks".
 These speed comparisons, while aimed at showcasing the performance
 of the pyprocessing package, are by no means comprehensive or
 applicable to all possible use cases or environments. Especially
 for those platforms with sluggish process forking timing.

 All benchmarks were run using the following:
 * 4 Core Intel Xeon CPU @ 3.00GHz
 * 16 GB of RAM
 * Python 2.5.2 compiled on Gentoo Linux (kernel 2.6.18.6)
 * pyProcessing 0.52

 All of the code for this can be downloaded from:
 http://jessenoller.com/code/bench-src.tgz

 The basic method of execution for these benchmarks is in the
 run_benchmarks.py script, which is simply a wrapper to execute a
 target function through a single threaded (linear), multi-threaded
 (via threading), and multi-process (via pyprocessing) function for
 a static number of iterations with increasing numbers of execution
 loops and/or threads.

 The run_benchmarks.py script executes each function 100 times,
 picking the best run of that 100 iterations via the timeit module.

 First, to identify the overhead of the spawning of the workers, we
 execute an function which is simply a pass statement (empty):

 cmd: python run_benchmarks.py empty_func.py
 Importing empty_func
 Starting tests ...
 non_threaded (1 iters) 0.000001 seconds
 threaded (1 threads) 0.000796 seconds
 processes (1 procs) 0.000714 seconds

 non_threaded (2 iters) 0.000002 seconds
 threaded (2 threads) 0.001963 seconds
 processes (2 procs) 0.001466 seconds

 non_threaded (4 iters) 0.000002 seconds
 threaded (4 threads) 0.003986 seconds

PEP 371 -- Addition of the multiprocessing package to the standard l... http://www.python.org/dev/peps/pep-0371/

3 of 8 2/10/10 10:38 PM

 processes (4 procs) 0.002701 seconds

 non_threaded (8 iters) 0.000003 seconds
 threaded (8 threads) 0.007990 seconds
 processes (8 procs) 0.005512 seconds

 As you can see, process forking via the pyprocessing package is
 faster than the speed of building and then executing the threaded
 version of the code.

 The second test calculates 50000 Fibonacci numbers inside of each
 thread (isolated and shared nothing):

 cmd: python run_benchmarks.py fibonacci.py
 Importing fibonacci
 Starting tests ...
 non_threaded (1 iters) 0.195548 seconds
 threaded (1 threads) 0.197909 seconds
 processes (1 procs) 0.201175 seconds

 non_threaded (2 iters) 0.397540 seconds
 threaded (2 threads) 0.397637 seconds
 processes (2 procs) 0.204265 seconds

 non_threaded (4 iters) 0.795333 seconds
 threaded (4 threads) 0.797262 seconds
 processes (4 procs) 0.206990 seconds

 non_threaded (8 iters) 1.591680 seconds
 threaded (8 threads) 1.596824 seconds
 processes (8 procs) 0.417899 seconds

 The third test calculates the sum of all primes below 100000,
 again sharing nothing.

 cmd: run_benchmarks.py crunch_primes.py
 Importing crunch_primes
 Starting tests ...
 non_threaded (1 iters) 0.495157 seconds
 threaded (1 threads) 0.522320 seconds
 processes (1 procs) 0.523757 seconds

 non_threaded (2 iters) 1.052048 seconds
 threaded (2 threads) 1.154726 seconds
 processes (2 procs) 0.524603 seconds

 non_threaded (4 iters) 2.104733 seconds
 threaded (4 threads) 2.455215 seconds
 processes (4 procs) 0.530688 seconds

 non_threaded (8 iters) 4.217455 seconds
 threaded (8 threads) 5.109192 seconds
 processes (8 procs) 1.077939 seconds

 The reason why tests two and three focused on pure numeric
 crunching is to showcase how the current threading implementation
 does hinder non-I/O applications. Obviously, these tests could be
 improved to use a queue for coordination of results and chunks of
 work but that is not required to show the performance of the
 package and core processing.process module.

PEP 371 -- Addition of the multiprocessing package to the standard l... http://www.python.org/dev/peps/pep-0371/

4 of 8 2/10/10 10:38 PM

 The next test is an I/O bound test. This is normally where we see
 a steep improvement in the threading module approach versus a
 single-threaded approach. In this case, each worker is opening a
 descriptor to lorem.txt, randomly seeking within it and writing
 lines to /dev/null:

 cmd: python run_benchmarks.py file_io.py
 Importing file_io
 Starting tests ...
 non_threaded (1 iters) 0.057750 seconds
 threaded (1 threads) 0.089992 seconds
 processes (1 procs) 0.090817 seconds

 non_threaded (2 iters) 0.180256 seconds
 threaded (2 threads) 0.329961 seconds
 processes (2 procs) 0.096683 seconds

 non_threaded (4 iters) 0.370841 seconds
 threaded (4 threads) 1.103678 seconds
 processes (4 procs) 0.101535 seconds

 non_threaded (8 iters) 0.749571 seconds
 threaded (8 threads) 2.437204 seconds
 processes (8 procs) 0.203438 seconds

 As you can see, pyprocessing is still faster on this I/O operation
 than using multiple threads. And using multiple threads is slower
 than the single threaded execution itself.

 Finally, we will run a socket-based test to show network I/O
 performance. This function grabs a URL from a server on the LAN
 that is a simple error page from tomcat. It gets the page 100
 times. The network is silent, and a 10G connection:

 cmd: python run_benchmarks.py url_get.py
 Importing url_get
 Starting tests ...
 non_threaded (1 iters) 0.124774 seconds
 threaded (1 threads) 0.120478 seconds
 processes (1 procs) 0.121404 seconds

 non_threaded (2 iters) 0.239574 seconds
 threaded (2 threads) 0.146138 seconds
 processes (2 procs) 0.138366 seconds

 non_threaded (4 iters) 0.479159 seconds
 threaded (4 threads) 0.200985 seconds
 processes (4 procs) 0.188847 seconds

 non_threaded (8 iters) 0.960621 seconds
 threaded (8 threads) 0.659298 seconds
 processes (8 procs) 0.298625 seconds

 We finally see threaded performance surpass that of
 single-threaded execution, but the pyprocessing package is still
 faster when increasing the number of workers. If you stay with
 one or two threads/workers, then the timing between threads and
 pyprocessing is fairly close.

 One item of note however, is that there is an implicit overhead
 within the pyprocessing package's Queue implementation due to the

PEP 371 -- Addition of the multiprocessing package to the standard l... http://www.python.org/dev/peps/pep-0371/

5 of 8 2/10/10 10:38 PM

 object serialization.

 Alec Thomas provided a short example based on the
 run_benchmarks.py script to demonstrate this overhead versus the
 default Queue implementation:

 cmd: run_bench_queue.py
 non_threaded (1 iters) 0.010546 seconds
 threaded (1 threads) 0.015164 seconds
 processes (1 procs) 0.066167 seconds

 non_threaded (2 iters) 0.020768 seconds
 threaded (2 threads) 0.041635 seconds
 processes (2 procs) 0.084270 seconds

 non_threaded (4 iters) 0.041718 seconds
 threaded (4 threads) 0.086394 seconds
 processes (4 procs) 0.144176 seconds

 non_threaded (8 iters) 0.083488 seconds
 threaded (8 threads) 0.184254 seconds
 processes (8 procs) 0.302999 seconds

 Additional benchmarks can be found in the pyprocessing package's
 source distribution's examples/ directory. The examples will be
 included in the package's documentation.

Maintenance

 Richard M. Oudkerk - the author of the pyprocessing package has
 agreed to maintain the package within Python SVN. Jesse Noller
 has volunteered to also help maintain/document and test the
 package.

API Naming

 While the aim of the package's API is designed to closely mimic that of
 the threading and Queue modules as of python 2.x, those modules are not
 PEP 8 compliant. It has been decided that instead of adding the package
 "as is" and therefore perpetuating the non-PEP 8 compliant naming, we
 will rename all APIs, classes, etc to be fully PEP 8 compliant.

 This change does affect the ease-of-drop in replacement for those using
 the threading module, but that is an acceptable side-effect in the view
 of the authors, especially given that the threading module's own API
 will change.

 Issue 3042 in the tracker proposes that for Python 2.6 there will be
 two APIs for the threading module - the current one, and the PEP 8
 compliant one. Warnings about the upcoming removal of the original
 java-style API will be issued when -3 is invoked.

 In Python 3000, the threading API will become PEP 8 compliant, which
 means that the multiprocessing module and the threading module will
 again have matching APIs.

PEP 371 -- Addition of the multiprocessing package to the standard l... http://www.python.org/dev/peps/pep-0371/

6 of 8 2/10/10 10:38 PM

Timing/Schedule

 Some concerns have been raised about the timing/lateness of this
 PEP for the 2.6 and 3.0 releases this year, however it is felt by
 both the authors and others that the functionality this package
 offers surpasses the risk of inclusion.

 However, taking into account the desire not to destabilize
 Python-core, some refactoring of pyprocessing's code "into"
 Python-core can be withheld until the next 2.x/3.x releases. This
 means that the actual risk to Python-core is minimal, and largely
 constrained to the actual package itself.

Open Issues

 * Confirm no "default" remote connection capabilities, if needed
 enable the remote security mechanisms by default for those
 classes which offer remote capabilities.

 * Some of the API (Queue methods qsize(), task_done() and join())
 either need to be added, or the reason for their exclusion needs
 to be identified and documented clearly.

Closed Issues

 * The PyGILState bug patch submitted in issue 1683 by roudkerk
 must be applied for the package unit tests to work.

 * Existing documentation has to be moved to ReST formatting.

 * Reliance on ctypes: The pyprocessing package's reliance on
 ctypes prevents the package from functioning on platforms where
 ctypes is not supported. This is not a restriction of this
 package, but rather of ctypes.

 * DONE: Rename top-level package from "pyprocessing" to
 "multiprocessing".

 * DONE: Also note that the default behavior of process spawning
 does not make it compatible with use within IDLE as-is, this
 will be examined as a bug-fix or "setExecutable" enhancement.

 * DONE: Add in "multiprocessing.setExecutable()" method to override the
 default behavior of the package to spawn processes using the
 current executable name rather than the Python interpreter. Note
 that Mark Hammond has suggested a factory-style interface for
 this[7].

References

 [1] PyProcessing home page
 http://pyprocessing.berlios.de/

 [2] See Adam Olsen's "safe threading" project
 http://code.google.com/p/python-safethread/

PEP 371 -- Addition of the multiprocessing package to the standard l... http://www.python.org/dev/peps/pep-0371/

7 of 8 2/10/10 10:38 PM

 [3] See: Addition of "pyprocessing" module to standard lib.
 http://mail.python.org/pipermail/python-dev/2008-May/079417.html

 [4] http://mpi4py.scipy.org/

 [5] See "Cluster Computing"
 http://wiki.python.org/moin/ParallelProcessing

 [6] The original run_benchmark.py code was published in Python
 Magazine in December 2007: "Python Threads and the Global
 Interpreter Lock" by Jesse Noller. It has been modified for
 this PEP.

 [7] http://groups.google.com/group/python-dev2/msg/54cf06d15cbcbc34

 [8] Addition Python-Dev discussion
 http://mail.python.org/pipermail/python-dev/2008-June/080011.html

Copyright

 This document has been placed in the public domain.

PEP 371 -- Addition of the multiprocessing package to the standard l... http://www.python.org/dev/peps/pep-0371/

8 of 8 2/10/10 10:38 PM

