
CHAPTER 1

A Monte-Carlo Calculation of Pi

1.1 Experimental Basis - “Tossing Toothpicks”

Monte-Carlo(MC) techniques are numerical algorithms that utilize (pseudo) random num-
bers to perform mathematical calculations and to model physical systems or simulate an
experimental procedure. In the present case the experiment is a rather simple one which
itself uses a stochastic process- one that has an inherent element of randomness in it - to
obtain an estimate for π. The experimental procedure is as follows:

• On a large piece of styrofoam board draw parallel lines that are separated by a distance
equal to the length of a standard (round) toothpick.

• “sprinkle” a large number of toothpicks onto the board, N .

• Record the number of toothpicks that cross any of the parallel lines, Nc.

• Calculate an estimation for π using the relationship., π � 2N
Nc

The outcome of such experiments is usually quite good, providing values of π with an error
of approximately 5%. In figure 1.1 for example, 175 toothpicks were used and 107 crossed
a line, yielding a value of 3.271 for π. This represents an error of only 4.1%! The nature
of the expected error will be discussed at greater length below. For now it should be clear
that as the number of toothpicks used is increased, the error achieved should decrease.

2

CHAPTER 1. A MONTE-CARLO CALCULATION OF PI 3

Figure 1.1: The value of π may be approximated quite well using statistically based methods.
Here π � 2N

Nc
, where N is the total number of toothpicks and Nc is the number crossing any

of the parallel lines.

1.2 An Analytic Model

The following interpretation of the experiment is attributed to Hans Betthe1 and assumes
that the distribution of the toothpicks is random. This being the case one may assume that
the angle that any given toothpick makes with any of the lines is also random. For simplicity
imagine a toothpick that just touches a line as shown below.

L
θ

σ

Figure 1.2: The distribution of the toothpicks may be described in terms of the perpendicular
distance from the line, σ = L sin θ.

The distribution of the toothpicks may be described in terms of the perpendicular dis-
tance from the line, σ = L sin θ, and the angle θ may vary on the closed interval [0, π].
Hence the total effective “area” of the distribution is given by,

A = Lπ. (1.1)

The total “crossing area” due to the angular distribution is simply,

Ac =
∫

σ(L, θ)dθ

= L

∫ π

0

sin θ dθ . (1.2)

= −L cos θ
∣∣∣π
0

= 2L

These areas are more mathematical than physical, but may be displayed graphically for
illustration purposes. To do this use MAPLE code similar to the following:

with(plots):

with(plottools):

bplot:=plot([[0,0],[0,1],[Pi,1],[Pi,0],[0,0]]):

cplot:=plot(1*sin(theta),theta=0..Pi,color=blue):

tplot:=PLOT(TEXT([evalf(Pi),0],"p",ALIGNRIGHT,FONT(SYMBOL)),

TEXT([0,0],"0",ALIGNLEFT),

TEXT([0,1],"L",ALIGNLEFT),

TEXT([evalf(Pi)/2,1/2],"Ac"),

TEXT([3,3/4],"A"),

AXESSTYLE(NONE)):

display(bplot,cplot,tplot);

1One of the fathers of the atomic bomb.

CHAPTER 1. A MONTE-CARLO CALCULATION OF PI 4

A

Ac

L

0 π

The ratio of the total area to the crossing area is then shown to be proportional to π. I. e.,

A

Ac
=

Lπ

2L
=

π

2
(1.3)

The argument then becomes that if the distribution is indeed random, the ratio of
the number of toothpicks that cross a line to the total number of toothpicks should be
proportional to the ratio of the respective distribution areas. That is, N

Nc
∝ A

Ac
so that one

may write,

π � 2N
Nc

1.3 Computer Simulation - “Throwing Stones”

1.3.1 The Idea

In order to simulate the statistical calculation of π accomplished by tossing toothpicks
a large amount of time might be devoted to thinking about how to provide a graphical
representation of the situation. Instead the idea employed here is to utilize the same basic
concept in a way that side steps some of the complications that might arise. The method
used here is adapted from [?], and utilizes the distribution of random points over a unit
circle inscribed by a square to determine a value for π. A typical run is shown in figure 1.3
below.

CHAPTER 1. A MONTE-CARLO CALCULATION OF PI 5

–1

–0.5

0.5

1

–1 –0.5 0.5 1

Figure 1.3: By determining the number of ordered pairs that lie inside the unit circle one
may estimate the value of π. Here 5000 points are shown yielding a value for of 3.1504.

The ratio of the area of the inscribed circle to that of the square is simply, π(1)2

22 = π/4.
If one then assumes that the pairs are uniformly distributed, then this ratio should be well
approximated by the ratio of the number of pairs that “fall” within the circle to the total
number. I. e.,

π � 4Nc

N

With the concept established one may design an algoritmic solution as follows:

• Generate a N pairs of random numbers drawn from the interval [−1, 1].

• Determine the number, Nc of pairs that fall inside of the unit circle.

• Calculate an estimate for π.

• Calculate the error associated with the distribution.

This approach may be implemented in a straightforward manner. For example, one may
implement it in FORTRAN using a simple DO-Loop construct as the following code fragment
illustrates.2

...
DO i = 1, N

x = Rand()*2-1
y = Rand()*2-1
WRITE(50,*) x, y
IF ((x*x + y*y) .LE. 1.0) THEN

Nc = Nc + 1
ELSE

Ns = Ns + 1
END IF
est = 4.0*Nc/(Nc+Ns)
sum = sum + est
mu = sum/(Nc+Ns)

2The complete program listing may be found at the end of the chapter.

CHAPTER 1. A MONTE-CARLO CALCULATION OF PI 6

var = (var + (mu-est)**2)/(Nc+Ns)
dev = SQRT(var)
...

END DO
...

Typical output from this implementation is shown in figure 1.4.

3.1

3.15

3.2

3.25

3.3

3.35

est

1000 2000 3000 4000 5000
N

Pi Estimate

Figure 1.4: Here 5000 random points are used to obtain an estimate for π. The statistical
distribution of values has a deviation of less than one part in a thousand.

Notice that the estimates vary greatly for small numbers but converge rapidly. Furthermore,
some of the values reached early on(at 550 the value is 3.1418) during this run seem better
than those achieved later (at 5000 the value was 3.1503). This is due to the statistical
fluctuation of the actual data generated during a particular run. In the present case the
accepted value of pi could of course be used to “break out” of the loop when ever the desired
accuracy was reached, but more generally the value sought in a calculation is not known
and a statistical treatment of the error is most appropriate.

1.3.2 The Nature of Statistical Error

The traditional measure of the error associated with a statistical distribution of data is the
standard deviation, σ. Recall that the variance of a discrete distribution is given by,

variance ≡ σ2 =
1
N

N∑
i=1

(μ − xi)2, (1.4)

where μ ≡ 1
N

∑N
i=1 xi is the average of the distribution. Hence one may write,

σ ∝ 1√
N

CHAPTER 1. A MONTE-CARLO CALCULATION OF PI 7

for the (standard) deviation. In other words, the quantity
√

Nσ should be proportional to a
constant. What this means is that for large numbers, and for “well behaved” distributions,
a plot of the σ versus 1/

√
N should approach that of a straight line. This behavior can

be seen in figure 1.5 shown below.(Note that the region of interest is that approaching the
origin, where N is large.)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Deviation

0.05 0.1 0.15 0.2 0.25 0.3
1/sqrt(N)

Distribution Behavior

Figure 1.5: The standard deviation of a well behaved statistical distribution should approach
a straight line for large values.

1.3.3 Pseudo-Random Numbers

The only processes that are truly random are those that occur in nature. A naturally
occurring process that has an element of randomness in it is often referred to as a stochastic
process. In order to model such phenomena it is necessary to generate numbers that are
good approximations to truly random numbers. Numbers generated in this fashion are said
to pseudo-random. This is because all (mathematical) techniques of generating “numbers at
random” are inherently algorithmic. That is, one normally chooses a “seed” value and then
applies some operation (such as modulo arithmetic) and then operates on the result.

The Uniform Distribution

The most obvious way of assessing whether or not a particular set of numbers is (nearly)
random is to construct a histogram showing the possible outcomes along with there respec-
tive probabilities. As an example, consider tossing a single die. If the die is not weighted,
then each face has a equal probability (1

6) of coming up. If the possible outcomes of a
random process all occur with an equal probability the distribution is said to be
uniform. To see if this indeed the case, one may roll the die a large number of times and see
if this hypothesis holds true. In figure 1.6 below, one sees that in a particular run a single
die was thrown one-thousand times. While the probabilities of each occurrence (1 . . . 6) are
not exactly the same, they are similar to one another and the distribution of outcomes does
not display any obvious signs of weighting.

CHAPTER 1. A MONTE-CARLO CALCULATION OF PI 8

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Prob.

1 2 3 4 5 6
Outcome

Dice Probability (1000 Rolls)

Figure 1.6: The distribution of outcomes for tossing a single (fair) die show that the outcomes
are nearly equal in probability- indicating a uniform distribution.

Most modern programming languages include a built-in random number generator, such
as FORTRAN’s Rand() function shown in the code fragment above. This is true of MAPLE
as well. To generate a (uniformly distributed) random number on the interval [a, b] a MAPLE
user would call the rand procedure in the following manner:

a:=0: b:=10:

r:=rand(a..b):

r();

r();

9
4

Note that calls to the rand function must be made with an integer range spec-
ification. This does not mean that other real (or complex) numbers can not be generated
however. For instance to generate random numbers on the closed interval, [−1, 1] one might
use code similar to the following:

Digits:=30:

s:=10^(Digits):

unit_rand:=rand(-s..s)/s:

unit_rand();

unit_rand();

.358391135537108795991637819437
−.125690257132768639497457917923

CHAPTER 1. A MONTE-CARLO CALCULATION OF PI 9

Other Useful Distributions

While many stochastic processes are best modeled using uniformly distributed random num-
bers, it is sometimes wise to“pull”the numbers from a distribution which reflects a physically
significant distribution. In this case, one acknowledges from the beginning that the proba-
bility of each outcome may not be similar, and is hoping to weight them in a way. When
the possible outcomes of a random process occur with an unequal probability
the distribution is said to be nonuniform.

Some of the most important distribution functions used in the physical sciences are,

Binomial : PB(x) =
n!

x!(n − x)!
px(1 − p)n−x (1.5a)

Poissonian : PP (x) =
μxe−μ

x!
(1.5b)

Gaussian : PG(x) =
1√
2πσ

e−
(x−μ)2

2σ2 (1.5c)

Lorentzian : PL(x) =
1
π

Γ/2
(x − μ)2 + (Γ/2)2

(1.5d)

The Binomial and Poissonian distributions are discrete distributions. This is because for
the Binomial distribution, n is an integer and p is a real number such that 0 < p ≤ 1. For
the Poissonian distribution the average value, μ is given by, μ = np. While the Binomial
distribution may be most appropriate for calculating permutational probabilities, the Pois-
sonian distribution may be used to model discrete stochastic phenomena such as nuclear
decay and digital packet switching. The parameter, σ indicates the (standard) deviation
and Γ = 2.354σ is the full-width at half-maximum(FWHM) value. The intensity profiles of
laser light and the (ideal) distribution of grades, for instance, obey Gaussian statistics and
the responses of many optical devices are well modeled with a Lorentzian using a Cauchy
distribution function.3

In figure 1.7 each of the distributions given in equations (1.5) have been plotted for com-
parison. Note that while each is plotted over the same range, the Binomial and Poissonian
functions have been plotted using points to remind the reader that they are in fact discrete
distributions. The parameters, n = 2, and p = 1

4 were used. Observe that the Binomial
and Poissonian distributions are not symmetric about the mean value, μ = 1

2 , but both the
Gaussian and Lorentzian distributions are.

3The general Cauchy distribution function is given by, P (x) = 1
π

b
(x−μ)2+b2

.

CHAPTER 1. A MONTE-CARLO CALCULATION OF PI 10

 Lorentzian

 Gaussian

 Poissonian

 Binomial

–1

–0.5

0

0.5

1

1.5

2

P(x)

–2 –1 0 1 2 3
x

Distribution Functions

Figure 1.7: When modeling stochastic processes it is often necessary to draw any
(pseudo)random numbers being used from a nonuniform distribution function which may
have some physical significance.

These distributions are all available using MAPLE ’s statistics package.4 As an example
of how one might generate a sequence of numbers drawn from each of them, consider the
following MAPLE session:

with(stats):

Digits:=4:

n:=2: mu:=1/2: sig:=1/sqrt(2): gam:=evalf(2.354*sig):

Binomial:=random[binomiald[n,mu]]:

Binomial(5);

Poissonian:=random[poisson[mu]]:

Poissonian(5);

Gaussian:=random[normald[mu,sig]]:

Gaussian(5);

Lorentzian:=random[cauchy[mu,gam]]:

Lorentzian(5);

0, 1.0, 2.0, 0, 2.0
0, 2.0, 0, 1.0, 0

.3253, 1.632, .8747, .9528,−.0221
.5822, 1.051, 3.302, 6.968, 2.602

To understand why one may wish to draw random numbers from a particular distribution,
consider that the Lorentzian distribution is said to “heavy” tails. This means that the
likelihood of choosing a number at random that is far from the mean of the distribution is

4For a complete list of the distributions in the statistics package type ?stats[distribution] at the
command prompt.

CHAPTER 1. A MONTE-CARLO CALCULATION OF PI 11

greater than when using the Gaussian distribution.

–200

0

200

400

600

800

y

0 200 400 600 800
x

(a)

–2600

–2400

–2200

–2000

–1800

–1600

–1400

–1200

–1000

–800

–600

–400

–200

0

200

400

600

800

y

–1000 –800 –600 –400 –200 0 200 400
x

(b)

–10000

–5000

0

5000

y

–6000 –4000 –2000 0
x

(c)

Figure 1.8: (a) 50, (b) 100, and (c) 500, random pairs have been drawn from Gaussian (blue)
and Lorentzian (magenta) distribution functions. Here μ = 0 and σ = 10.

This effect may be quite dramatic. Observe that in figure 1.8 the “spread” of random
points drawn from a Lorentzian distribution increases dramatically as the number of points
is increased. These plots were obtained with the following code,

with(plots):

with(stats):

mu:=0: sig:=10: gam:= 2.354*sig:

Grand:=random[normald[mu,sig]]: Lrand:=random[cauchy[mu,gam]]:

T:=500: for i from 1 to T do

G[i]:=[Grand(),Grand()]:

L[i]:=[Lrand(),Lrand()]:

od:

Gseq:=[seq(G[i],i=1..T)]:

Lseq:=[seq(L[i],i=1..T)]:

Gplot:=plot(Gseq,style=point,color=blue,symbol=circle):

Lplot:=plot(Lseq,style=point,color=magenta,symbol=circle):

display(Gplot,Lplot,axes=boxed,labels=["x","y"]);

and are consistent with the assertion that for a normal (Gaussian) distribution, 95% of the
datum should fall within one standard deviation of the mean, 98.5% should fall within two
standard deviations of the mean, and 99.9% should fall within three standard deviations of
the mean. The mean here is zero and a standard deviation of σ = 10 was assumed. The
probability of occurences outside of this region is therefore very low. On the other hand,
one sees that the probability of drawing datum far from the mean value is greatly increased
when using a Lorentzian distribution.

The nonuniform nature of such distributions may be desirable in some applications, but
not in others. In the present case, the choice of a uniform distribution seems most appro-
priate because, while the distribution of toothpicks in figure 1.1 is not perfectly uniform,
they appear to be nearly so. In addition, the underlying assumption of the equivalence of
the ratio of the areas of the square to the inscribed circle, to that of the ratio of the total
number of toothpicks to the number crossing any line, is most simply made when assuming
a uniform distribution.

CHAPTER 1. A MONTE-CARLO CALCULATION OF PI 12

QUIZ Write a MAPLE procedure that will generate N pairs of points that
fall inside of a rectangle of width, a and height, b. For example,
draw the x-coordinates values from [0, a] and the y-coordinates
values from [0, b]. The procedure should also draw a “box” (with
a color of your choosing) around these points and label the cor-
ners, lower-left(“LL”), lower-right(“LR”), upper-right(“UR”), and
upper-left(“UL”) using the plottools package to place the text.
Call your procedure using values of a = 10, b = 5 and N = 100.
Once you have obtained this “static” result, construct an ani-
mation sequence consisting of ten frames- showing succesively
larger amounts of the total data set. Export your document in
HTML format and publish it on your local webserver.

CHAPTER 1. A MONTE-CARLO CALCULATION OF PI 13

1.4 Project Assignment

As shown in figure 1.3 in section 1.3.1 the basic requirements for this simulation are the
production of uniformly distributed random points in the region, [−rc, rc], where rc is the
radius of a circle,5 along with a method for determine where the points fall. With this a
statistical value for π may be calculated. The principle goals of the simulation are to con-
struct a MAPLE procedure that will produce an animation sequence which displays “frames”
similar to figure 1.3. The number of points, N, used and the number of frames, Nf, should
be among the parameters that are specified in the procedural definition. While particular
implementations may vary, a simple method for creating the lists of points to be plotted in
each frame is,

for i from 1 to N/Nf do

L[i]:=[seq([r(),r()], j=1..i*Nf)]:

od:

where r is a random number on the appropriate interval. The number of points falling within
the unit circle may be incremented using a simple if-then construct. (See the FORTRAN
implementation in section 1.5 for ideas on how to implemnt this in MAPLE .)

In addition to the animation sequence, plots of the statistical value of π (as a function of
the total number of points) should be plotted (c. f., figure 1.4 and a plot of the (standard)
deviation (similar to that shown in figure 1.5) should be made. To produce these plots two
lists of ordered pairs of points will have to be constructed. In the case of plotting the value
of π, the current value of the number of points (I. e., a loop-indicator, i.) should be the first
element of the pair and the calculated value (here referred to as ‘est’) should be the second
element. To accomplish this one may add code similar to the following to the body of the
do-loop that is being used to calculate the estimate:

error[i]:=[i,est[i]]:

Once the loop is finished the points may be “zipped up” using a seq command, so that they
may be plotted.

1.4.1 Extensions

A Three-Dimensional Implementation

The statistical method for estimating a value of π may be generalized using a three-
dimensional implementation. Random points may be generated within a cube that inscribes
a sphere and if a uniform distribution is used, the ratio of the volume of the sphere to that
of the cube should be proportional to the ratio of the number of pairs falling within the
sphere (Ns) to the total number. Rudimentary analysis shows that,

π ∝ 6Ns

N

A representation of such a simulation is illustrated in figure 1.9 below.

5The choice of rc = 1 was arbitrary.

CHAPTER 1. A MONTE-CARLO CALCULATION OF PI 14

–1
–0.8

–0.6
–0.4

–0.2
0

0.2
0.4

0.6
0.8

1

–1–0.8
–0.4

0 0.2 0.4 0.6 0.8 1

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

Figure 1.9: Here 1000 (uniform) random pairs have been plotted within a unit cube. Sta-
tistical arguments show that π � 6Ns

N , where Ns is the number of pairs falling within the
unit sphere.

Modification of the procedural solution to the two-dimensional simulation should be
carried out and an estimate for the value of π using (at least) 5000 pairs of numbers should
be obtained. When the procedure is called, the number of points and frames should be
variable and an animation sequence along with the (final) estimate for π and the standard
deviation of the distribution should be output. Graphs of the successive values of these
quantities are not required.

Using a Nonuniform Distribution

As mentioned at several points in the text, the statistical argument employed here requires
that uniformly distributed random numbers be used. If this is not done the proportion of
pairs falling inside or outside of the circle may be weighted unevenly. As an example of this,
consider the cases illustrated in figure 1.10, where two- and three-dimensional distributions
of random pairs drawn from a Gaussian (normal) distribution with a mean of zero and a
standard deviation equal to one-third. These values were chosen so that nearly all of the
data (99.9%) would fall within a unit circle and/or sphere. Note that in either case, pairs
fall outside of these regions.

–1

–0.5

0.5

1

(a)

–1
–0.8

–0.6
–0.4

–0.2
0

0.2
0.4

0.6
0.8

1

–1–0.8
–0.4

0 0.2 0.4 0.6 0.8 1

–1.2

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b)

CHAPTER 1. A MONTE-CARLO CALCULATION OF PI 15

Figure 1.10: Here 1000 (random) pairs have been plotted in both (a) two-dimensions and
(b) three-dimensions using a normal(Gaussian) distribution with μ = 0 and σ = 1

3 . The cir-
cles(spheres) show the boundaries of the first(red), second(green), and third(blue) moments
about the mean.

Consider whether or not one might “smooth out” the data so that a modified statistical
argument might still be used to estimate the value of π. In forming your opinions consider
that if 99.9% of the points fall within the unit circle, then 0.1% of the points fall within a
rectangle, whose dimensions are determined by the coordinates of the “outlying pairs.” This
situation is shown in figure 1.11 below.

99.9%0.1%

w

h

Figure 1.11: A modification of the statistical argument may be used to achieve an estimate
for π using random pairs drawn from the nonuniform, Gaussian distribution.

If the numbers of points falling in each of these regions is weighted appropriately, a
modified rule for calculating an estimate for π may be obtained. To determine the width
and height of the rectangle, one may search the total list of pairs using the min and max
functions along with the op function. I. e., using the lists, L[i], mentioned above one may
define the height and width as follows:

w:=max(op(L[i][1]))-min(op(L[i][1])):

h:=max(op(L[i][2]))-min(op(L[i][2])):

Hence the total area of the rectangle is Ar = hw, so that the ratio of the area of the circle
to the rectangle is,

Ac

Ar
= π

hw

The appropriate proportionality, in terms of the numbers of pairs falling in each region, is
left to be determined by the student.

1.5 Program Listing

cc
c A program to calculate the value of pi using a monte-carlo c
c technique. Specifically, we define a unit circle, with its c
c center at the origin, and a ‘unit box’ that inscribes the circle.c
c We then pick two (pseudo) random points, x and y, on [-1,1] and c
c check to see if they fall within the union of the area of the c
c unit circle and unit box. If the random numbers are uniformly c
c distributed on [-1,1], then the ratio of the areas of the unit c
c circle and unit box is proportional to the number of points c
c falling in each. The (standard) deviation of the distribution is c
c also calculated. c
cc

PROGRAM monte_pi

REAL delta, pi

CHAPTER 1. A MONTE-CARLO CALCULATION OF PI 16

INTEGER N
PARAMETER(N=5000)
INTEGER Nc, Ns
REAL est, sum, mu, var, dev

c**************************** open data files
c ‘pi.dat’ will store the succesive values of pi corresponding to
c the total number of points.
c ‘error.dat’ will output the number of points needed to achieve
c a given error.
c****************************

Open(50, FILE=’throws.dat’)
Open(60, FILE=’pi.dat’)
Open(70, FILE=’error.dat’)

c**************************** initialize variables
Nc = 0
Ns = 0
est = 0.0
sum = 0.0
mu = 0.0
var = 0.0
dev = 1.0

c*************************** iterate until accuracy achieved
DO i = 1, N

x = Rand()*2-1
y = Rand()*2-1
WRITE(50,*) x, y
IF ((x*x + y*y) .LE. 1.0) THEN

Nc = Nc + 1
ELSE

Ns = Ns + 1
END IF
est = 4.0*Nc/(Nc+Ns)
sum = sum + est
mu = sum/(Nc+Ns)
var = (var + (mu-est)**2)/(Nc+Ns)
dev = SQRT(var)
IF (MOD(i,10).EQ.0) THEN

WRITE(60,*) i, est
WRITE(70,*) 1/SQRT(Real(i)), dev

END IF
END DO

c**************************** close data files
CLOSE(50)
CLOSE(60)
STOP
END

