
5. Data Structures
This chapter describes some things you’ve learned about already in more detail,
and adds some new things as well.

5.1. More on Lists

The list data type has some more methods. Here are all of the methods of list
objects:

list.append(x)
Add an item to the end of the list. Equivalent to a[len(a):] = [x].

list.extend(L)
Extend the list by appending all the items in the given list. Equivalent to
a[len(a):] = L.

list.insert(i, x)
Insert an item at a given position. The first argument is the index of the
element before which to insert, so a.insert(0, x) inserts at the front of the
list, and a.insert(len(a), x) is equivalent to a.append(x).

list.remove(x)
Remove the first item from the list whose value is x. It is an error if there is no
such item.

list.pop([i])
Remove the item at the given position in the list, and return it. If no index is
specified, a.pop() removes and returns the last item in the list. (The square
brackets around the i in the method signature denote that the parameter is
optional, not that you should type square brackets at that position. You will
see this notation frequently in the Python Library Reference.)

list.clear()
Remove all items from the list. Equivalent to del a[:].

list.index(x)
Return the index in the list of the first item whose value is x. It is an error if
there is no such item.

list.count(x)
Return the number of times x appears in the list.

list.sort()
Sort the items of the list in place.

list.reverse()
Reverse the elements of the list in place.

list.copy()
Return a shallow copy of the list. Equivalent to a[:].

An example that uses most of the list methods:

You might have noticed that methods like insert, remove or sort that modify
the list have no return value printed – they return None. [1] This is a design
principle for all mutable data structures in Python.

5.1.1. Using Lists as Stacks

The list methods make it very easy to use a list as a stack, where the last element
added is the first element retrieved (“last‑in, first‑out”). To add an item to the top
of the stack, use append(). To retrieve an item from the top of the stack, use
pop() without an explicit index. For example:

>>> a = [66.25, 333, 333, 1, 1234.5]
>>> print(a.count(333), a.count(66.25), a.count('x'))
2 1 0
>>> a.insert(2, -1)
>>> a.append(333)
>>> a
[66.25, 333, -1, 333, 1, 1234.5, 333]
>>> a.index(333)
1
>>> a.remove(333)
>>> a
[66.25, -1, 333, 1, 1234.5, 333]
>>> a.reverse()
>>> a
[333, 1234.5, 1, 333, -1, 66.25]
>>> a.sort()
>>> a
[-1, 1, 66.25, 333, 333, 1234.5]

>>>

5.1.2. Using Lists as Queues

It is also possible to use a list as a queue, where the first element added is the
first element retrieved (“first‑in, first‑out”); however, lists are not efficient for this
purpose. While appends and pops from the end of list are fast, doing inserts or
pops from the beginning of a list is slow (because all of the other elements have
to be shifted by one).

To implement a queue, use collections.deque which was designed to have fast
appends and pops from both ends. For example:

5.1.3. List Comprehensions

List comprehensions provide a concise way to create lists. Common applications
are to make new lists where each element is the result of some operations applied
to each member of another sequence or iterable, or to create a subsequence of
those elements that satisfy a certain condition.

>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack.append(7)
>>> stack
[3, 4, 5, 6, 7]
>>> stack.pop()
7
>>> stack
[3, 4, 5, 6]
>>> stack.pop()
6
>>> stack.pop()
5
>>> stack
[3, 4]

>>>

>>> from collections import deque
>>> queue = deque(["Eric", "John", "Michael"])
>>> queue.append("Terry") # Terry arrives
>>> queue.append("Graham") # Graham arrives
>>> queue.popleft() # The first to arrive now leaves
'Eric'
>>> queue.popleft() # The second to arrive now leaves
'John'
>>> queue # Remaining queue in order of arrival
deque(['Michael', 'Terry', 'Graham'])

>>>

https://docs.python.org/3.3/library/collections.html#collections.deque

For example, assume we want to create a list of squares, like:

We can obtain the same result with:

This is also equivalent to squares = list(map(lambda x: x**2, range(10))),
but it’s more concise and readable.

A list comprehension consists of brackets containing an expression followed by a
for clause, then zero or more for or if clauses. The result will be a new list
resulting from evaluating the expression in the context of the for and if clauses
which follow it. For example, this listcomp combines the elements of two lists if
they are not equal:

and it’s equivalent to:

Note how the order of the for and if statements is the same in both these
snippets.

If the expression is a tuple (e.g. the (x, y) in the previous example), it must be
parenthesized.

>>> squares = []
>>> for x in range(10):
... squares.append(x**2)
...
>>> squares
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

>>>

squares = [x**2 for x in range(10)]

>>> [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]
[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

>>>

>>> combs = []
>>> for x in [1,2,3]:
... for y in [3,1,4]:
... if x != y:
... combs.append((x, y))
...
>>> combs
[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

>>>

>>> vec = [-4, -2, 0, 2, 4]
>>> # create a new list with the values doubled
>>> [x*2 for x in vec]

>>>

https://docs.python.org/3.3/reference/compound_stmts.html#for
https://docs.python.org/3.3/reference/compound_stmts.html#for
https://docs.python.org/3.3/reference/compound_stmts.html#if
https://docs.python.org/3.3/reference/compound_stmts.html#for
https://docs.python.org/3.3/reference/compound_stmts.html#if
https://docs.python.org/3.3/reference/compound_stmts.html#for
https://docs.python.org/3.3/reference/compound_stmts.html#if

List comprehensions can contain complex expressions and nested functions:

5.1.4. Nested List Comprehensions

The initial expression in a list comprehension can be any arbitrary expression,
including another list comprehension.

Consider the following example of a 3x4 matrix implemented as a list of 3 lists of
length 4:

The following list comprehension will transpose rows and columns:

[-8, -4, 0, 4, 8]
>>> # filter the list to exclude negative numbers
>>> [x for x in vec if x >= 0]
[0, 2, 4]
>>> # apply a function to all the elements
>>> [abs(x) for x in vec]
[4, 2, 0, 2, 4]
>>> # call a method on each element
>>> freshfruit = [' banana', ' loganberry ', 'passion fruit ']
>>> [weapon.strip() for weapon in freshfruit]
['banana', 'loganberry', 'passion fruit']
>>> # create a list of 2-tuples like (number, square)
>>> [(x, x**2) for x in range(6)]
[(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25)]
>>> # the tuple must be parenthesized, otherwise an error is raised
>>> [x, x**2 for x in range(6)]
 File "<stdin>", line 1, in ?
 [x, x**2 for x in range(6)]
 ̂
SyntaxError: invalid syntax
>>> # flatten a list using a listcomp with two 'for'
>>> vec = [[1,2,3], [4,5,6], [7,8,9]]
>>> [num for elem in vec for num in elem]
[1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> from math import pi
>>> [str(round(pi, i)) for i in range(1, 6)]
['3.1', '3.14', '3.142', '3.1416', '3.14159']

>>>

>>> matrix = [
... [1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12],
...]

>>>

As we saw in the previous section, the nested listcomp is evaluated in the context
of the for that follows it, so this example is equivalent to:

which, in turn, is the same as:

In the real world, you should prefer built‑in functions to complex flow statements.
The zip() function would do a great job for this use case:

See Unpacking Argument Lists for details on the asterisk in this line.

5.2. The del statement

There is a way to remove an item from a list given its index instead of its value:
the del statement. This differs from the pop() method which returns a value. The
del statement can also be used to remove slices from a list or clear the entire list
(which we did earlier by assignment of an empty list to the slice). For example:

>>> [[row[i] for row in matrix] for i in range(4)]
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

>>>

>>> transposed = []
>>> for i in range(4):
... transposed.append([row[i] for row in matrix])
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

>>>

>>> transposed = []
>>> for i in range(4):
... # the following 3 lines implement the nested listcomp
... transposed_row = []
... for row in matrix:
... transposed_row.append(row[i])
... transposed.append(transposed_row)
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

>>>

>>> list(zip(*matrix))
[(1, 5, 9), (2, 6, 10), (3, 7, 11), (4, 8, 12)]

>>>

>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del a[0]
>>> a
[1, 66.25, 333, 333, 1234.5]

>>>

https://docs.python.org/3.3/reference/compound_stmts.html#for
https://docs.python.org/3.3/library/functions.html#zip
https://docs.python.org/3.3/tutorial/controlflow.html#tut-unpacking-arguments
https://docs.python.org/3.3/reference/simple_stmts.html#del
https://docs.python.org/3.3/reference/simple_stmts.html#del
https://docs.python.org/3.3/reference/simple_stmts.html#del

del can also be used to delete entire variables:

Referencing the name a hereafter is an error (at least until another value is
assigned to it). We’ll find other uses for del later.

5.3. Tuples and Sequences
We saw that lists and strings have many common properties, such as indexing and
slicing operations. They are two examples of sequence data types (see Sequence
Types — list, tuple, range). Since Python is an evolving language, other sequence
data types may be added. There is also another standard sequence data type: the
tuple.

A tuple consists of a number of values separated by commas, for instance:

As you see, on output tuples are always enclosed in parentheses, so that nested
tuples are interpreted correctly; they may be input with or without surrounding

>>> del a[2:4]
>>> a
[1, 66.25, 1234.5]
>>> del a[:]
>>> a
[]

>>> del a >>>

>>> t = 12345, 54321, 'hello!'
>>> t[0]
12345
>>> t
(12345, 54321, 'hello!')
>>> # Tuples may be nested:
... u = t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))
>>> # Tuples are immutable:
... t[0] = 88888
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> # but they can contain mutable objects:
... v = ([1, 2, 3], [3, 2, 1])
>>> v
([1, 2, 3], [3, 2, 1])

>>>

https://docs.python.org/3.3/reference/simple_stmts.html#del
https://docs.python.org/3.3/reference/simple_stmts.html#del
https://docs.python.org/3.3/library/stdtypes.html#typesseq

parentheses, although often parentheses are necessary anyway (if the tuple is part
of a larger expression). It is not possible to assign to the individual items of a
tuple, however it is possible to create tuples which contain mutable objects, such
as lists.

Though tuples may seem similar to lists, they are often used in different situations
and for different purposes. Tuples are immutable, and usually contain an
heterogeneous sequence of elements that are accessed via unpacking (see later in
this section) or indexing (or even by attribute in the case of namedtuples). Lists
are mutable, and their elements are usually homogeneous and are accessed by
iterating over the list.

A special problem is the construction of tuples containing 0 or 1 items: the syntax
has some extra quirks to accommodate these. Empty tuples are constructed by an
empty pair of parentheses; a tuple with one item is constructed by following a
value with a comma (it is not sufficient to enclose a single value in parentheses).
Ugly, but effective. For example:

The statement t = 12345, 54321, 'hello!' is an example of tuple packing: the
values 12345, 54321 and 'hello!' are packed together in a tuple. The reverse
operation is also possible:

This is called, appropriately enough, sequence unpacking and works for any
sequence on the right‑hand side. Sequence unpacking requires that there are as
many variables on the left side of the equals sign as there are elements in the
sequence. Note that multiple assignment is really just a combination of tuple
packing and sequence unpacking.

5.4. Sets
Python also includes a data type for sets. A set is an unordered collection with no
duplicate elements. Basic uses include membership testing and eliminating

>>> empty = ()
>>> singleton = 'hello', # <-- note trailing comma
>>> len(empty)
0
>>> len(singleton)
1
>>> singleton
('hello',)

>>>

>>> x, y, z = t >>>

https://docs.python.org/3.3/glossary.html#term-immutable
https://docs.python.org/3.3/library/collections.html#collections.namedtuple
https://docs.python.org/3.3/glossary.html#term-mutable

duplicate entries. Set objects also support mathematical operations like union,
intersection, difference, and symmetric difference.

Curly braces or the set() function can be used to create sets. Note: to create an
empty set you have to use set(), not {}; the latter creates an empty dictionary, a
data structure that we discuss in the next section.

Here is a brief demonstration:

Similarly to list comprehensions, set comprehensions are also supported:

5.5. Dictionaries

Another useful data type built into Python is the dictionary (see Mapping Types —
dict). Dictionaries are sometimes found in other languages as “associative
memories” or “associative arrays”. Unlike sequences, which are indexed by a range
of numbers, dictionaries are indexed by keys, which can be any immutable type;
strings and numbers can always be keys. Tuples can be used as keys if they
contain only strings, numbers, or tuples; if a tuple contains any mutable object

>>> basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
>>> print(basket) # show that duplicates have been removed
{'orange', 'banana', 'pear', 'apple'}
>>> 'orange' in basket # fast membership testing
True
>>> 'crabgrass' in basket
False

>>> # Demonstrate set operations on unique letters from two words
...
>>> a = set('abracadabra')
>>> b = set('alacazam')
>>> a # unique letters in a
{'a', 'r', 'b', 'c', 'd'}
>>> a - b # letters in a but not in b
{'r', 'd', 'b'}
>>> a | b # letters in either a or b
{'a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'}
>>> a & b # letters in both a and b
{'a', 'c'}
>>> a ̂ b # letters in a or b but not both
{'r', 'd', 'b', 'm', 'z', 'l'}

>>>

>>> a = {x for x in 'abracadabra' if x not in 'abc'}
>>> a
{'r', 'd'}

>>>

https://docs.python.org/3.3/library/stdtypes.html#set
https://docs.python.org/3.3/library/stdtypes.html#typesmapping

either directly or indirectly, it cannot be used as a key. You can’t use lists as keys,
since lists can be modified in place using index assignments, slice assignments, or
methods like append() and extend().

It is best to think of a dictionary as an unordered set of key: value pairs, with the
requirement that the keys are unique (within one dictionary). A pair of braces
creates an empty dictionary: {}. Placing a comma‑separated list of key:value pairs
within the braces adds initial key:value pairs to the dictionary; this is also the way
dictionaries are written on output.

The main operations on a dictionary are storing a value with some key and
extracting the value given the key. It is also possible to delete a key:value pair
with del. If you store using a key that is already in use, the old value associated
with that key is forgotten. It is an error to extract a value using a non‑existent
key.

Performing list(d.keys()) on a dictionary returns a list of all the keys used in
the dictionary, in arbitrary order (if you want it sorted, just use sorted(d.keys())
instead). [2] To check whether a single key is in the dictionary, use the in
keyword.

Here is a small example using a dictionary:

The dict() constructor builds dictionaries directly from sequences of key‑value
pairs:

>>> tel = {'jack': 4098, 'sape': 4139}
>>> tel['guido'] = 4127
>>> tel
{'sape': 4139, 'guido': 4127, 'jack': 4098}
>>> tel['jack']
4098
>>> del tel['sape']
>>> tel['irv'] = 4127
>>> tel
{'guido': 4127, 'irv': 4127, 'jack': 4098}
>>> list(tel.keys())
['irv', 'guido', 'jack']
>>> sorted(tel.keys())
['guido', 'irv', 'jack']
>>> 'guido' in tel
True
>>> 'jack' not in tel
False

>>>

>>> dict([('sape', 4139), ('guido', 4127), ('jack', 4098)]) >>>

https://docs.python.org/3.3/reference/expressions.html#in
https://docs.python.org/3.3/library/stdtypes.html#dict

In addition, dict comprehensions can be used to create dictionaries from arbitrary
key and value expressions:

When the keys are simple strings, it is sometimes easier to specify pairs using
keyword arguments:

5.6. Looping Techniques

When looping through dictionaries, the key and corresponding value can be
retrieved at the same time using the items() method.

When looping through a sequence, the position index and corresponding value
can be retrieved at the same time using the enumerate() function.

To loop over two or more sequences at the same time, the entries can be paired
with the zip() function.

{'sape': 4139, 'jack': 4098, 'guido': 4127}

>>> {x: x**2 for x in (2, 4, 6)}
{2: 4, 4: 16, 6: 36}

>>>

>>> dict(sape=4139, guido=4127, jack=4098)
{'sape': 4139, 'jack': 4098, 'guido': 4127}

>>>

>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
>>> for k, v in knights.items():
... print(k, v)
...
gallahad the pure
robin the brave

>>>

>>> for i, v in enumerate(['tic', 'tac', 'toe']):
... print(i, v)
...
0 tic
1 tac
2 toe

>>>

>>> questions = ['name', 'quest', 'favorite color']
>>> answers = ['lancelot', 'the holy grail', 'blue']
>>> for q, a in zip(questions, answers):
... print('What is your {0}? It is {1}.'.format(q, a))
...
What is your name? It is lancelot.

>>>

https://docs.python.org/3.3/library/functions.html#enumerate
https://docs.python.org/3.3/library/functions.html#zip

To loop over a sequence in reverse, first specify the sequence in a forward
direction and then call the reversed() function.

To loop over a sequence in sorted order, use the sorted() function which returns
a new sorted list while leaving the source unaltered.

To change a sequence you are iterating over while inside the loop (for example to
duplicate certain items), it is recommended that you first make a copy. Looping
over a sequence does not implicitly make a copy. The slice notation makes this
especially convenient:

5.7. More on Conditions

The conditions used in while and if statements can contain any operators, not
just comparisons.

What is your quest? It is the holy grail.
What is your favorite color? It is blue.

>>> for i in reversed(range(1, 10, 2)):
... print(i)
...
9
7
5
3
1

>>>

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> for f in sorted(set(basket)):
... print(f)
...
apple
banana
orange
pear

>>>

>>> words = ['cat', 'window', 'defenestrate']
>>> for w in words[:]: # Loop over a slice copy of the entire list.
... if len(w) > 6:
... words.insert(0, w)
...
>>> words
['defenestrate', 'cat', 'window', 'defenestrate']

>>>

https://docs.python.org/3.3/library/functions.html#reversed
https://docs.python.org/3.3/library/functions.html#sorted

The comparison operators in and not in check whether a value occurs (does not
occur) in a sequence. The operators is and is not compare whether two objects
are really the same object; this only matters for mutable objects like lists. All
comparison operators have the same priority, which is lower than that of all
numerical operators.

Comparisons can be chained. For example, a < b == c tests whether a is less
than b and moreover b equals c.

Comparisons may be combined using the Boolean operators and and or, and the
outcome of a comparison (or of any other Boolean expression) may be negated
with not. These have lower priorities than comparison operators; between them,
not has the highest priority and or the lowest, so that A and not B or C is
equivalent to (A and (not B)) or C. As always, parentheses can be used to
express the desired composition.

The Boolean operators and and or are so‑called short‑circuit operators: their
arguments are evaluated from left to right, and evaluation stops as soon as the
outcome is determined. For example, if A and C are true but B is false, A and B
and C does not evaluate the expression C. When used as a general value and not
as a Boolean, the return value of a short‑circuit operator is the last evaluated
argument.

It is possible to assign the result of a comparison or other Boolean expression to a
variable. For example,

Note that in Python, unlike C, assignment cannot occur inside expressions. C
programmers may grumble about this, but it avoids a common class of problems
encountered in C programs: typing = in an expression when == was intended.

5.8. Comparing Sequences and Other Types
Sequence objects may be compared to other objects with the same sequence type.
The comparison uses lexicographical ordering: first the first two items are
compared, and if they differ this determines the outcome of the comparison; if
they are equal, the next two items are compared, and so on, until either sequence
is exhausted. If two items to be compared are themselves sequences of the same

>>> string1, string2, string3 = '', 'Trondheim', 'Hammer Dance'
>>> non_null = string1 or string2 or string3
>>> non_null
'Trondheim'

>>>

type, the lexicographical comparison is carried out recursively. If all items of two
sequences compare equal, the sequences are considered equal. If one sequence is
an initial sub‑sequence of the other, the shorter sequence is the smaller (lesser)
one. Lexicographical ordering for strings uses the Unicode codepoint number to
order individual characters. Some examples of comparisons between sequences of
the same type:

Note that comparing objects of different types with < or > is legal provided that
the objects have appropriate comparison methods. For example, mixed numeric
types are compared according to their numeric value, so 0 equals 0.0, etc.
Otherwise, rather than providing an arbitrary ordering, the interpreter will raise a
TypeError exception.

Footnotes

[1] Other languages may return the mutated object, which allows method
chaining, such as d->insert("a")->remove("b")->sort();.

[2] Calling d.keys() will return a dictionary view object. It supports operations
like membership test and iteration, but its contents are not independent of
the original dictionary – it is only a view.

(1, 2, 3) < (1, 2, 4)
[1, 2, 3] < [1, 2, 4]
'ABC' < 'C' < 'Pascal' < 'Python'
(1, 2, 3, 4) < (1, 2, 4)
(1, 2) < (1, 2, -1)
(1, 2, 3) == (1.0, 2.0, 3.0)
(1, 2, ('aa', 'ab')) < (1, 2, ('abc', 'a'), 4)

https://docs.python.org/3.3/library/exceptions.html#TypeError

