AVL Trees Heaps And Complexity

D. Thiebaut CSC212 — Fall 2014

Some material taken from<http://cseweb.ucsd.edu/~kube/cls/100/Lectures/lec4.avl/lec4.pdf>

Complexity Of BST Operations

or

"Why Should We Use BST Data Structures"

What We're After:

- What's the **worst** amount of work we can expect
	- when we insert?
	- when we delete?
	- when we search, successfully or unsuccessfully?
- What's the **average** amount of work we can expect?
- We'd like to know about the **best** case, but in general it doesn't occur that often.

Which Two-Operations In BSTs are Similar?

- Search/Find $\{$ Successful
	-
	- Unsuccessful

- **Insert**
- Delete

Worst Case for *Inserts* or Unsuccessful *Searches*

- **Definition:** The depth of a node *x*, *d(x)*, is the # of nodes from the root to that node. $d(x) = 0$ -based level of the node plus 1.
- What is the worst possible number of nodes visited for searching or inserting in a BST?
- So, what is the worst-case complexity for insert or unsuccessful operations?

Best-Case complexity for search?

Average Case for *Successful Searches*

Need More Definitions

- BST of *N* nodes
- *keyi* = key residing in node *xi*, i=1, 2… *N*
- $d(x_i)$ = depth of node x_i
- *pi* = probability of searching for *keyi*

What is the average number of nodes visited when searching a BST of N nodes?

So, we need to know pi...

- if all the keys are **equally likely**, then all the *pi* are identical.
- if the *pi* are **not identical**, then some keys are more likely than others, and we can take advantage of this *self-adjusting trees* (Section 6.8)

Equally Likely Keys

• equally likely keys: *pi* = 1/*N*

$$
D_{avg}(N) = 1/N \sum_{i=1}^{N} d_i = \text{total node depth}
$$

• *D_{avg}(N)* depends on tree shape!

O(*N*) O(log *N*)? Successful Search: $\left\{\begin{array}{ll}\n\bullet & O(N) & \text{Unbalanced Trees} \\
\bullet & O(\log N)? & \text{Balanced Trees}\n\end{array}\right.$

But… Are average BSTs tall or fat?

What about Successful Search in a Random BST?

What about Successful Search in a Random BST?

- We need to look at all possible shapes the BST of *N* nodes can have and compute the average number of probes required for each successful search, and average over all possible shapes of the BST…
- Huge amount of combinations!

Average # of Probes for Successful Searches in a "random" BST of N nodes:

 $D_{avg}(N) \approx 1.386 \log_2 N$

We don't really care

AVL-Trees

• Named for Adelson-Velskii and Landis

- 1962
- Important property: For any node X in the tree, the heights of the left and right subtrees of X differ by at most 1

Rotation Left

AVL Time Complexity

Java

- Not that many "pure" trees
- **javax.swing.tree**
- **javax.swing.tree** TreeModel
- **javax.swing.tree** TreeNode

Heaps

A heap is:

- A **fully balanced binary tree**, will all leaves on the **left-most** inner nodes
- The key of a *parent* is **larger** than or equal to the key of its *children*

Typically used for…

• **Priority queues**: get the next element with the highest priority

- The largest element is in the root, always
- The heap folds nicely...

- The largest element is in the root, always
- The heap folds nicely...

- The largest element is in the root, always
- The heap folds nicely...

- The largest element is in the root, always
- The heap folds nicely...

- The largest element is in the root, always
- The heap folds nicely...

Algorithm

heapifyUp(node) **begin while** (node has a parent) *and* (node.key > parent.key) **begin** *swap*(node and its parent) // node is now in its parent's original position **end end**

Algorithm

heapifyDown(node) **begin if** node is a leaf **then return** maxNode = node's child with highest key **if** maxNode.key > node.key **then begin** swap(node and maxNode) // now node is in place of maxNode's original position *heapifyDown*(node) // recurse down **end end**

