HCS12/9S12 Instruction Set Reference

ABA
ABX
ABY
ADCA
ADCB
ADDA
ADDB
ADDD
ANDA
ANDB
ANDCC
ASL
ASLA
ASLB
ASLD
ASR
ASRA
ASRB
BCC
BCLR
BCS
BEQ
BGE
BGND
BGT
BHI
BHS
BITA
BITB
BLE
BLO
BLS
BLT
BMI
BNE
BPL
BRA
BRCLR
BRN
BRSET
BSET
BSR
BVC
BVS
CALL
CBA
CLC
CLI
CLR
CLRA
CLRB
CLV
CMPA
CMPB

COM
COMA

COMB

CPD
CPS
CPX
CPY
DAA
DBEQ
DBNE
DEC
DES
DEX
DEY
EDIV
EDIVS
EMACS
EMAXD
EMAXM

(A)+(B) = A, Add accumulator A and B

(B)+(X) = X, Translates to LEAX B,X

(B)+(Y) = Y, Translates to LEAY B,Y

(A)+(M) +C = A, Add with Carry to A

(B)y+(M) +C = B, Add with Carry to B

(A)+(M) = A, Add without Carry to A

(B)+(M) = B, Add without Carry to B
(A:B)+(M:M+1) = A:B, add 16-bit to D

(A)e(M) = A, Logical AND A with memory
(B)e(M) = B, Logical AND B with memory
(CCR)e(M)= CCR, Logical AND CCR with Memory
Arithmetic Shift Left

Arithmetic Shift Left Accumulator A

Arithmetic Shift Left Accumulator B

Arithmetic Shift Left Accumulator D

Arithmetic Shift Right

Arithmetic Shift Right Accumulator A

Arithmetic Shift Right Accumulator B

Branch if Carry Clear (if C = 0)

(M)e[mm] = M, Clears Bit(s) in Memory

Branch if Carry Set (if C = 1)

Branch if Equal (if Z = 1)

Branch if Greater Than or Equal (if N®V = 0)(signed)
Place CPU in Background Mode

Branch if Greater Than (if Z+(N@®V) = 0)(signed)
Branch if Higher

Branch if Higher or Same, (if C = 0)(unsigned)
(A)e(M) Logical AND A with memory, sets CCR
(B)e(M), Logical AND B with memory, sets CCR
Branch if Less Than or Equal, (if Z+(N®V) = 1)(signed)
Branch if Lower, if (C=1)(unsigned), equivalent to BCS
Branch if Lower or Same, (if C+Z = 1)(unsigned)
Branch if Less Than, (if N®V = 1)(signed)

Branch if Minus, (if N =1)

Branch if Not Equal, (if Z = 0)

Branch if Plus, (if N = 0)

Branch Always, A(if 1 = 1)

Branch if [M]e[mm)] = 0, (if all selected Bit(s) Clear)
Branch Never,(if 1 =0)

Branch if (M)e(mm) = 0, (if all selected Bit(s) Set)
(M)+(mm) = M, Set Bit(s) in memory

Branch to Subroutine

Branch if Overflow Bit Clear (if V = 0)

Branch if Overflow Bit Set (if V = 1)

Call Subroutine in Extended Memory

(A)—(B), Compare 8-bit Accumulators

0 = C, Clear Carry Bit

0 = I, Enable Interrupts

0 = M, Clear Memory Location

0 = A, Clear Accumulator A

0 = B, Clear Accumulator B

0 =V, Clear Overflow Bit

(A)—(M), Compare Accumulator A with Memory
(B)-(M), Compare Accumulator B with Memory

(M) = M, One’s Complement Memory Location
(X) = A, One’s Complement Accumulator A

(ﬁ) = B, One’s Complement Accumulator B

(A:B)-(M:M+1), Compare D to Memory (16-Bit)
(SP)—(M:M+1), Compare SP to Memory (16-Bit)
(X)-(M:M+1), Compare X to Memory (16-Bit)
(Y)-(M:M+1), Compare Y to Memory (16-Bit)
Adjust Sum to BCD

Decrement Counter and Branch if Equal to 0
Decrement Counter and Branch if Not Equal to 0
Decrement Memory Location

Decrement Stack Pointer

Decrement Index Register X

Decrement Index Register Y

(Y:D)+(X) = Y, Remainder = D, (unsigned)
(Y:D)+(X) = Y, Remainder = D, (signed)
(M(X)ZM(XH))X(M(Y)ZM(Y+1))+(M~M+3) = M~M.;, (signed)
Max {[D],[M:M+1]} = D, (unsigned)

Max {[D],[M:M+1]} = M:M+1, (unsigned)

EMIND
EMINM
EMUL
EMULS
EORA
EORB
ETBL
EXG
FDIV
IBEQ
IBNE
DIV
IDIVS
INC
INCA
INCB
INS
INX
INY
TMP
ISR
LBCC
LBCS
LBEQ
LBGE
LBGT
LBHI
LBHS
LBLE
LBLO
LBLS
LBLT
LBMI
LBNE
LBPL
LBRA
LBRN
LBVC
LBVS
LDAA
LDAB
LDD
LDS
LDX
LDY
LEAS
LEAX
LEAY
LSL
LSLA
LSLB
LSLD
LSR
LSRA

LSRB
LSRD

MAXA

MAXM
MEM
MINA
MINM
MOVB
MOVW
MUL
NEG
NEGA
NEGB
NOP
ORAA
ORAB
ORCC
PSHA
PSHB

Min{[D],[M:M+1]} = D, (unsigned)
Min{[D],[M:M+1]} = M:M+1, (unsigned)

(Y)x(D) = Y:D, 16 by 16 Bit Multiply (unsigned)
(Y)x(D) = Y:D, 16 by 16 Bit Multiply (signed)

(A)® (M) = A, Exclusive OR A with Memory

(B)® (M) = B, Exclusive OR B with Memory
M:M;)x [(B)x((M:2:M3)-(M:M,1))] = D, Interpolate
Exchange Register to Register

(D)+(X) = X, Remainder = D, Fractional Divide
Increment Counter and Branch if = 0

Increment Counter and Branch if # 0

(D)+(X)=X, Remainder = D, Integer Divide, (unsigned)
(D)+(X)=X, Remainder = D, Integer Divide, (signed)
(M)+1 = M, Increment Memory Location

(A)+1 = A, Increment Accumulator A

(B)+1 = B, Increment Accumulator B

(SP)+1 = B, equivalent to LEAS 1, SP

(X)+1 = X, Increment Index Register X

(Y)+1 =Y, Increment Index Register Y

Jump

Jump to Subroutine

Long Branch if Carry Clear (if C = 0)

Long Branch if Carry Set (if C= 1)

Long Branch if Equal if Z=1)

Long Branch if Greater or Equal, (if N®V = 0), (signed)
Long Branch if Greater Than (if Z+(N®V) = 0), (signed)
Long Branch if Higher (if C+Z = 0), (unsigned)

Long Branch if Higher or Same, (if C = 0), (unsigned)
Long Branch if <, (if Z+(N®V)=1), (signed)

Long Branch if Lower, if (C=1), (unsigned)

Long Branch if Lower or Same, if (C+Z=1), (unsigned)
Long Branch if Less Than, if (N®V = 1), (signed)
Long Branch if Minus (if N = 1)

Long Branch if Not Equal (if Z = 0)

Long Branch if Plus (if N = 0)

Long Branch Always (if 1 = 1)

Long Branch Never (if 1 = 0)

Long Branch if Overflow Bit Clear (if V = 0)

Long Branch if Overflow Bit Set (if V= 1)

(M) = A, Load Accumulator A

(M) = B, Load Accumulator B

(M:M+1) = A:B, Load Double Accumulator D
(M:M+1) = SP, Load Stack Pointer

(M:M+1) = X, Load Index Register X

(M:M+1) =Y, Load Index Register Y

Effective Address = SP, Load Effective Address into SP
Effective Address = X, Load Effective Address into X
Effective Address = Y, Load Effective Address into Y’
Logical Shift Left (same function as ASL)

Logical Shift Accumulator A to Left

Logical Shift Accumulator B to Left

Logical Shift Left D Accumulator (equiv. to ASLD)
Logical Shift Right

Logical Shift Accumulator A to Right

Logical Shift Accumulator B to Right
Logical Shift Right D Accumulator

MAX((A),(M)) = A, MAX of 2 Unsigned 8-bit Values

MAX((A),(M)) = M, MAX of 2 Unsigned 8-bit Values
Membership function for Fuzzy Logic

MIN((A),(M)) = A, MIN of 2 Unsigned 8-bit Values
MIN((A),(M)) = M, MIN of 2 Unsigned 8-bit Values
(M) = M,, Memory to Memory Byte-Move (8 Bit)
(M:M+1,) = M:M+1,, Memory to Memory Word-Move
(A)x(B) = A:B, 8 by 8 Unsigned Multiply

0-(M) = M, Two’s Complement Negate

0—(A) = A, Negate Accumulator A

0—-(B) = B, Negate Accumulator B

No Operation

(A)+(M) = A, Logical OR A with Memory

(B)*+(M) = B, Logical OR B with Memory

(CCR)+M = CCR, Logical OR CCR with Memory
(SP)-1 = SP, (A) = Msp), Push A onto Stack

(SP)-1 = SP, (B) = Msp), Push B onto Stack

HCS12/9S512 Instruction Set Reference

PSHC (SP)-1 = SP, (CCR) = Msp), Push CCR onto Stack SEX Sign Extend 8-bit r1 to 16-bit r2
PSHD (SP)-2 = SP, (A:B) = Msp):Msp+1), Push D onto Stack STAA (A) = M, Store A to Memory
PSHX (SP)-2 = SP, (Xu:X1)= M(sp):Msp+1), Push X onto Stack | STAB (B) = M, Store B to Memory
PSHY (SP)-2 = SP, (Yu:Y1L)= Msp):Msp+1), Push Y onto Stack | STD (A) = M, (B) = M+1 Store D to Memory
PULA (Msp)) = A, (SP)+1 = SP, Pull A from Stack STOP Stop All Clocks
PULB (Msp)) = B, (SP)+1 = SP, Pull B from Stack STS (SPy:SPr) = M:M+1 Store Stack Pointer
PULC (Mgsp)) = CCR, (SP)+1 = SP, Pull CCR from Stack STX (Xu:X1) = M:M+1 Store Index Register X
PULD (Mgsp:Msp+1y) = A:B, (SP)+2 = SP, Pull D from Stack STY (Y1:Yr) = M:M+1 Store Index Register Y
PULX (Mspy:Msp+1))= Xu: X1, (SP)+2 = SP, Pull X from Stack | SUBA (A)-(M) = A, Subtract Memory from A
PULY (Mspy:Msp+1)= Yu: Y1, (SP)+2 = SP, Pull Y from Stack | SUBB (B)-(M) = B, Subtract Memory from B
REV Find smallest rule input (MIN). (8-bit offset) SUBD (B)-(M:M+1) = D, Subtract Memory from D
REVW Find smallest rule input (MIN). (16-bit offset) SWI Software Interrupt
ROL Rotate Memory Left through Carry TAB Transfer A to B
ROLA Rotate A Left through Carry TAP Translates to TFR A, CCR
ROLB Rotate B Left through Carry TBA Translate B to A
ROR Rotate Memory Right through Carry TBEQ Test Counter and Branch if Zero
RORA Rotate A Right through Carry TBL 8-bit Table Lookup and Interpolate
RORB Rotate B Right through Carry TBNE Test Counter and Branch if Not Zero
RTC Return from Call TFR Transfer Register to Register
RTI Return from Interrupt TPA Translates to TFR CCR A
RTS Return from Subroutine TRAP Unimplemented opcode trap
SBA Subtract B from A TST Test Memory for Zero or Minus
SBCA Subtract with Borrow from A TSX Translates to TFR SP, X
SBCB Subtract with Borrow from B TSY Translates to TFR SP, Y
SEC 1 = C, Translates to ORCC #$01 TXS Translates to TFR X, SP
SEI 1 = I, Translates to ORCC #$10 TYS Translates to TFR Y, SP
SEV 1 =V, Translates to ORCC #$02 WAI Wait for Interrupt
WAV Calculate Sum of Product and Sum of Weights for
Weighted Average Calculation
WAVR Resume executing an interrupted WAV instruction
XGDX (D) < (X), Translates to EXG D, X
XGDY (D) < (Y), Translates to EXG D, Y
CCR
A Oj7 B SIX|H[I[N|Z c
15 D
\— carry
‘ 5 X 0 ‘ overflow
zero
15 Y 0 | .
negative
‘ 15 PC 0 ‘ mask (disable) IRQ interrupts
half-carry (used in BCD arithmetic)
‘ 15 SP 0 ‘ mask (disable) XIRQ interrupts

stop disable (ignore stop opcodes)

	HCS12/9S12 Instruction Set Reference
	HCS12/9S12 Instruction Set Reference

