
 
HCS12/9S12 Instruction Set Reference 

ABA (A)+(B) ! A, Add accumulator A and B EMIND Min{[D],[M:M+1]} ! D, (unsigned) 
ABX (B)+(X) ! X, Translates to LEAX B,X EMINM Min{[D],[M:M+1]} ! M:M+1, (unsigned) 
ABY (B)+(Y) ! Y, Translates to LEAY B,Y EMUL (Y)"(D) ! Y:D, 16 by 16 Bit Multiply (unsigned) 
ADCA (A)+(M) +C ! A, Add with Carry to A EMULS (Y)"(D) ! Y:D, 16 by 16 Bit Multiply (signed) 
ADCB (B)+(M) +C ! B, Add with Carry to B EORA (A)# (M) ! A, Exclusive OR A with Memory 
ADDA (A)+(M) ! A, Add without Carry to A EORB (B)# (M) ! B, Exclusive OR B with Memory 
ADDB (B)+(M) ! B, Add without Carry to B ETBL (M:M+1)" [(B)"((M+2:M+3)$(M:M+1))] ! D, Interpolate 
ADDD (A:B)+(M:M+1) ! A:B, add 16-bit to D EXG Exchange Register to Register 
ANDA (A)%(M) ! A, Logical AND A with memory FDIV (D)&(X) ! X, Remainder ! D, Fractional Divide 
ANDB (B)%(M) ! B, Logical AND B with memory IBEQ Increment Counter and Branch if = 0 
ANDCC (CCR)%(M)! CCR, Logical AND CCR with Memory IBNE Increment Counter and Branch if ' 0 
ASL Arithmetic Shift Left IDIV (D)&(X)!X, Remainder ! D, Integer Divide, (unsigned) 
ASLA Arithmetic Shift Left Accumulator A IDIVS (D)&(X)!X, Remainder ! D, Integer Divide, (signed) 
ASLB Arithmetic Shift Left Accumulator B INC (M)+1 ! M, Increment Memory Location 
ASLD Arithmetic Shift Left Accumulator D INCA (A)+1 ! A, Increment Accumulator A 
ASR Arithmetic Shift Right INCB (B)+1 ! B, Increment Accumulator B 
ASRA Arithmetic Shift Right Accumulator A INS (SP)+1 ! B, equivalent to LEAS 1, SP 
ASRB Arithmetic Shift Right Accumulator B INX (X)+1 ! X, Increment Index Register X 
BCC Branch if Carry Clear (if C = 0) INY (Y)+1 ! Y, Increment Index Register Y 
BCLR (M)% ! M, Clears Bit(s) in Memory JMP Jump [ mm] 
BCS Branch if Carry Set (if C = 1) JSR Jump to Subroutine 
BEQ Branch if Equal (if Z = l) LBCC Long Branch if Carry Clear (if C = 0) 
BGE Branch if Greater Than or Equal (if N#V = 0)(signed) LBCS Long Branch if Carry Set (if C = 1) 
BGND Place CPU in Background Mode LBEQ Long Branch if Equal (if Z = 1) 
BGT Branch if Greater Than (if Z+(N#V) = 0)(signed) LBGE Long Branch if Greater or Equal, (if N#V = 0), (signed) 
BHI Branch if Higher LBGT Long Branch if Greater Than (if Z+(N#V) = 0), (signed) 
BHS Branch if Higher or Same, (if C = 0)(unsigned) LBHI Long Branch if Higher (if C+Z = 0), (unsigned) 
BITA (A)%(M) Logical AND A with memory, sets CCR LBHS Long Branch if Higher or Same, (if C = 0), (unsigned) 
BITB (B)%(M), Logical AND B with memory, sets CCR LBLE Long Branch if (, (if Z+(N#V)=1), (signed) 
BLE Branch if Less Than or Equal, (if Z+(N#V) = 1)(signed) LBLO Long Branch if Lower, if (C=1), (unsigned) 
BLO Branch if Lower, if (C=1)(unsigned), equivalent to BCS LBLS Long Branch if Lower or Same, if (C+Z=1), (unsigned) 
BLS Branch if Lower or Same, (if C+Z = 1)(unsigned) LBLT Long Branch if Less Than, if (N#V = 1), (signed) 
BLT Branch if Less Than, (if N#V = 1)(signed) LBMI Long Branch if Minus (if N = 1) 
BMI Branch if Minus, (if N = l) LBNE Long Branch if Not Equal (if Z = 0) 
BNE Branch if Not Equal, (if Z = 0) LBPL Long Branch if Plus (if N = 0) 
BPL Branch if Plus, (if N = 0) LBRA Long Branch Always (if 1 = 1) 
BRA Branch Always, A(if 1 = 1) LBRN Long Branch Never (if 1 = 0) 
BRCLR Branch if [M]%[mm] = 0, (if all selected Bit(s) Clear) LBVC Long Branch if Overflow Bit Clear (if V = 0) 
BRN Branch Never,(if 1 = 0) LBVS Long Branch if Overflow Bit Set (if V = 1) 
BRSET Branch if ( M )%(mm) = 0, (if all selected Bit(s) Set) LDAA (M) ! A, Load Accumulator A 
BSET (M)+(mm) ! M, Set Bit(s) in memory LDAB (M) ! B, Load Accumulator B 
BSR Branch to Subroutine LDD (M:M+1) ! A:B, Load Double Accumulator D 
BVC Branch if Overflow Bit Clear (if V = 0) LDS (M:M+1) ! SP, Load Stack Pointer 
BVS Branch if Overflow Bit Set (if V = 1) LDX (M:M+1) ! X, Load Index Register X 
CALL Call Subroutine in Extended Memory LDY (M:M+1) ! Y, Load Index Register Y 
CBA (A)$(B), Compare 8-bit Accumulators LEAS Effective Address ! SP, Load Effective Address into SP 
CLC 0 ! C, Clear Carry Bit LEAX Effective Address ! X, Load Effective Address into X 
CLI 0 ! I, Enable Interrupts LEAY Effective Address ! Y, Load Effective Address into Y 
CLR 0 ! M, Clear Memory Location LSL Logical Shift Left (same function as ASL) 
CLRA 0 ! A, Clear Accumulator A LSLA Logical Shift Accumulator A to Left 
CLRB 0 ! B, Clear Accumulator B LSLB Logical Shift Accumulator B to Left 
CLV 0 ! V, Clear Overflow Bit LSLD Logical Shift Left D Accumulator (equiv. to ASLD) 
CMPA (A)$(M), Compare Accumulator A with Memory LSR Logical Shift Right 
CMPB (B)$(M), Compare Accumulator B with Memory LSRA Logical Shift Accumulator A to Right 

) *M  COM ! M, One’s Complement Memory Location LSRB Logical Shift Accumulator B to Right 

) *A ! A, One’s Complement Accumulator A LSRD Logical Shift Right D Accumulator COMA 

) *B ! B, One’s Complement Accumulator B MAXA MAX((A),(M)) ! A, MAX of 2 Unsigned 8-bit Values COMB 
CPD (A:B)$(M:M+1), Compare D to Memory (16-Bit) MAXM MAX((A),(M)) ! M, MAX of 2 Unsigned 8-bit Values 
CPS (SP)$(M:M+1), Compare SP to Memory (16-Bit) MEM Membership function for Fuzzy Logic 
CPX (X)$(M:M+1), Compare X to Memory (16-Bit) MINA MIN((A),(M)) ! A, MIN of 2 Unsigned 8-bit Values 
CPY (Y)$(M:M+1), Compare Y to Memory (16-Bit) MINM MIN((A),(M)) ! M, MIN of 2 Unsigned 8-bit Values 
DAA Adjust Sum to BCD MOVB (M1) ! M2, Memory to Memory Byte-Move (8 Bit) 
DBEQ Decrement Counter and Branch if Equal to 0 MOVW (M:M+11) ! M:M+12, Memory to Memory Word-Move  
DBNE Decrement Counter and Branch if Not Equal to 0 MUL (A)"(B) ! A:B, 8 by 8 Unsigned Multiply 
DEC Decrement Memory Location NEG 0$(M) ! M, Two’s Complement Negate 
DES Decrement Stack Pointer NEGA 0$(A) ! A, Negate Accumulator A 
DEX Decrement Index Register X NEGB 0$(B) ! B, Negate Accumulator B 
DEY Decrement Index Register Y NOP No Operation 
EDIV (Y:D)&(X) ! Y, Remainder ! D, (unsigned) ORAA (A)+(M) ! A, Logical OR A with Memory 
EDIVS (Y:D)&(X) ! Y, Remainder ! D, (signed) ORAB (B)+(M) ! B, Logical OR B with Memory 
EMACS (M(x):M(x+1))"(M(Y):M(Y+1))+(M~M+3) ! M~M+3, (signed) ORCC (CCR)+M ! CCR, Logical OR CCR with Memory 
EMAXD Max{[D],[M:M+1]} ! D, (unsigned) PSHA (SP)$1 ! SP, (A) ! M(SP), Push A onto Stack 
EMAXM Max{[D],[M:M+1]} ! M:M+1, (unsigned) PSHB (SP)$1 ! SP, (B) ! M(SP), Push B onto Stack 



 
HCS12/9S12 Instruction Set Reference 

PSHC (SP)$1 ! SP, (CCR) ! M(SP), Push CCR onto Stack SEX Sign Extend 8-bit r1 to 16-bit r2 
PSHD (SP)$2 ! SP, (A:B) ! M(SP):M(SP+1), Push D onto Stack STAA (A) ! M, Store A to Memory 
PSHX (SP)$2 ! SP, (XH:XL)! M(SP):M(SP+1), Push X onto Stack STAB (B) ! M, Store B to Memory 
PSHY (SP)$2 ! SP, (YH:YL)! M(SP):M(SP+1), Push Y onto Stack STD (A) ! M, (B) ! M+1 Store D to Memory 
PULA (M(SP)) ! A, (SP)+1 ! SP, Pull A from Stack STOP Stop All Clocks 
PULB (M(SP)) ! B, (SP)+1 ! SP, Pull B from Stack STS (SPH:SPL) ! M:M+1 Store Stack Pointer 
PULC (M(SP)) ! CCR, (SP)+1 ! SP, Pull CCR from Stack STX (XH:XL) ! M:M+1 Store Index Register X 
PULD (M(SP):M(SP+1)) ! A:B, (SP)+2 ! SP, Pull D from Stack STY (YH:YL) ! M:M+1 Store Index Register Y 
PULX (M(SP):M(SP+1))! XH:XL, (SP)+2 ! SP, Pull X from Stack SUBA (A)$(M) ! A, Subtract Memory from A 
PULY (M(SP):M(SP+1))! YH:YL, (SP)+2 ! SP, Pull Y from Stack SUBB (B)$(M) ! B, Subtract Memory from B 
REV Find smallest rule input (MIN). (8-bit offset) SUBD (B)$(M:M+1) ! D, Subtract Memory from D 
REVW Find smallest rule input (MIN). (16-bit offset) SWI Software Interrupt 
ROL Rotate Memory Left through Carry TAB Transfer A to B 
ROLA Rotate A Left through Carry TAP Translates to TFR  A, CCR 
ROLB Rotate B Left through Carry TBA Translate B to A 
ROR Rotate Memory Right through Carry TBEQ Test Counter and Branch if Zero 
RORA Rotate A Right through Carry TBL 8-bit Table Lookup and Interpolate 
RORB Rotate B Right through Carry TBNE Test Counter and Branch if Not Zero 
RTC Return from Call TFR Transfer Register to Register 
RTI Return from Interrupt TPA Translates to TFR  CCR A 
RTS Return from Subroutine TRAP Unimplemented opcode trap 
SBA Subtract B from A TST Test Memory for Zero or Minus 
SBCA Subtract with Borrow from A TSX Translates to TFR  SP, X 
SBCB Subtract with Borrow from B TSY Translates to TFR  SP, Y 
SEC 1 ! C, Translates to ORCC #$01 TXS Translates to TFR  X, SP 
SEI 1 ! I, Translates to ORCC  #$10 TYS Translates to TFR  Y, SP 
SEV 1 ! V, Translates to ORCC  #$02 WAI Wait for Interrupt 
  WAV Calculate Sum of Product and Sum of Weights for 

Weighted Average Calculation 
  WAVR Resume executing an interrupted WAV instruction 
  XGDX (D) + (X), Translates to EXG  D, X 
  XGDY (D) + (Y), Translates to EXG  D, Y 

 
 

 

D

PC

A B

X

S X H I N Z V C

CCR

Y

SP

carry

overflow

zero

negative

mask (disable) IRQ interrupts

half-carry (used in BCD arithmetic)
mask (disable) XIRQ interrupts

stop disable (ignore stop opcodes)

00

0

0

0

0

0

7 7

15

15

15

15

15


	HCS12/9S12 Instruction Set Reference
	HCS12/9S12 Instruction Set Reference

