AVL Trees Heaps And Complexity

D. Thiebaut CSC212 — Fall 2014

Complexity Of BST Operations

or

"Why Should We Use BST Data Structures"

What We're After:

- What's the worst amount of work we can expect
 - when we insert?
 - when we delete?
 - when we search, successfully or unsuccessfully?
- What's the average amount of work we can expect?
- We'd like to know about the **best** case, but in general it doesn't occur that often.

Which Two-Operations In BSTs are Similar?

- Insert
- Delete

Worst Case for *Inserts* or Unsuccessful *Searches*

- **Definition:** The depth of a node x, d(x), is the # of nodes from the root to that node. d(x) = 0-based level of the node plus 1.
- What is the worst possible number of nodes visited for searching or inserting in a BST?
- So, what is the worst-case complexity for insert or unsuccessful operations?

Operation	Outcome	Worst Case Complexity	Average Complexity	Best Complexity
Insertion	X	O(N)		
Search	Successful			
	Unsuccessful	O(N)		
Deletion	X			

Best-Case complexity for search?

Operation	Outcome	Worst Case Complexity	Average Complexity	Best Complexity
Insertion	X	O(N)		
	Successful			O(1)
Search	Unsuccessful	O(N)		O(1)
Deletion	X			

Average Case for Successful Searches

Need More Definitions

- BST of N nodes
- key_i = key residing in node x_i , i=1, 2... N
- $d(x_i) = \text{depth of node } x_i$
- p_i = probability of searching for key_i

What is the average number of nodes visited when searching a BST of N nodes?

$$D_{avg}(N) = \sum_{i=1}^{N} d_i p_i$$

So, we need to know p_i ...

- if all the keys are **equally likely**, then all the p_i are identical.
- if the p_i are **not identical**, then some keys are more likely than others, and we can take advantage of this \implies self-adjusting trees (Section 6.8)

Equally Likely Keys

• equally likely keys: $p_i = 1/N$

$$D_{avg}(N) = 1/N \sum_{i=1}^{N} d_i = \text{total node depth}$$

Davg(N) depends on tree shape!

Unbalanced Tree

Fully Balanced Tree

 $i \times 2^{(i-1)}$

$$1/N \sum_{i=1}^{\log(N+1)} i2^{(i-1)} < \log(N+1) = O(\log N)$$

But... Are average BSTs tall or fat?

What about Successful Search in a Random BST?

What about Successful Search in a Random BST?

- We need to look at all possible shapes the BST of N nodes can have and compute the average number of probes required for each successful search, and average over all possible shapes of the BST...
- Huge amount of combinations!

Different BSTs of 3 nodes and lengths of different paths for each

Average # of Probes for Successful Searches in a "random" BST of N nodes:

$$D_{avg}(N) \approx 1.386 \log_2 N$$

We don't really care

Operation	Outcome	Worst Case Complexity	Average Complexity	Best Complexity
Insertion	X	O(N)	O(log N)	O(1)
Search	Successful	O(N)	O(log N)	<i>O(</i> 1 <i>)</i>
	Unsuccessful	O(N)	O(log N)	<i>O(</i> 1 <i>)</i>
Deletion	X	O(N)	O(log N)	<i>O(</i> 1)

Unlikely to happen

That's what we expect

AVL-Trees

Named for Adelson-Velskii and Landis

- 1962
- Important property: For any node X in the tree, the heights of the left and right subtrees of X differ by at most 1

AVL Trees Rely on *Rotations*

Rotation Right

Rotation Left

add 'Z' Q

Rotation Left

AVL Time Complexity

Operation	Worst Case Complexity	Average Complexity	
Insertion	O(log N)	O(log N)	
Search	O(log N)	O(log N)	
Deletion	O(log N)	O(log N)	

Java

- Not that many "pure" trees
- javax.swing.tree
- javax.swing.tree TreeModel
- javax.swing.tree TreeNode

A heap is:

- A fully balanced binary tree, will all leaves on the left-most inner nodes
- The key of a *parent* is **larger** than or equal to the key of its *children*

Typically used for...

Priority queues: get the next element with the highest priority

- The largest element is in the root, always
- The heap folds nicely...

What can you say of the keys other than the root?

- The largest element is in the root, always
- The heap folds nicely...

- The largest element is in the root, always
- The heap folds nicely...

- The largest element is in the root, always
- The heap folds nicely...

Properties

- The largest element is in the root, always
- The heap folds nicely...

Algorithm

```
heapifyUp( node )
begin
while ( node has a parent ) and ( node.key > parent.key )
begin
    swap( node and its parent )
    // node is now in its parent's original position
    end
end
```


Algorithm

```
heapifyDown( node )
  begin
  if node is a leaf then
      return
  maxNode = node's child with highest key
  if maxNode.key > node.key then
      begin
      swap( node and maxNode )
      // now node is in place of maxNode's original position
      heapifyDown( node ) // recurse down
      end
  end
```

Operation	Worst Time Complexity	Average Time Complexity	Best Time Complexity
Insert key	O(log N)	O(log N)	O(log N)
delete root	O(log N)	O(log N)	O(log N)