
mith College

Computer Science

Dominique Thiébaut
dthiebaut@smith.edu

Multithreading
In Java (2)

CSC352 — Week #4

D. Thiebaut, Computer Science, Smith College

Comments on Paper
Summaries

• Extract information out

• Top-down approach. First paragraph = summary of whole
paper. Cite paper in first sentence. Add to bibliograpy

• List the main points. Bullets are ok

• Develop one or two points

• User present tense

• Use italics first time a concept is introduced

D. Thiebaut, Computer Science, Smith College

Comments on Paper
Summaries (cont'd)

• Don't get stuck in the details of the paper

• Two back quotes for opening double-quotes

• Follow the organization of the paper

• You may give your impressions/feedback at the
end

• Grade range: A- to A

D. Thiebaut, Computer Science, Smith College

Comments on Newsletter

• Pick recent articles (1 month or less)

• Expand acronyms, but ok to use acronyms

• Boldface the keywords in each article (cloud, GPU, algorithm,
TOP500, etc.)

• Title  
Author, publication, date

• Make sure you figure out the message of the article. What should
one remember from having read it.

• Use present tense

• Grade range: A- to A

D. Thiebaut, Computer Science, Smith College

Comments on Berkeley Paper

D. Thiebaut, Computer Science, Smith College

 Moore's Law

D. Thiebaut, Computer Science, Smith College

Moore's Law

• Gordon Moore
(Fairchild, Intel)

• 1965, doubling every
year of components/
IC

• 1975, revised to
doubling every 2
years

D. Thiebaut, Computer Science, Smith College

Moore's Law

• Applies to:

• # transistors

• speed of processor

• size of memory

• # pixels in cameras

• uProcessor prices

D. Thiebaut, Computer Science, Smith College

D. Thiebaut, Computer Science, Smith College

Moore's Law

D. Thiebaut, Computer Science, Smith College

Moore's Law

D. Thiebaut, Computer Science, Smith College

Processor/Memory Gap

D. Thiebaut, Computer Science, Smith College

D. Thiebaut, Computer Science, Smith College

Many-Core vs Multi-Core

https://www.altera.com/technology/system-design/articles/2012/multicore-many-core.html

https://www.altera.com/technology/system-design/articles/2012/multicore-many-core.html

D. Thiebaut, Computer Science, Smith College

Multicore Performance
Benchmark Analysis of Multi-Core Processor Memory

Contention, Simon & McGalliard, SCMG, 2009

https://image.slidesharecdn.com/8aeda7ce-5324-48d6-b6d8-26bd03fed953-150707001147-lva1-app6892/95/benchmark-analysis-of-multicore-processor-memory-contention-april-2009-39-638.jpg?cb=1436228009

https://image.slidesharecdn.com/8aeda7ce-5324-48d6-b6d8-26bd03fed953-150707001147-lva1-app6892/95/benchmark-analysis-of-multicore-processor-memory-contention-april-2009-39-638.jpg?cb=1436228009

D. Thiebaut, Computer Science, Smith College

On-Chip Networking

D. Thiebaut, Computer Science, Smith College

Amdahl's LawThink

Monte
Carlo

Sim
ulatio

n

time
Serial

Version

D. Thiebaut, Computer Science, Smith College

Amdahl's LawThink

Monte
Carlo

Sim
ulatio

n

time
Serial

Version

time
Manager

time
Worker 0

time
Worker 1

D. Thiebaut, Computer Science, Smith College

Amdahl's LawThink

Monte
Carlo

Sim
ulatio

n

time
Serial

Version

time
Manager

time
Worker 0

time
Worker 1

D. Thiebaut, Computer Science, Smith College

Amdahl's Law

time
Manager

time
Worker 0

time
Worker n-1

D. Thiebaut, Computer Science, Smith College

Amdahl's Law

Speedup = =
T(1)
T(N)N

Speedup = =
T(1)
T(oo)oo

If 5% of code is serial, then max speedup is 5% + 95%
5%

D. Thiebaut, Computer Science, Smith College

https://en.wikipedia.org/wiki/Amdahl's_law

https://en.wikipedia.org/wiki/Amdahl's_law

D. Thiebaut, Computer Science, Smith College

Amdahl's Law

• Too pessimistic

• As problem size gets larger, portion of parallel
code increases

• As more processors are added, more of the data
can fit in memory, cache ==> gain speed in
accessing data

D. Thiebaut, Computer Science, Smith College

nanometers
 h

ttp
://

en
.w

ik
ip

ed
ia

.o
rg

/w
ik

i/2
2_

na
no

m
et

er

https://www.youtube.com/watch?v=qm67wbB5GmI

(1m10 - 8m20)

https://www.youtube.com/watch?v=qm67wbB5GmI
https://youtu.be/qm67wbB5GmI?t=1m16s

D. Thiebaut, Computer Science, Smith College

Making the Game
of Life Parallel

Programming Lab

D. Thiebaut, Computer Science, Smith College

https://www.youtube.com/watch?v=CgOcEZinQ2I

https://www.youtube.com/watch?v=CgOcEZinQ2I
https://www.youtube.com/watch?v=CgOcEZinQ2I

D. Thiebaut, Computer Science, Smith College

Serial Version

• Study it

• Run it on your laptop

• Use both dish and dish2 as the array of live cells,
and see how they evolve

login to your 352b account 

getCopy GameOfLife.java
javac GameOfLife.java
java GameOfLife

D. Thiebaut, Computer Science, Smith College

2-Thread Version
• As a group, discuss the different tissues associated

with parallelizing the Game of Life and running it with
two threads.

• List all the issues that must be addressed on the
whiteboard

• How will you verify the correctness of the parallel
version?

• Play-out the execution of the 2-thread program: two
people or two groups play the roles of the two threads.

D. Thiebaut, Computer Science, Smith College

Could be Usefull…
• What is a BlockingQueue? 
BlockingQueue is a queue which is thread safe to insert or
retrieve elements from it. Also, it provides a mechanism
which blocks requests for inserting new elements when the
queue is full or requests for removing elements when the
queue is empty, with the additional option to stop waiting
when a specific timeout passes. This functionality makes
BlockingQueue a nice way of implementing the Producer-
Consumer pattern, as the producing thread can insert
elements until the upper limit of BlockingQueue while the
consuming thread can retrieve elements until the lower
limit is reached and of course with the support of the
aforementioned blocking functionality.

https://examples.javacodegeeks.com/core-java/util/concurrent/java-blockingqueue-example/

https://examples.javacodegeeks.com/core-java/util/concurrent/java-blockingqueue-example/

Thread safe: Implementation is guaranteed to
be free of race conditions when accessed by

multiple threads simultaneously.

D. Thiebaut, Computer Science, Smith College

How to use a BlockingQueue

package com.javacodegeeks.java.util.concurrent.blockingqueue;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;

public class BlockingQueueExample {

 public static void main(String[] args) throws Exception {
 BlockingQueue<Integer> bq = new ArrayBlockingQueue<Integer>(1000);
 Producer producer = new Producer(bq);
 Consumer consumer = new Consumer(bq);
 new Thread(producer).start();
 new Thread(consumer).start();
 Thread.sleep(4000);
 }
 }

D. Thiebaut, Computer Science, Smith College

Implement the
2-Thread Game
of Life in Java

D. Thiebaut, Computer Science, Smith College

Measuring
Performance

D. Thiebaut, Computer Science, Smith College

• Pick setup that will not be slowed down by OS or non necessary IO
operations

• Pick best serial algorithm available

• Tune the parallel version

• Keep the conditions constant (same grid size)

• Measure the average execution time of several runs for each case

• Use shell scripts! (See next slide)

• Pick several possible measures of performance

• speedup

• throughput

• ?

D. Thiebaut, Computer Science, Smith College

Using Shell Scripts

http://www.science.smith.edu/dftwiki/index.php/
CSC352:_Using_Bash,_an_example

http://www.science.smith.edu/dftwiki/index.php/CSC352:_Using_Bash,_an_example

