Building and Installing a
Hadoop/MapReduce Cluster
from Commodity
Components

Jochen L. Leidner / Gary Berosik

Technical Report

Building and Installing a Hadoop/MapReduce Cluster
from Commodity Components

by Jochen L. Leidner! and Gary Berosik?

Abstract

This tutorial presents a recipe for the construction of a compute cluster for
processing large volumes of data, using cheap, easily available personal
computer hardware (Intel/AMD based PCs) and freely available open source
software (Ubuntu Linux, Apache Hadoop).

Introduction

This article describes a straightforward way to build, install and
operate a compute cluster from commodity hardware. A compute
cluster is a utility that allows you to perform larger-scale
computations faster than with individual PCs. We use commodity
components (called “nodes”) to keep the price down and to ensure
easy availability of initial setup and replacement parts, and we use
Apache Hadoop as a middleware for distributed data storage and
parallel computing.

Background

At the time of writing, single desktop computers and even mobile devices have
become faster than the supercomputers of the past. At the same time, storage
capacities of disk drives have been increasing by multiple orders of magnitude.
As a result of mass production, prices have decreased and the number of users of
such commodity machines has increased. At the same time, pervasive
networking has become available and has led to the distribution and sharing of
data, leading to distributed communication, creation, consumption, and
collaboration. Perhaps paradoxically, the ever-increasing amount of digital
content that is the result of more powerful machine storage and networking is

1Jochen L. Leidner, Ph.D. is a Research Scientist in the corporate Research and Development group at
Thomson Reuters and a Director at Linguit Ltd. He holds a doctorate degree in Informatics from the
University of Edinburgh, where he has been a Royal Society Enterprise Fellow in Electronic Markets and
postdoctoral Research Fellow, and two Master’s degrees in Computational Linguistics and English Language
and Literature, and Computer Speech, respectively. His research interests include natural language
processing, search engines, statistical data mining and software engineering. Jochen is a member of ACM,
ACL and SIGIR, co-authored over twenty peer-reviewed papers and several patent applications.

2 Gary Berosik is a Lead Software Engineer at Thomson Reuters Research and Development and an Adjunct
Faculty member in the Graduate Programs in Software at the University of St. Thomas in St. Paul, MN. His
interests include software engineering, parallel/grid/cloud processing, statistical machine learning
algorithms, learning-support technologies, agent-based architectures and technologies supporting business
intelligence and information analytics.

leading to ever-increasing processing demands to find information and make
sense of activities, preferences, and trends. The analysis of large networks such
as the World Wide Web (WWW) is such a daunting task that it can only be
carried out on a network of machines.

In the 1990s, Larry Page, Sergey Brin and others at Stanford University used a
large number of commodity machines in a research project that attempted to
crawl a copy of the entire WWW and analyze its content and hyperlink graph
structure. The Web quickly grew, becoming too large for human-edited
directories (e.g. Yahoo) to efficiently and effectively point people at the
information they were looking for. In response, Digital Equipment Corporation
(DEC) proposed the creation of a keyword index of all Web pages, motivated by
their desire to show the power of their 64-bit Alpha processor. This effort
became known as the AltaVista search engine. Later, the aforementioned
Stanford group developed a more sophisticated search engine named BackRub,
later renamed Google. Today, Google is a search and advertising company, but is
able to deliver its innovative services only due to massive investments in the
large-scale distributed storage and processing capability developed in-house.
This capability is provided by a large number of commodity off-the-shelf (COTS)
PCs, the Google File System (GFS), a redundant cluster file system, and
MapReduce - parallel data processing middleware. More recently, the Apache
Hadoop project has developed a reimplementation of parts of GFS and
MapReduce, and many groups have subsequently embraced this technology,
permitting them to do thing that they could not do on single machines.

Procurement

We choose the GNU/Linux operating system because it is very efficient, scalable,
stable, secure, is available in source code without licensing impediments, and has
a large user base, which ensures rapid responses to support questions. We select
the Ubuntu distribution of the operating system because it has good support, a
convenient package management system, and is offered in a server edition that
contains only server essentials (Ubuntu Server). At the time of writing, release
9.04 was current. Little, if anything, of the described approach depends on this
particular version.

You will need:

= $10,000 for 20 nodes; or, more precisely $500 + ($500 * n), where n is the
number of nodes;

* an existing PC running Linux (or ready to be set up to run Linux, either as
dual boot, in a virtualized setup, or exclusively), or $3,000 to buy one

= 3 screwdriver;

= alocation to put the cluster, which has access to a power outlet and an
Internet access point; and

= two person days (one to prepare, research, order, and another one to put
things together once all components are at-hand).

We will need the following components:

Master: We need a desktop PC running Linux as a master machine. In this
project, no master purchase was necessary, because an existing DELL
Optiplex (2x1 TB HDD configured as RAID, 24" TFT display) was already
available.

Cost: $0 (if you don't have a machine, I'd suggest ordering PowerMac or a
DELL for $3,000).

Switch: Using a professional-grade Netgear ProSafe 24 means we can
save the time setting up the machine (this switch detects everything
automatically once it is plugged in). It has 24 sockets, which means we
can have up to 22 nodes (we have to connect the master and the network
cable to two of the sockets).

Network cabling: Get at least one CAT6 Ethernet patch cable per node to
connect the node with the switch. The cables should be as short as
possible but long enough to bridge the distance between switch and back
of the node's case. If you can, buy half a dozen of these extra. The price
should be around $3 if ordered online, or $20 in a store. Cost: $3*6 + ($3 *
n), plan $80 for a 20-node cluster.

Nodes: We should plan for at least two slave node PCs in order to have an
advantage over a single, powerful desktop PC or server and to deploy the
various core Hadoop processes. Since we are drawing from commodity
components, we should pick an attractive package deal rather than waste
time on customizing a node. Criteria are: price, CPU speed, RAM, number
of hard disk slots, energy consumption, cooling and noise. The hard disk
drive size is not a criterion, because they will be replaced (cheap
commodity PC deals include very small disk drives). The amount of RAM
is important, but since it can be cheaply replaced what matters is more
the maximum amount possible rather than the memory size it comes
from the factory with. 2 GB should be considered the absolute minimum,
4 GB/node RAM is recommended (16 GB would be ideal, but at the time of
writing is unlikely to be found in consumer machines).

For this project, Acer X2 with a dual-core Athlon X2 64-bit CPU (1.2 GHz),
3 GB RAM, 320 GB HDD, was selected, because it offers 4,800
bogomips/core for under $400. The disk drives were replaced due to
their insufficient size. Cost: $400 * n, plan $10,000 for 20 nodes (if you
buy the nodes incrementally over time, you can expect either the price to
go down, or to get more powerful machines; the disadvantage is higher
support cost in time, because you will have a whole zoo of different pieces
of hardware.)

Hard disk drives (1 TB or higher). Determine the type of hard disk drive
with the lowest $/TB cost. High-capacity drives are overly expensive, and
the average size of drives used in commodity PCs as you buy them is too
small, so the drives they come with (e.g. 320 GB) have to be replaced.
Cost: $89 * n, plan $1,780 for 20 nodes.

Enclosure (shelf or rack). The nodes, switch etc. need to live somewhere.
A 42U 19" rack is the standard for data centers, however it may prove an
unreasonable choice for several reasons: first, the cost of a new rack could
easily exceed the total of the hardware expenses for the cluster itself, and
secondly, since the nodes are commodity machines as opposed to

"professional” 19" servers, they may be hard to fix, so the main advantage
of the 19" rack may be lost on them.
Alternatives are cheap IKEA shelves made from wood or metal, or
anything similar. One valuable feature for situations where the height of
the rack does not exceed its width/depth is to attach some wheels to keep
it mobile (once the nodes are put on it, it can get quite heavy, and we
would like to avoid having to disassemble the cluster if the need for a
relocation arises). Cost: approximately $400 (but it is likely that you may
already have a spare shelf somewhere).

= Socket multiplier. Use a socket multiplier to cope with the plugs of all
nodes, the master, the switch and other devices you may have. Make sure
the socket multipliers are fused and the power outlet itself can actually
sustain the power drawn without blowing the fuse of the room/building
where the cluster lives. Cost: $20.

= Optionally, you can use an Uninterruptible Power Supply (UPS) unit if
your computations run for more than a few days (e.g.
http://www.tripplite.com/), but the project as described and
implemented here did not exercise that option.

Physical Setup & Assembly

It is important to pick a suitable location for the cluster, which is best chosen
upfront. Cable length planning is important. The location must be close to the
Internet access point and should be protected from unauthorized or accidental
access, and must be well ventilated.

Power consumption for a cluster of reasonable size will be considerable. For
instance, ten nodes of Acer X1700 at 220 Watts each amount to 2200/120 = 18.4
Amperes, which is just under the limit of what the circuit breaker of a typical
household or small office will be able to carry. In addition, consider the
significant heat generation that a large cluster can create.

Open the node PCs and remove their internal HDDs. Now is a good time to plug
in additional RAM before inserting the new 1 TB replacement hard disk drives.
After replacing the first disk, boot the Ubuntu DVDROM while the case is still open
in order to ensure that the disks are recognized by the BIOS and by Ubuntu (i.e.
skip down to the next Section, Operating System Installation for one node). Once
you know that your disks are compatible with your nodes' SATA controllers and
your BIOS, close all nodes' cases.

If using a closed 19" rack that comes with a door (recommended to keep the
noise level down, but even more expensive than its open siblings), you may
consider removing all cases of the node PCs altogether to improve ventilation
(this "naked" configuration was pioneered by Google).

Operating System Installation

First make sure you are connected to the Internet. You can either download
Ubuntu Server 9.07 or higher and burn a DVD with this ISO image, or purchase a

DVDROM, but in the latter case you will still require Internet access in order to
obtain security updates and install additional software.

Connect all nodes with the switch using the CAT6 cables and connect all nodes
with the power source using the socket multiplier. Connect the master PC's
screen to the first node to be installed, insert the DVDROM with the operating
system and switch it on to boot Ubuntu Server. Select "Install Ubuntu Server"
(first menu option). Select the language, keyboard layout (e.g. English, U.S.) using
the keyboard (confirm with RETURN, switch boxes on the screen with TAB) and
set up the partitions as follows:

= boot (1 GB) not mounted, ext3, bootable, primary (important: this one
should be at the beginning of the disk, or you may run into BIOS boot
problems such as "grub error 2" etc.);

= root (50 GB) mounted as /, ext3, logical;

* main (0.94 TB) mounted on /var (var is a standard convention indicating
variable data, i.e. a high amount of input/output is to be expected), ext3,
logical; and

= swap (2 GB) not mounted, type swap, logical using manual partitioning
(last option). Don't use logical volume management (LVM) or encryption.

After saving/applying these settings, the node will be busy for quite some time
(do not worry if the progress bar moves slowly or stalls for significant amount of
time, 1 TB is a lot of formatting to do!).

Set the time zone to UTC/GMT rather that a specific location, especially if your
cluster is distributed over multiple geographies; the rationale here is that log
files with time stamps are easier to read if all servers run in the same time zone.

Next, select and install software packages:

» Ubuntu server (always included, no action required);

= LAMP;

= QOpenSSH; and

= Samba (optional; if you may want to use nodes as file servers outside of
the Hadoop file system, for example if you use the cluster at home)

You will also have to give the computer a name (I named my cluster hydra, so the
nodes are called hydral, hydraz, ...). It then attempts to detect the network and
obtains an IP address via DHCP. You will be asked to define a non-root account
with a password as well.

During package installation, do not set any database passwords (leave the
respective fields empty and confirm) to keep life simple. If your cluster is part of
a larger infrastructure or exposed to an external network, consider using the
master PC as a firewall by installing a second network card that can become the
sole gateway to the external network (in this case, make sure all services other
than HTTP (port 80) and ssh (port 23) are disabled).

After the installation of the core packages is completed, the DVDROM is ejected
and the system will re-boot, hopefully successfully from the new drive for the
first time.

Log on using your new account and perform the following operations to ensure
we have the latest stable software states:

sudo apt-get update
sudo apt-get dist-upgrade

We also want to be able to use the X11 networking system on each node, in order
to make the administration easier (graphical login) and to run programs on
particular nodes manually while directing their output to the master. So let's get:

sudo apt-get install xorg gdm xfced

For added convenience, we want XEmacs on each node:

sudo apt-get install xemacs2l

Of course we should only do this on an experimental /research cluster; we won't
need (and should not install) X11 or XEmacs on a production server in 99.99% of
cases.

Depending on the tasks that we anticipate using the cluster for, we may want to
consider installing additional packages. I do a lot of Web research, data crawling,
analytics and statistical machine learning, so it makes sense to get some
crawlers, the R statistics system and libraries for numeric computing:

sudo apt-get install wget curl lynx
sudo apt-get install r-base r-base-dev
sudo apt-get install python-numpy python-scipy
For Hadoop cluster experiments, we'll need a recent Java Development Kit (JDK):

sudo apt-get install sun-java6-jdk
You will be asked to accept Java's license terms.

At this point, our first node is operational as far as the operating system is
concerned, but in order to make combined used of its nodes as a single quasi-
utility, we still need to install Apache Hadoop, and then replicate the setup to the
other nodes. If you are not using Hadoop, but another parallel computing
middleware (for example a batch system like Condor or Sun GridEngine), you
can skip the next part.

Example Hadoop Installation on a Small Cluster

After the installation of the operating system, we can now turn to the setup of
Apache Hadoop as our operating system middleware for redundant storage and
parallel processing. As an example, we describe a three-node installation.

util-egn-1 DELL Optiplex GX260 Master
NameNode;DataNode;TaskTracker

util-egn-2 DELL Optiplex 745 Slave
SecondaryNameNode;DataNode;TaskTracker

util-egn-3 DELL Optiplex 755 Slave JobTracker;DataNode;TaskTracker

1. Insure Java is set up. The latest Hadoop releases depend on a Java 6.x or later
release version. Download/install /test the latest 6.x Java release if this is not
already set up.

It is recommended to follow the procedures for single node cluster setup as
described in the online article by Michael G. Noll on running Hadoop in Ubuntu
Linux environments (1).

(Per this article's guidance, do this on each machine of a multi-node cluster to
help verify the operational status of Hadoop on each node before continuing to
set up a multi-node configuration.)

The following steps show examples of following these instructions.

2. Add a hadoop group and hadoop user for that group.

<your-user-name>@util-egn-1:~$% sudo addgroup hadoop
<your-user-name>@util-egn-1:~$ sudo adduser --ingroup hadoop hadoop

As needed, switch user to hadoop:

su - hadoop

3. Add the following exports for proxy and JAVA_HOME to the .bashrc file for
both your user and the new hadoop user.

export http_proxy=<yourProxy>:<proxyPort>
export JAVA HOME=<yourJavaHomePath>

4. Configure and test SSH operation on all nodes (required by Hadoop).

As the hadoop user, on the master node, create the RSA key:
hadoop@util-egn-1:~$ ssh-keygen -t rsa -P """
Copy or append the new key to the authorized_keys file in the .ssh directory.

hadoop@util-egn-1:~$ cat /home/hadoop/.ssh/id_rsa.pub >>
~hadoop/ .ssh/authorized_keys

Try to connect to the local machine with the hadoop user. Respond with a yes
when prompted to "continue connecting".

hadoop@util-egn-1:~$ ssh localhost

5. Download Hadoop 0.19.2

As of this writing, there are known instability issues with the 0.20 release, so
release 0.19.2 is used for this installation.

For example, download from:

http://newverhost.com/pub/hadoop/core/hadoop-0.19.2/hadoop-
0.19.2.tar.gz

Now, with administrator permissions, install this release in the desired directory
location. (The example installation steps below assume the original download
was to the directory location: /home/<your-user-name>/Desktop.)

Note that these steps must be performed with administrator level permissions.

Uncompress the hadoop release to the desired location:

root@util-egn-1:/usr/local# sudo tar xzf /home/<your-user-
name>/Desktop/hadoop-0.19.2.tar.gz

Rename the release as desired, and change ownership of all the release contents
to permit use by the hadoop user.

root@util-egn-1:/usr/local# sudo mv hadoop-0.19.2 hadoop
root@util-egn-1:/usr/local# sudo chown -R hadoop:hadoop hadoop

6. Add an export for HADOOP_HOME to the .bashrc file for both your user and
the hadoop user.

export HADOOP_HOME=<yourHadoopHomePath>

7. Edit the file: /usr/local/hadoop/conf/hadoop-env.sh by uncommenting the
export for JAVA_HOME and setting it to the correct value.

export JAVA HOME=<yourJavaHomePath>

8. Edit the file <yourHadoopHomePath>/conf/hadoop-site.xml to contain single
node test configuration settings. Adjust values to suit your own configuration
needs. There are MANY possible default configuration parameter settings that
can be adjusted. See the <yourHadoopHomePath>/conf/hadoop-defaults.xml file
for more information about the complete set of adjustable parameters.

<configuration>

<property>
<name>hadoop.tmp.dir</name>
<value>/usr/local/hadoop/tmp/datastore/hadoop-${user.name}</value>
<description>

A base location for other temp datastore directories.
</description>
</property>

<property>
<name>fs._default._name</name>
<value>hdfs://localhost:54310</value>
<description>
The name of the default file system. A URI whose
scheme and authority determine the FileSystem implementation. The
URI"s scheme determines the config property (fs.SCHEME.impl) naming
the FileSystem implementation class. The URI"s authority is used to
determine the host, port, etc. for a FileSystem.
</description>

</property>

<property>

<name>mapred. job. tracker</name>

<value>localhost:54311</value>

<description>

The host and port that the MapReduce job tracker runs at.

IT "local", then jobs are run in-process as a single map and reduce
task.

</description>
</property>

<property>
<name>dfs.replication</name>
<value>1</value>
<description>
Default block replication.
The actual number of replications can be specified when the file is
created.
The default is used if replication is not specified at create time.
</description>
</property>

</configuration>

9. With administrator privileges, create the hadoop temp datastore directory for
your user and the hadoop user and change ownership to allow use by the hadoop
and your user:

root@util-egn-1:/usr/local/hadoop# mkdir tmp

root@util-egn-1:/usr/local/hadoop# mkdir tmp/datastore

root@util-egn-1:/usr/local/hadoop# mkdir tmp/datastore/hadoop-

hadooproot@util-egn-1:/usr/local/hadoop# sudo chown -R hadoop:hadoop
tmp/datastore/hadoop-hadoop

root@util-egn-1:/usr/local/hadoop# mkdir tmp/datastore/hadoop-<your-
user-name>
root@util-egn-1:/usr/local/hadoop# sudo chown -R <your-user-
name>:<your-user-name>

tmp/datastore/hadoop-<your-user-name>

Verify proper creation and ownership of the temp datastore directories:

drwxr-xr-x 4 root root 4096 2009-10-22 12:11 datastore
drwxr-xr-x 2 hadoop hadoop 4096 2009-10-22 12:09 hadoop-hadoop

10. Test Hadoop execution in single-node mode, using HDFS.

As the hadoop user, format the NameNode.

hadoop@util-egn-1:~$ $HADOOP_HOME/bin/hadoop namenode -format

Start the (single-node) cluster.

hadoop@util-egn-1:~$ $HADOOP_HOME/bin/start-all.sh

Verify that the expected Hadoop processes are running using Java's jps.
hadoop@util-egn-1:~$ jps

27069 JobTracker

26641 NameNode

26729 DataNode

29425 Jps

26923 SecondaryNameNode

27259 TaskTracker

With administrator permission, use netstat to verify that Hadoop is listening on
the expected/configured ports. For example:

root@util-egn-1:~# sudo netstat -plten | grep java

tcp6 O O :-::50020 el LISTEN 1001 607378 26729/java
tcp6 0 O :-::45700 il LISTEN 1001 591676 26729/java
tcp6 0 0 127.0.0.1:54310 :::* LISTEN 1001 590635 26641/java
tcp6 0 0 127.0.0.1:54311 z:* LISTEN 1001 594563 27069/java
tcp6 0 O :-::50090 o* LISTEN 1001 601284 26923/java
tcp6 0 O :::50060 o* LISTEN 1001 601022 27259/java
tcp6 O 0O :::50030 o* LISTEN 1001 600371 27069/java
tcp6 0 0 :-::41071 bl LISTEN 1001 592854 26923/java
tcp6 0 0 127.0.0.1:5163 z:* LISTEN 1001 601104 27259/java
tcp6 0 O :-::50070 i* LISTEN 1001 595090 26641/java
tcp6 0 O :-::50010 bl LISTEN 1001 595317 26729/java
tcp6 O 0O :-::38554 o* LISTEN 1001 593715 27069/java
tcp6 0 O :::50075 o* LISTEN 1001 601394 26729/java
tcp6 0 O :-::39071 o* LISTEN 1001 590581 26641/java

11. Set up and run a Hadoop example test application to verify operability.

Adjust the <HadoopHome>/conf/hadoop-env.sh file to set JAVA_HOME,
HADOOP_HOME, and a reasonable CLASSPATH (if desired) for Hadoop
executions.

export JAVA HOME=/usr/lib/jvm/java-6-sun/jre
export HADOOP_HOME=/usr/local/hadoop

export CLASSPATH=$HADOOP_HOME/hadoop-0.19.2-

core. jar:$HADOOP_HOME/hadoop-0.19.2-examples. jar:$HADOOP_HOME/hadoop-
0.19.2-test. jar :$HADOOP_HOME/hadoop-0.19.2-

tools._jar:$CLASSPATH: $classpath

Run the test example program.

(The following example executes the pi program included in the distributed
Hadoop examples. Use the source command to insure that the settings are kept
by the executing shell process.)

hadoop@util-egn-1:~$ source sethadenv.sh

hadoop@util-egn-1:~$ $HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/hadoop-
0.19.2-examples.jar pi 2 10

The output should look similar to the following:

Number of Maps = 2 Samples per Map = 10
Wrote input for Map #0
Wrote input for Map #1

Starting Job

09/10/22

13:17:50

process : 2

09/10/22

13:17:50

INFO

INFO

job_200910221225 0001

mapred.FilelnputFormat: Total input paths to

mapred.JobClient: Running job:

09/10/22 13:17:51 INFO mapred.JobClient: map 0% reduce 0%
09/10/22 13:18:00 INFO mapred.JobClient: map 50% reduce 0%
09/10/22 13:18:03 INFO mapred.JobClient: map 100% reduce 0%
09/10/22 13:18:10 INFO mapred.JobClient: map 100% reduce 100%
09/10/22 13:18:11 INFO mapred.JobClient: Job complete:

job_200910221225_ 0001

09/10/22 13:18:11 INFO mapred.JobClient: Counters: 16

09/10/22 13:18:11 INFO mapred.JobClient: File Systems

09/10/22 13:18:11 INFO mapred.JobClient: HDFS bytes read=236
09/10/22 13:18:11 INFO mapred.JobClient: HDFS bytes written=212
09/10/22 13:18:11 INFO mapred.JobClient: Local bytes read=78
09/10/22 13:18:11 INFO mapred.JobClient: Local bytes written=218
09/10/22 13:18:11 INFO mapred.JobClient: Job Counters

09/10/22 13:18:11 INFO mapred.JobClient: Launched reduce tasks=1
09/10/22 13:18:11 INFO mapred.JobClient: Launched map tasks=2
09/10/22 13:18:11 INFO mapred.JobClient: Data-local map tasks=2
09/10/22 13:18:11 INFO mapred.JobClient: Map-Reduce Framework
09/10/22 13:18:11 INFO mapred.JobClient: Reduce input groups=2
09/10/22 13:18:11 INFO mapred.JobClient: Combine output records=0
09/10/22 13:18:11 INFO mapred.JobClient: Map input records=2
09/10/22 13:18:11 INFO mapred.JobClient: Reduce output records=0
09/10/22 13:18:11 INFO mapred.JobClient: Map output bytes=64
09/10/22 13:18:11 INFO mapred.JobClient: Map input bytes=48
09/10/22 13:18:11 INFO mapred.JobClient: Combine input records=0
09/10/22 13:18:11 INFO mapred.JobClient: Map output records=4
09/10/22 13:18:11 INFO mapred.JobClient: Reduce input records=4
Job Finished in 21.342 seconds

Estimated value of Pl is 3.2

hadoop@util-egn-1:~$

Congratulations! At this point you have a simple, single-node Hadoop
environment up and running!

12. Shut down the Hadoop processes in the single-node cluster.

hadoop@util-egn-1:~$ $HADOOP_HOME/bin/stop-all._sh

The output should look similar to the following:

stopping jobtracker

localhost: stopping tasktracker
stopping namenode

localhost: stopping datanode
localhost: stopping secondarynamenode

To configure the Hadoop middleware to handle a multi-node cluster, we
recommend you follow the procedures for setting up multi-node clusters
described in the article by Michael G. Noll (2).

You now face the issue of having to install the whole node’s environment (Linux,
packages, Hadoop) from one node to the remaining nodes in a near-identical
way. For smaller clusters this can be done manually. For larger clusters with
nodes that have possibly different hardware specifications, stronger tools need
to be used to define machine classes, separate configurations for each class, and
assist in the distribution of these configurations to the appropriate node
machines. In these settings, various sources suggest the use of configuration
management tools like Puppet (4), cfengine (5), or bcfg2 (6).

More concretely, there are several solutions to this, depending on your
experience and number of nodes:

(a) burn an ISO image with your setup and use this with the remaining nodes;

(b) insert the empty hard disk drives as secondary drives in the master PC
temporarily in order to copy over the entire disk using the dd(1)
command;

(c) clone the disk over a network connection using dd(1) and netcat (nc(1))
as outlined by (7); or

(d) install the other nodes manually (estimated time: about 30 min/node).

Method (c) is superior for large clusters, but (d) is fast enough for smaller
clusters. Remember that the hostname must be unique, so you may have to set it
manually after cloning the node setups by manually invoking the hostname(1)
command for each node.

In order to automate the installation completely, (9) recommends using static IP
addresses for the nodes, setting the hostname by keeping a file
hostnames.new that contains the node names and their static IP addresses,
and then generating a set of node-specific kick-start files from a master template
(here called “anaconda-ks.cfg”, with NODE_HOSTNAME and NODE_STATIC_IP
being placeholders) as follows:

for 1 in $(cat ~/hostnames.new) ; do \

cat anaconda-ks.cfg | sed s/NODE_HOSTNAME/S$i/g | sed
s/NODE_STATIC_IP/$(grep $i /etc/hosts | awk "{print
$1}°)/g > ks-$%i.cfg ; \
done

In their approach, the operating system is booted over the network using the
node-specific kick-start file.

But there is yet another mode of operation to install Hadoop on more than one
node very conveniently: Cloudera Inc. (a cluster/cloud computing startup, which
recently hired Hadoop architect Doug Cutting) permits you to enter your desired
cluster configuration on a Web interface (my.cloudera.com), and it automatically
creates customized installers (e.g. *.rpm packages) that contain all the cluster
configuration information.

Now that your Hadoop cluster is fully operational, we recommend you try out
the word count example from the Apache Hadoop tutorial (8), which shows you
how the UNIX wc(1) command can be distributed across a cluster.

Summary and Conclusion

We have described a successfully completed project to build a cluster computing
utility from commodity parts. The cluster is affordable (<$10,000), can be built
incrementally, and is more powerful than servers that were priced over a
quarter million dollars just a few years ago. Hadoop provides powerful operating
system middleware for large-scale batch processing such as the automatic
analysis of large data collections. We expect that in the future, enterprise
versions of commodity operating systems will incorporate some of these
capabilities, but hope the above introduction can serve to give the interested
reader a head start.

Happy Hadooping!

References

1. Web article by Michael G. Noll, Running Hadoop On Ubuntu Linux
(Single-Node Cluster). http://www.michael-
noll.com/wiki/Running Hadoop On Ubuntu Linux (Single-Node Cluster)
2. Web article by Michael G. Noll, Running Hadoop On Ubuntu Linux
(Multi-Node Cluster) http://www.michael-
noll.com/wiki/Running Hadoop On Ubuntu Linux (Multi-Node Cluster)
Tom White, Hadoop: The Definitive Guide, O'Reilly/Yahoo! Press, 2009
4. Puppet online information:
http://reductivelabs.com/trac/puppet/wiki/DocumentationStart
5. cfengine online information: http://www.cfengine.org/manuals/cf3-
reference.html

w

6. bcfg2 online information:
http://trac.mcs.anl.gov/projects/bcfg2 /wiki/UsingBcfg2

7. Web article by Vivek Gite, Copy hard disk or partition image to
another system using a network and netcat (nc).
http: //www.cyberciti.biz/tips /howto-copy-compressed-drive-image-
over-network.html

8. Apache Hadoop Map/Reduce Tutorial online information:
http://hadoop.apache.org/common/docs/current/mapred tutorial.html

9. Installing CentOS On a Cluster Via NFS online information:
http://biowiki.org/InstallingCentOSOnClusterViaNFS

Disclaimer.
All opinions expressed in this article are the authors’, and do not reflect any
official opinion or endorsement by the Thomson Reuters Corporation.

Figure 1. Hydra, a miniature cluster with one master PC and three nodes.

http://www.cyberciti.biz/tips/howto-copy-compressed-drive-image-over-network.html
http://www.cyberciti.biz/tips/howto-copy-compressed-drive-image-over-network.html
http://www.cyberciti.biz/tips/howto-copy-compressed-drive-image-over-network.html
http://www.cyberciti.biz/tips/howto-copy-compressed-drive-image-over-network.html
http://www.cyberciti.biz/tips/howto-copy-compressed-drive-image-over-network.html
http://www.cyberciti.biz/tips/howto-copy-compressed-drive-image-over-network.html
http://biowiki.org/InstallingCentOSOnClusterViaNFS
http://biowiki.org/InstallingCentOSOnClusterViaNFS
http://biowiki.org/InstallingCentOSOnClusterViaNFS
http://biowiki.org/InstallingCentOSOnClusterViaNFS

	Introduction
	Background
	Procurement
	Physical Setup & Assembly
	Operating System Installation
	Example Hadoop Installation on a Small Cluster
	Summary and Conclusion
	References

