
AVL Trees
Heaps

And Complexity
D. Thiebaut

CSC212 — Fall 2014

Some material taken from http://cseweb.ucsd.edu/~kube/cls/100/Lectures/lec4.avl/lec4.pdf

http://cseweb.ucsd.edu/~kube/cls/100/Lectures/lec4.avl/lec4.pdf

Complexity
Of BST Operations

or

"Why Should
We Use BST

Data Structures"

What We're After:
• What's the worst amount of work we can expect

• when we insert?

• when we delete?

• when we search, successfully or unsuccessfully?

• What's the average amount of work we can expect?

• We'd like to know about the best case, but in general
it doesn't occur that often.

Which Two-Operations
In BSTs are Similar?

• Search/Find {

• Insert

• Delete

• Successful

• Unsuccessful

Worst Case for Inserts or
Unsuccessful Searches

• Definition: The depth of a node x, d(x), is the # of
nodes from the root to that node. d(x) = 0-based
level of the node plus 1.

• What is the worst possible number of nodes visited
for searching or inserting in a BST?

• So, what is the worst-case complexity for insert or
unsuccessful operations?

Operation Outcome Worst Case !
Complexity

Average!
Complexity

Best!
Complexity

Insertion X O(N)

Search
Successful

Unsuccessful O(N)

Deletion X

Best-Case complexity
for search?

Operation Outcome Worst Case !
Complexity

Average!
Complexity

Best!
Complexity

Insertion X O(N)

Search
Successful O(1)

Unsuccessful O(N) O(1)

Deletion X

Average Case
for Successful Searches

Need More Definitions
• BST of N nodes

• keyi = key residing in node xi, i=1, 2… N

• d(xi) = depth of node xi

• pi = probability of searching for keyi

What is the average
number of nodes visited

when searching a BST
of N nodes?

So, we need to know pi…

Davg(N) =
NX

i=1

dipi

• if all the keys are equally likely, then all the pi are
identical.

• if the pi are not identical, then some keys are more
likely than others, and we can take advantage of
this self-adjusting trees (Section 6.8)

Equally Likely Keys

• equally likely keys: pi = 1/N 
 
 
 
 

• Davg(N) depends on tree shape!

Davg(N) = 1/N
NX

i=1

di = total node depth

Unbalanced Tree

1/N

log(N+1)X

i=1

d
i

p
i

= 1/N(1 + 2 + 3 + ... + N)

= ?

Fully Balanced Tree
1x1 = 1x2(1-1)

2x2 = 2x2(2-1)

3x4 = 3x2(3-1)

ix2(i-1)

1/N

log(N+1)X

i=1

i2(i�1) < log(N + 1) = O(log N)

 O(N) 

 O(log N)?
Successful Search:

Unbalanced Trees
!
Balanced Trees{

But…
Are average
BSTs tall or

fat?

What about Successful Search
in a Random BST?

What about Successful Search
in a Random BST?

• We need to look at all possible shapes the BST of
N nodes can have and compute the average
number of probes required for each successful
search, and average over all possible shapes of
the BST…

• Huge amount of combinations!

Different BSTs of
3 nodes

and lengths of
different paths for each

1+2+3
=6

1+2+3
=6

1+2+3
=6

1+2+2
=5

1+2+3
=6

Davg(N) ⇡ 1.386 log2 N

Average # of Probes
for Successful Searches in a "random" BST

of N nodes:

Operation Outcome Worst Case !
Complexity

Average!
Complexity

Best!
Complexity

Insertion X O(N) O(log N) O(1)

Search
Successful O(N) O(log N) O(1)

Unsuccessful O(N) O(log N) O(1)

Deletion X O(N) O(log N) O(1)

We don't really care

That's what
we expect

Unlikely
to happen

AVL-Trees
• Named for Adelson-Velskii and Landis

• 1962

• Important property: For any node X in the tree, the
heights of the left and right subtrees of X differ by
at most 1

-1

0

+1

0 -1

0

0

0 0

+1

0

AVL

AVL Trees  
Rely on Rotations

Q

P
Q

P

Rotation Left

Rotation Right

Q

P

h

h

h

add 'Z'

Q!
0

P 
+1

h

h

h

Q 
+1

P!
+2

h

h

h 
+ 
1

z

h+2

Q!
0

P 
+1

h

h

h

Q 
+1

P!
+2

h

h

h 
+ 
1

Q 
+1

P!
+2

hh
h 
+ 
1

Rotation Left

AVL Time Complexity

Operation Worst Case !
Complexity

Average!
Complexity

Insertion O(log N) O(log N)

Search O(log N) O(log N)

Deletion O(log N) O(log N)

Java

• Not that many "pure" trees

• javax.swing.tree

• javax.swing.tree TreeModel

• javax.swing.tree TreeNode

Heaps

A heap is:

• A fully balanced binary tree, will all leaves
on the left-most inner nodes

• The key of a parent is larger than or equal to
the key of its children

30

20 10

920 15

30

30

20

30

20 10

Typically used for…
• Priority queues: get the next element with the

highest priority

First-In…
Highest-Priority Out

Properties
• The largest element is in the root, always

• The heap folds nicely…

30

20 10

920 15 15

What can you say of the

keys other than the root?

Properties
• The largest element is in the root, always

• The heap folds nicely…

30

20

10

9

20

15

15

Properties
• The largest element is in the root, always

• The heap folds nicely…

30

20

10

9

20

15

15

Properties
• The largest element is in the root, always

• The heap folds nicely…

30

20

10

9

20

15

20
30

10

15
20

9
1515

Properties
• The largest element is in the root, always

• The heap folds nicely…

30

20

10

9

20

15

20
30

10

15
20

9
1515

1
2
3
4
5
6
7
8
9

i
!
!
2*i
2*i+1

insertion of a new key

30

20

10

9

20

15

20
30

10

15
20

9
1515

1
2
3
4
5
6
7
8
9

i
!
!
2*i
2*i+1

5 key

insertion of a new key

30

20

10

9

20

15

20
30

10

15
20

9

5
1515

1
2
3
4
5
6
7
8
9

i
!
!
2*i
2*i+1

5

insertion of a new key

30

20

10

9

20

15

20
30

10

15
20

9

5
1515

1
2
3
4
5
6
7
8
9

i
!
!
2*i
2*i+1

5

heapify up

insertion of a new key

30

20

10

9

20

15

20
30

10

15
20

9

5
1515

1
2
3
4
5
6
7
8
9

i
!
!
2*i
2*i+1

5

insertion of a new key

30

20

10

9

20

15

20
30

10

15
20

9

5
1515

1
2
3
4
5
6
7
8
9

i
!
!
2*i
2*i+1

5

40 key

insertion of a new key

30

20

10

9

20

15

20
30

10

15
20

9

5
1515

1
2
3
4
5
6
7
8
9

i
!
!
2*i
2*i+1

5

40

insertion of a new key

30

20

10

9

20

15

20
30

10

15
20

9

5
15

40

15

1
2
3
4
5
6
7
8
9

i
!
!
2*i
2*i+1

5

40

insertion of a new key

30

20

10

9

20

15

20
30

10

15
20

9

5
15

40

15

1
2
3
4
5
6
7
8
9

i
!
!
!
2*i
2*i+1

5

40

heapify up

insertion of a new key

30

20

10

9

40

15

20
30

10

15
40

9

5
15

20

15

1
2
3
4
5
6
7
8
9

i
!
2*i
2*i+1

5

20

heapify up

insertion of a new key

30

40

10

9

20

15

40
30

10

15
20

9

5
15

20

15

1
2
3
4
5
6
7
8
9

i
2*i
2*i+1

5

20

heapify up

insertion of a new key

40

30

10

9

20

15

30
40

10

15
20

9

5
15

20

15

1
2
3
4
5
6
7
8
9

i
2*i
2*i+1

5

20

heapify up

insertion of a new key

40

30

10

9

20

15

30
40

10

15
20

9

5
15

20

15

1
2
3
4
5
6
7
8
9

i
2*i
2*i+1

5

20

Algorithm

heapifyUp(node)
 begin
 while (node has a parent) and (node.key > parent.key) 
 begin
 swap(node and its parent)
 // node is now in its parent's original position
 end
 end

Deleting the Root

40

30

10

9

20

15

30
40

10

15
20

9

5
15

10

15

1
2
3
4
5
6
7
8
9

i
2*i
2*i+1

5

10

Deleting the Root
40

30

10

9

20

15

30
40

10

15
20

9

5
15

10

15

1
2
3
4
5
6
7
8
9

i
2*i
2*i+1

5

10

40

40

Deleting the Root

30

10

9

20

15

30
10

10

15
20

9

5
15

XX

15

1
2
3
4
5
6
7
8
9

i
2*i
2*i+1

5

10

Deleting the Root

10

10

9

20

15

10
30

10

15
20

9

5
15

XX

15

1
2
3
4
5
6
7
8
9

i
2*i
2*i+1

5

30
heapify down

Deleting the Root

10

10

9

20

15

10
30

10

15
20

9

5
15

XX

15

1
2
3
4
5
6
7
8
9

i
2*i
2*i+1

5

30

heapify down

Deleting the Root

20

10

9

10

15

20
30

10

15
10

9

5
15

XX

15

1
2
3
4
5
6
7
8
9

i
2*i
2*i+1

5

30

heapify down

Deleting the Root

20

10

9

10

15

20
30

10

15
10

9

5
15

XX

15

1
2
3
4
5
6
7
8
9

i
2*i
2*i+1

5

30

heapify down

Deleting the Root

20

10

9

10

15

20
30

10

15
10

9

5
15

XX

15

1
2
3
4
5
6
7
8
9

5

30

Deleting the Root

20

10

9

10

15

20
30

10

15
10

9

5
15

XX

15

1
2
3
4
5
6
7
8
9

5

30

Algorithm
heapifyDown(node)
 begin
 if node is a leaf then
 return!
 maxNode = node's child with highest key
 if maxNode.key > node.key then
 begin
 swap(node and maxNode)
 // now node is in place of maxNode's original position
 heapifyDown(node) // recurse down
 end
 end

Operation
Worst!
Time!

Complexity

Average!
Time!

Complexity

Best!
Time!

Complexity

Insert!
key O(log N) O(log N) O(log N)

delete!
root O(log N) O(log N) O(log N)

