AVL Trees
Heaps
And Complexity

D. Thiebaut
CSC212 — Fall 2014

Some material taken from http://cseweb.ucsd.edu/~kube/cls/100/L ectures/lec4.avl/lec4.pdf

http://cseweb.ucsd.edu/~kube/cls/100/Lectures/lec4.avl/lec4.pdf

Complexity
Of BST Operations

or

"Why Should
We Use BST
Data Structures’

What We're Atfter;

 What's the worst amount of work we can expect
 when we insert?
* when we delete?
* when we search, successfully or unsuccessfully?
* What's the average amount of work we can expect?

 We'd like to know about the best case, but in general
it doesn't occur that often.

Which Two-Operations
In BSTs are Similar?

Successful

* Search/Find {

Unsuccessful

e |nsert

e Delete

Worst Case for /nserts or
Unsuccessful Searches

* Definition: The depth of a node x, d(x), is the # of
nodes from the root to that node. d(x) = 0-based
level of the node plus 1.

 What is the worst possible number of nodes visited
for searching or inserting in a BST?

e S0, what is the worst-case complexity for insert or
unsuccesstul operations?

Worst Case Average Best
Complexity Complexity Complexity

Operation Outcome

Insertion

Deletion

Best-Case complexity
for search”

Worst Case Average Best
Complexity Complexity Complexity

Operation Outcome

Insertion

Deletion

Average Case
for Successful Searches

1560647559
e P S
(1552530230 > C 1964512919

. UL S ""';-;s —
495166302 __jj': -cjﬂ 1844340811) :'j_. 2091039751

o~ N S
(_ 143574768)

S e .-'_‘—_"-. .-"‘—__ -
(1314535401) (1891418920 (2124984082)

- - - -

— N A _ o .__ — v

(" 86026402) (435679340) (625198137) " 1szeees > (1880650850

v _¥ & v k.

13510412) (ar0974203) (o20a54128) (936948036) (1371069962

- r . S p— — “ R

(n1z2182574) (arroeer96) (eors49139) (sssrorro) (1222510424) (1348551438)

—E - _r L

(" 152364911) Coseserazs > (eooe77192) C 1313675432 D

—_r

(1308948801
- L— .
{_ 1310875688

Need More Definitions

BST of N nodes
key; = key residing in node x;, i=1,2... N
d(x;) = depth of node x;

pi = probability of searching for key;

avg Z dzpz

S0, we need to know p...

* |f all the keys are equally likely, then all the p; are
identical.

if the p;are not identical, then some keys are more
ikely than others, and we can take advantage of
this === self-adjusting trees (Section 6.8)

Equally Likely Keys

e equally likely keys: pi= 1/N

N
Davg(N) =1/N) d; = total node depth
=1

* Davg(N) depends on tree shape!

p——

(9

S~

-

—

Unbalanced Iree

. g log(N+1)

T YN Y dpi=1/N1+2+3+...+N)
(D i=1

:/"’ I‘\“‘
—r N _
(10) (14)
_\— “’_l _\\ x"/

- —
/ \
/S i \

/} (\1 2/) (\16)
{\ 20)
{\ 18 ‘]

Fully Balanced Iree

@ X1 = 1x20-1)
G (%) —— 2e-zee

D OO @ s

-- ix2(-1)

log(N+1)
1/N Z 2071 < log(N + 1) = O(log N)

8 O(N) Unbalanced Trees
Successful Search:
® O(log N)? Balanced Trees

g

== But..

Are average

BSTs tall or
fat”?

What about Successful Search
N a Random BST?

What about Successful Search

N a Random BST?

 We need to look at all possible shapes the BST of

N nodes can have and compute the average
number of probes required for each successtul

search, and average over all possible shapes of
the BST. ..

 Huge amount of combinations!

1+2+3 s 14243 s 14243
! =6 ' =6 \ =6
s 14243 [14242 Different BSTs of
. —_ = 3 nodes

and lengths of
different paths for each

Average # of Probes
for Successful Searches in a "'random” BST
of N nodes:

Dgvg(N) ~ 1.386log, N

We don't really care

Worst Case Average Best
Complexity Complexity Complexity

Operation Outcome

Insertion

Deletion

Unlikely That's what
to happen we expect

AVL-Irees
0

 Named for Adelson-Velskii and Landis ° 0

. 1962 (o)

* |Important property: For any node X in the tree, the

heights of the left and right subtrees of X differ by
at most 1

AVL Trees
Rely on Rotations

Rotation Right

Rotation Left

Rotation Left

AVL Time Complexity

Worst Case Average
Complexity Complexity

Operation

Insertion

Search

Deletion

Java

Not that many "pure’ trees
javax.swing.tree
javax.swing.tree TreeModel

javax.swing.tree TreeNode

A heap Is:

* A fully balanced binary tree, will all leaves
on the left-most inner nodes

* The key of a parent is larger than or equal to
the key of its children

Typically used for...

* Priority queues: get the next element with the
highest priority

+_

4.

Properties

* [he largest element is in the root, always

* [he heap folds nicely...

Properties

* [he largest element is in the root, always

* [he heap folds nicely...

Properties

* [he largest element is in the root, always

* [he heap folds nicely...

Properties

* [he largest element is in the root, always

* [he heap folds nicely...

30
20
» 10
20
15

15

Properties

* [he largest element is in the root, always

* [he heap folds nicely...

30
20
10 |
20
15

15 | 27141

iInsertion of a new key

30
20
10 |
20
15

15 | 2%1+1

iInsertion of a new key

iInsertion of a new key

heapify up

iInsertion of a new key

iInsertion of a new key

key

iInsertion of a new key

iInsertion of a new key

iInsertion of a new key

heapify up

5 | 2%
40 | 2% 1+1

iInsertion of a new key

heapify up

iInsertion of a new key

40 | 2%
10 | 2%+

iInsertion of a new key

heapify up

iInsertion of a new key

Algorithm

heapifyUp(node)

begin

while (node has a parent) and (node.key > parent.key)
begin
swap(node and its parent)
// node is now in its parent's original position
end

end

Deleting the Root

Deleting the Root

Deleting the Root

Deleting the Root

heapify down

10 1271+

Deleting the Root

21+ 1

Deleting the Root

Deleting the Root

heapify down G

Deleting the Root

Deleting the Root

Algorithm

heapifyDown(node)

begin

if node is a leaf then
return

maxNode = node’s child with highest key

If maxNode.key > node.key then
begin
swap(node and maxNode)
/[now node is in place of maxNode's original position
heapifyDown(node) // recurse down
end

end

Worst Average Best
Operation Time Time Time
Complexity Complexity Complexity

Insert
key

delete
root

