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Complexity  
Of BST Operations

or

"Why Should 
We Use BST  

Data Structures"



What We're After:
• What's the worst amount of work we can expect 

• when we insert? 

• when we delete? 

• when we search, successfully or unsuccessfully? 

• What's the average amount of work we can expect? 

• We'd like to know about the best case, but in general 
it doesn't occur that often.



Which Two-Operations 
In BSTs are Similar?

• Search/Find  { 

• Insert 

• Delete

• Successful 

• Unsuccessful 



Worst Case for Inserts or 
Unsuccessful Searches

• Definition: The depth of a node x, d(x), is the # of 
nodes from the root to that node.  d(x) = 0-based 
level of the node plus 1. 

• What is the worst possible number of nodes visited 
for searching or inserting in a BST?    

• So, what is the worst-case complexity for insert or 
unsuccessful operations?



Operation Outcome Worst Case !
Complexity

Average!
Complexity

Best!
Complexity

Insertion X O(N)

Search
Successful

Unsuccessful O(N)

Deletion X



Best-Case complexity  
for search?



Operation Outcome Worst Case !
Complexity

Average!
Complexity

Best!
Complexity

Insertion X O(N)

Search
Successful O(1)

Unsuccessful O(N) O(1)

Deletion X



Average Case 
for Successful Searches



Need More Definitions
• BST of N nodes 

• keyi = key residing in node xi, i=1, 2… N 

• d(xi) = depth of node xi 

• pi = probability of searching for keyi

What is the average 
number of nodes visited 

when searching a BST 
of N nodes?



So, we need to know pi…

Davg(N) =
NX

i=1

dipi



• if all the keys are equally likely, then all the pi are 
identical. 

• if the pi are not identical, then some keys are more 
likely than others, and we can take advantage of 
this            self-adjusting trees (Section 6.8)



Equally Likely Keys

• equally likely keys: pi = 1/N 
 
 
 
 

• Davg(N) depends on tree shape!  

Davg(N) = 1/N
NX

i=1

di = total node depth



Unbalanced Tree

1/N

log(N+1)X

i=1

d
i

p
i

= 1/N(1 + 2 + 3 + ... + N)

= ?



Fully Balanced Tree
1x1 = 1x2(1-1)

2x2 = 2x2(2-1)

3x4 = 3x2(3-1)

ix2(i-1)

1/N

log(N+1)X

i=1

i2(i�1) < log(N + 1) = O(log N)



  O(N) 

  O( log N )?
Successful Search:

Unbalanced Trees 
!
Balanced Trees{



But… 
Are average 
BSTs tall or  

fat?



What about Successful Search 
in a Random BST?



What about Successful Search 
in a Random BST?

• We need to look at all possible shapes the BST of 
N nodes can have and compute the average 
number of probes required for each successful 
search, and average over all possible shapes of 
the BST… 

• Huge amount of combinations!

Different BSTs of  
3 nodes 

and lengths of  
different paths for each

1+2+3 
=6

1+2+3 
=6

1+2+3 
=6

1+2+2 
=5

1+2+3 
=6



Davg(N) ⇡ 1.386 log2 N

Average # of Probes 
for Successful Searches in a "random" BST 

of N nodes:



Operation Outcome Worst Case !
Complexity

Average!
Complexity

Best!
Complexity

Insertion X O(N) O(log N) O(1)

Search
Successful O(N) O(log N) O(1)

Unsuccessful O(N) O(log N) O(1)

Deletion X O(N) O(log N) O(1)

We don't really care

That's what 
we expect

Unlikely  
to happen



AVL-Trees
• Named for Adelson-Velskii and Landis 

• 1962 

• Important property: For any node X in the tree, the 
heights of the left and right subtrees of X differ by 
at most 1
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AVL Trees  
Rely on Rotations
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AVL Time Complexity

Operation Worst Case !
Complexity

Average!
Complexity

Insertion O(log N) O(log N)

Search O(log N) O(log N)

Deletion O(log N) O(log N)



Java

• Not that many "pure" trees 

•  javax.swing.tree 

• javax.swing.tree TreeModel 

• javax.swing.tree TreeNode



Heaps



A heap is: 

• A fully balanced binary tree, will all leaves 
on the left-most inner nodes 

• The key of a parent is larger than or equal to 
the key of its children
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Typically used for…
• Priority queues: get the next element with the 

highest priority

First-In… 
Highest-Priority Out



Properties
• The largest element is in the root, always 

• The heap folds nicely…

30
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920 15 15

What can you say of the  

keys other than the root?



Properties
• The largest element is in the root, always 

• The heap folds nicely…
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Properties
• The largest element is in the root, always 

• The heap folds nicely…
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Properties
• The largest element is in the root, always 

• The heap folds nicely…
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Properties
• The largest element is in the root, always 

• The heap folds nicely…
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insertion of a new key
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insertion of a new key
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insertion of a new key
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insertion of a new key
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insertion of a new key
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insertion of a new key
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insertion of a new key
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insertion of a new key
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insertion of a new key
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insertion of a new key
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insertion of a new key
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insertion of a new key
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Algorithm

heapifyUp( node ) 
     begin 
     while ( node has a parent ) and ( node.key > parent.key ) 
          begin 
          swap( node and its parent ) 
          // node is now in its parent's original position 
          end 
      end



Deleting the Root
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Deleting the Root
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Deleting the Root
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Deleting the Root
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Deleting the Root
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Deleting the Root
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Deleting the Root
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Deleting the Root
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Deleting the Root
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Algorithm
heapifyDown( node ) 
     begin 
     if node is a leaf then 
           return!
     maxNode = node's child with highest key 
     if maxNode.key > node.key then 
           begin 
           swap( node and maxNode ) 
           // now node is in place of maxNode's original position 
           heapifyDown( node )   // recurse down 
           end 
     end



Operation
Worst!
Time!

Complexity

Average!
Time!

Complexity

Best!
Time!

Complexity

Insert!
key O(log N) O(log N) O(log N)

delete!
root O(log N) O(log N) O(log N)


