Tiffany Q. Liu
March 21, 2011
CSC 270

Lab #7

Lab #7: GYR Sequencer
Introduction

The focus of this lab was to use a 74LS74 to build a 4-state sequencer that generates
signals representing the Green, Yellow, and Red lights of a traffic light.

Materials

I
AL

Figure 3. Oscilloscpe cables.

Figure 4. Tektronix MSO3000/DPO3000 Oscilloscope

Ll Lo [s] Led [s] o] L]

GND

Vee

[14] [13] [i2] [wr] [io] o] [e]

>
Doy Do

L) L2f Bl [ef Lo L] 7]

GND

Figure 7. Hex Inverter 74LS04 Compared to a USB Flash Drive.

LOGIC DIAGRAM (Each Flip-Flop) LOGIC SYMBOL

_ [4 10
SET[SD)qﬁD} . 5 &
=0 2—D D o—5 12—p 5D q—9
CLEAR (CD) © |
13 3—cp 11— cp
CLOCK © *
3 00 Cp Qp—~6 Cp Qp—28
6(8) o 5
Do
2(12) 1 13
Vee =PIN 14
GND=PINT

Figure 8. Dual D-Type Positive Edge-Triggered Flip-Flop 74LS74.
The GYR Sequencer

To implement a traffic-light sequencer according to the given state diagram (Fig. 9), we
first drew a timing diagram (Fig. 10).

G'Y'R ‘ @GY’ R

GYR’

Figure 9. State Diagram of GYR Sequencer.

Figure 10. Corresponding Timing Diagram for GYR Sequencer.

Next, we wrote up the following state transition table based on the state diagram:

Present State Sy Future State Sp+1
So S:
S S,
Sz SO
S3 S3

Table 1. State Transition Table for GYR Sequencer.
Knowing that there are 4 states to generate, we calculated the number of D flip-flops we
needed to build our sequencer based on the fact that n flip-flops can generate 2" states. In our

case, 2" = 4, so n would equal 2, which means that we needed 2 D flip-flops.
Then we assigned each state node in the state diagram with the binary representation of

flip-flop output Q1Qo:

5

GY

&/

Figure 11. State Diagram of GYR Sequencer with Assigned Flip-Flop Output.

We then updated the state transition table to include the Q outputs at time n and n+1:

Present Future

Sy Q" Qo | Q™ Q"% | Sma

So 0 0 0 1 Si

S: 0 1 1 0 S;

S, 1 0 0 0 So

S3 1 1 1 1 S3

Table 2. State Transition Table with Q Outputs.
Then we added the outputs (G, Y, R) to the above table:

Present Future Output
Sn Q" Q" Q™ Q™% Sv1] G| Y | R
So 0 0 0 1 S1 0|01
S1 0 1 1 0 S; 110|0
S, 1 0 0 0 So 0|10
S3 1 1 1 1 S3 0|01

Table 3. State Transition Table with G, Y, R Outputs.

Finally, we determined the Boolean equations for the D inputs and for the G, Y, and R
outputs. Using the above table we were able to determine that D; = Q™; = Q"y, Do = Q"% =
Q"1"-Q"%" + Q"1:Q"= (Q"1®Q")’, G=Q""-Q", Y = Q"1:Q"’, and R =Dy = (Q"1®Q")". We
verified our Boolean expressions using a modified version of D. Thiebaut’s GYRSequencer
python program:

GYRSequencer.py

Tiffany Liu and Millie Walsh

Modified wersion of D. Thiebaut's wvery guick and dirty way to check a
sSequencer. ..

This sequencer activates a G, ¥, and R light system
s.t. G iz on for 2 cycles, followed by ¥ for 1 cycle
followed by R for 1 cycle. Then the whole cycle repeats
Output when Q1 and Q0 start at 00:

QIQ0 =00 | GYR=001

>

QIQ0 =01 | GYR=1020

>

QIQ0 =10 | GYR=0120

>

QIQ0 =00 | GYR=00 1

>

QIQ0 =01 | GYR=1020

>

QIQ0 =10 | GYR=0120

>

QIQ0 =00 | GYR=00 1

>

QIQ0 =01 | GYR=1020

>

QIQD =10 | GYR=0 10

>

QIQ0 =00 | GYR=001

>

Cutput when Q1 and Q0 =start at 11:
Qg0 =11 | GYR=001

S e oS S e S S e e SHe S e e SHe S S e e e S S cHe e S S e e SHe S S S e e S SR e e S S e S S S SHe e S

>

QIQ0 =11 | GYR=0101
>

QIQ0 =11 | GYR=001
>

Qg0 =11 | GYR=001
>

QIQ0 =11 | GYR=0101
>

Qg0 =11 | GYR=001
>

QIQ0 =11 | GYR=0101
>

QIQ0 =11 | GYR=001
>
Q1 0
QoD =20

for step in range({ 20):

the Q1 and Q0 outputs go through combinational logic to generate
the new walues of D1, DO, and the outputs G, ¥, R...

ol o= Qo
D0 = not (QD ~ Q1)
G = (not Q1) & QO
¥ =Q1 & (not QO)
R = D0

show the stakle circuit signals
print "Q1Q0 = %d 3d | GYR = 3d 3d %d" % { Q1, QO0, G, Y, R)

wait for the next clock tick (the user presses Enter)
raw_inpuat{ "> " }

a=s soon as the clock has ticked, D1 and DO get latched in the
flipflops and Q1 and Q0 reflect the values captured.

Q1 = D1

QO = DO

Figure 12. Python Program Used to Verify Boolean Expressions with Output.

Once we verified that our Boolean expressions were valid, we wired up the following
circuit with the clock CLK set to 1Hz to demonstrate that our circuit worked with the G, Y, and
R outputs connected to LEDs:

[]

»

[8¢]

()]
Jom—m]
THT_

swl

13
A1l . 11
2 1

74

cE e

R
13

+\S::c
swl

A4
3 5
D_H »
TF e
R
71

+Veo

11

L5 |]

CLK—
Figure 13. Circuit Diagram for GYR Sequencer.

When sw1 was set to 1, our GYR traffic-light sequencer went through cycles of Sy 2> S; 2 S,.
When sw1 was set to 0, our GYR traffic-light sequencer stayed in Sz. In addition, when we set
swl back to 1, our GYR traffic-light sequencer kept staying in S3. This followed our timing and
state diagrams for our sequencer.

Finally, we connected our circuit to the oscilloscope to generate the 3 output signals G,
Y, and R with the clock CLK set to 100kHz. At first, we disconnected the output from the LEDs
and connected them to the oscilloscope with the voltage probes. However, the signals generated
by the scope were not what we expected, so we had to do some troubleshooting. First we
checked to see if there were any loose connections. When we determined that there were none,
we connected the outputs to both the LEDs and to the scope. Here, the signals for Y and R were
being generated as expected, however G was not. When the probe was connected to the G output
via the LED, the signal for G came out as expected. When this was done, we obtained the
following snapshot:

@ s.00V 2]

Value
72.0mv
3.20V
-119.0°

& amplitude
&P Amplitude
@D + &) Phase

100my

230MS/s
10k points
Max
72.0m
3.20

&
1.70V |
5td Dev]
0.00
0.00

"”’4.00;15
Ni@+~0.00000 s
Min
72.0m
3.20
Low signhal amplitude

Eorw.

Mean
72.0m

3.20 (10 Mar 2011]

N07:44:16

Figure 14. Screen Shot from Oscilloscope of Circuit from Figure Showing the Output Signals R

(Purple), Y (Yellow), and G (Blue).

Figure 14 matched the timing diagram for our GYR sequencer (Fig.10), verifying that our circuit

worked.

