
Processing (Proce55ing) Tutorial for Macromedia Minds http://www.jtnimoy.com/itp/p5/workshop/

1 of 19 11/13/2005 3:06 PM

A Tutorial Workshop originally aimed at ITP Students, supplementary to course material for
"Introduction to Computational Media", "Programming for Non-Programmers", and "Code and Me"

Language: English , Japanese , Korean

Workshop Teacher
Josh Nimoy
contact: jn429 [at] nyu [dot]
edu
website

Software Creators
Processing is an open
project initiated by
Ben Fry and Casey Reas

Japanese Translation by
Hironobu Fujiyoshi and Ayako
Takabatake
contact: hf [at] cs [dot] chubu
[dot] ac [dot] jp

Korean Translation by
Koo-Chul Lee
contact: kclee [at] phya [dot]
snu [dot] ac [dot] kr

Description
Processing is a context for exploring the emerging conceptual space enabled by
electronic media. It is an environment for learning the fundamentals of computer
programming within the context of the electronic arts and it is an electronic
sketchbook for developing ideas.
www.Proce55ing.net

The Processing environment is the easiest Java compiler / interactive graphics and
multimedia programming environment known to man. The system can be used to
produce locally run pieces, as well as web-embeddable Java applets. Quite
deliberately, the system is also designed to bridge the gap between educational
graphics programming environments, and "real Java." Processing can be used like
training wheels, but does not have to be.

The goal of this tutorial is to introduce users of Macromedia Flash and Director to the
Processing environment by comparing and contrasting the systems. The theory is
that the knowledge gained from these Macromedia tools can easily transfer, reducing
the amount of required teaching. It assumes you have a basic understanding of
either Macromedia product. By the end of this tutorial, you should be able to produce
and publish your own Processing (Java) pieces, and communicate through a serial
port with a BX-24 chip.

Table of Contents
Introduction
Obtaining the Processing Software
A tour of the interface
Lower Level Media Manipulation
Syntax Structure
Static 2D Drawing
Time and Motion
Mouse & Keyboard
Presentation / Exporting
Drawing Image Files
3D Form
Pixels
Typography
Serial
The Future

Processing (Proce55ing) Tutorial for Macromedia Minds http://www.jtnimoy.com/itp/p5/workshop/

2 of 19 11/13/2005 3:06 PM

Introduction
Currently in on-screen interaction design classes, the dominant teaching vehicle has
been Flash or Director. Students are beginning to produce geometrically dynamic and
more algorithmically complex pieces influenced by works done in environments other
than their own. At ITP, I witnessed an experiment in one such class (although since
then, they've been using Processing). In the middle of teaching Director Lingo, a
one-week excursion into Java programing introduced students to a language other
than Lingo - in hopes that they would get a more diverse view of different
programming systems. A template was given to them - and they simply changed the
code with a quick rosetta stone reference. After this week of confusion, several
students were left with an empty yearning to learn more Java. There was no easy
way to tell them that the average college Java course usually has you working in a
text console, and has little or no relationship to "Applet Graphics" unless it is a course
specifically targeted to teach that. In the following lesson, I hope to bridge this
academic gap with the help of the Processing environment. It is not meant as a
replacement to those Java courses; it is a supplement which takes care of the
logistics - without getting deep into syntax nuances. Also, Processing and Java are
not being presented as the next level beyond Macromedia, nor are they being
presented as a lower level system. They are simply an alternative, capable of doing
different things in different ways. If you are currently attending a Java course, it may
be possible to use Processing for your assignments, depending on how flexible your
instructor is. This tutorial is a mixture of my own writing and images - with those
found on one state of the Processing website, maintained by Casey Reas and Ben
Fry. You will get to know these two names if you are a Processing user.

Obtaining the
Processing
Software

Processing is free (free as in free beer, free as in free speech, free as in free
country), and still in development stages. It will continue to be free even after it is
finished. The software is currently in ALPHA phase, which is the thing that comes
before BETA. Bugs are being fixed, and features are being added. In order to
download the cross-platform install program you can email its developers to join the
testing community. On the Processing website, click Download for further
instructions. Additionally, there is an avid messaging system amongst the testers. It
is highly recommended that you create a login for yourself. This community is the
best way to receive help on any topic - from other testers, from the authors
themselves, and from lurking geeks such as the author of this tutorial. It is also
important to note that this is the online community that helps develop Processing by
discussing features in those forums. On the Processing website, click Discourse. It is
also important to note that the Processing software and website are constantly being
updated. Check back for new additions to the reference, and new versions of the
software. Right now is an exciting time!

A tour of the
interface The following image is taken from www.Proce55ing.net. To see it in context, click

Reference, then Environment.

Immediately, you are probably thinking "Wow, this is such a simple interface. How
could it possibly be as capable as Director or Flash?" Both Director and Flash have all

Processing (Proce55ing) Tutorial for Macromedia Minds http://www.jtnimoy.com/itp/p5/workshop/

3 of 19 11/13/2005 3:06 PM

kinds of import and media editing interfaces based on common tasks in commercial
multimedia. In Processing, all of this is either done using another program, or done
by programming in Java. For example, Flash provides its own mini-Illustrator, while
Director provides its own mini-Photoshop. In consequence, a large body of work done
in both pieces of software have resembled the restrictions of their integrated editors.
In Processing (and in Java), you provide your own list of vector paths or GIF files,
and you render them using programming. You are free to generate your own forms
and structures using the language to control the pixels on the screen more directly.
For those experimental people who aim to produce new forms independently or
ahead of the status quo and its automation tools, Processing can be more
convenient.

Here is an introduction to the six buttons on the left side of the window.

The play button is the same as in Director and Flash. Press this to
see your code execute as a program.

The stop button is the same as in Director and Flash. Press this to
see your program stop executing.

Creates a new file. Processing calls them sketches. You can even
call them applets, programs, or interactive pieces. Director and
Flash call them movies.

Opens a pre-existing sketch. A menu will pop up and you can
choose from your own collection, saved in the special Processing
sketch folder which I will show you later. You can also choose from
a wide variety of example sketches by famous new media
designer/artists, in order to learn from them and use them as a
code reference.

Saves the current sketch into the Processing sketches folder. If you
want to give the sketch a name other than the current date, you
can choose save As from the File menu.

Exports the current sketch into the Processing sketches folder -
this time as a Java applet - complete with its very own HTML file.
This feature will be covered in more depth.

For detailed and advanced information about the Processing environment, see the
Processing Environment reference.

Lower Level
Media

Manipulation
In Director, one imports or creates media into a cast, then drag it onto a stage where
it will exist as a sprite. In Flash, one also imports or creates media into a library,
then instances them as movieclips on a similar stage. In Processing (and in Java) this
media importing is all done in code, similar to the way HTML works. Additionally, any
custom media that you invent (vector systems, DNA data, color samples from the
film, Fargo) can all be embedded as part of the Java code. In fact, you are not
restricted to having any external images or sounds if you want to keep everything in
one tidy file - because the pixels of an image can also be converted to be part of your
code, and sound data can also be stored as a large array of data. The benefit of
having a library or cast is for better control over formatting, in order to save disk
space / memory, and in order to add specific point-&-click features onto a common
file system metaphor. The benefit of a sprite or movieclip is so that a visible, tangible
object can sit on the screen and be an easy way for people to make buttons,
videogame characters, individual graphic elements, and other visual, controllable,
positive space elements. However, in creating cooperative groups of elements, and
objects that are neither positive nor negative space - this metaphor has become a
burden to some. In Processing, this complex layer does not exist; there is only
mouse/keyboard/serial events in conjunction with basic drawing routines. One takes
care of redrawing the scene repeatedly, in response to input changes and time. In a

Processing (Proce55ing) Tutorial for Macromedia Minds http://www.jtnimoy.com/itp/p5/workshop/

4 of 19 11/13/2005 3:06 PM

matter of speaking, it is your responsibility to write your own sprite or movieclip
system, but you are not required to. Invent another metaphor that would be more
useful to you as an artist. It also affords the opportunity to deeply diversify the
aesthetic from those works we often spot as Macromedia-influenced.

In the coming sections within this guide, I introduce methods for rendering imagery
to the screen. Then I will introduce time and animation. Finally, I will show you how
to add interaction with the mouse, keyboard, and serial port. These are the basic
building blocks for anything you wanted to do in high-level tools. You will be capable
of doing them in Java if you put your mind to constructing them yourself.

Syntax
Structure For those of you who use FlashMX, this is a review. The following is called

structure00 in the example sketches.

// Statements & Comments
// by REAS

// Statements are the elements that make up programs.
// The ";" is used to end statements. It is called the "statement terminator."
// Comments are used for making notes to help people better understand
programs.
// A comment begins with two forward slashes ("//").

// Created 1 September 2002

// The size function is a statement that tells the computer
// how large to make the window.
// Each function statement has zero or more parameters.
// Parameters are data passed into the method
// and used as values for specifying what the computer will do.
size(200, 200);

// The background function is a statement that tells the computer
// which color to make the background of the window
background(102);

And Java variables are as follows:

int x = 0;
println(x);
x=x+1;
println(x);
x=x+1;
println(x);

Press play and see this:

0
1
2
3

Flash people: there is no such thing as var. For in-depth information on variables,
consult the official Java language tutorial.
Here is the part about variables.

What about if-then?

int a = 1;
int b = 2;

if(a==b){
 println("same");
}else{
 println("different");
}

Press play and see this: different

Things are a bit different from Lingo when it comes to comparison. The programmer
uses a single "=" to assign a variable some value. One uses a "==" (double equal)
when trying to determine whether or not a number equals another number.

Processing (Proce55ing) Tutorial for Macromedia Minds http://www.jtnimoy.com/itp/p5/workshop/

5 of 19 11/13/2005 3:06 PM

Additionally, "not equal to" is no longer "<>" - it is now "!=" - and the rest are the
same ("<" , ">" , ">=" , and "<="). For more information on conditionals, consult
the authority.

What about repeating loops?

for(int i=0 ; i<5 ; i++){
 println(i);
}

Press play and see this:

0
1
2
3
4

Lingo people, this is the same as "repeat with i = 0 to 4." Inside those parentheses,
there are three special statements separated by two semicolons. The first statement
creates a temporary variable. The second statement specifies a condition which
allows the loop to continue looping. As soon as i is no longer smaller than 5, then the
loop will stop. The third statement gives you a chance to incrementally change i
however you want. "i++" is shorthand for "i = i + 1". Sun can tell you much more
about for loops.

While loops are similar to the structure of an if-then.

while(6!=2){
 println("muhuhaha!");
}

Don't run this program! :)

If you are curious about getting heavy on the flow-control syntax, here is a broader
link to the Java language tutorial, the part about flow-control.

I will get into custom routines (functions) in a little while. I give you these basic
introductions to the syntax - not in order to be thorough, but in order that you will
understand the drawing functions that are about to follow.

For more introduction to the structures, see the Processing Language Comparison
and the Processing Structure Examples.

Static 2D
Drawing

size(200,100);
background(0,0,0);
stroke(255,0,0);
point(50,50);
stroke(0,255,0);
point(100,50);
stroke(0,0,255);
point(150,50);

Run this code, and you
should hopefully get
the following image.
This is a wide black
window with three
pixels colored red,
green, and blue.

Let us break this code down, line for line.

First of all, it is necessary to know that the screen is a graph
of pixels - each individually addressable by a unique (X,Y)
coordinate. The origin (0,0) is at the top left corner of the
rectangle. As you add to Y, you move down. As you add to X,
you move to the right. It's similar to playing the boardgame,
Battleship. This is no different from Director or Flash.

size(200,100);

Processing (Proce55ing) Tutorial for Macromedia Minds http://www.jtnimoy.com/itp/p5/workshop/

6 of 19 11/13/2005 3:06 PM

Calling the size function lets the size of the canvas to 200 pixels high, 100 pixels
wide. If you do not call this at the beginning, the default will be 100x100.

background(0,0,0);

Calling the background function lets you change the color of the entire canvas. In
Director, this is the stage color. In Flash, this is the document's background color.
0,0,0 means black. If you never call background in Processing, then the default will
be gray.

stroke(255,0,0);

Calling the stroke function lets you change the current drawing color so that every
drawing command called after it will draw using that color. 255,0,0 means red. If you
never call stroke in Processing, then the default will be black.

point(50,50);

Calling the point function will set the pixel at 50,50 to the current stroke color. In
this case, red.

stroke(0,255,0);
point(100,50);

This code makes a green dot in the center.

stroke(0,0,255);
point(150,50);

This code makes the blue dot on the right.

As you can see, this is similar to draw() Image Lingo, or those drawing methods in
ActionScript. You control the screen like it is a canvas that understands certain
drawing operations. Let us now expand to more complex shapes.

background(0,0,0);
stroke(255,255,255);
line(0,0,60,40);
stroke(255,255,0);
line(30,50,100,100);

Here, I am drawing two lines.
The first one is white, and the
second one is yellow.

In the line function, the first
two parameters are the first
x,y coordinate, and the last
two parameters are the
second x,y coordinate. The
line is drawn from the first
coordinate to the second.

Now, here are some pre-fab shapes.

size(150,100);
quad(61,60, 94,60, 99,83, 81,90);
rect(10,10,60,60);
ellipse(80,10,60,60);
triangle(12,50, 120,15, 125,60);

triangle will draw a three-pointed polygon. It has six parameters. Parameters 1 and
2 are the first X,Y coordinate. Parameters 3 and 4 are the second X,Y coordinate.
Parameters 5 and 6 are the third X,Y coordinate.

Processing (Proce55ing) Tutorial for Macromedia Minds http://www.jtnimoy.com/itp/p5/workshop/

7 of 19 11/13/2005 3:06 PM

triangle(x1, y1, x2, y2, x3, y3);

quad will draw a four-pointed polygon. The structure of the parameters are similar to
that of triangle, but this time, a fourth pair of parameters are added to specify a
fourth X,Y coordinate.

quad(x1, y1, x2, y2, x3, y3, x4, y4);

rect will draw a rectangle. The first and second parameter will specify the position,
while the third and fourth parameters specify the width and height.

rect(x, y, width, height);

ellipse will draw an oval. Its parameters work the same way as those in rect.

ellipse(x, y, width, height);

Now I will modify this program to show you something new. The new code is
marked.

size(150,100);
fill(#CC6600);
stroke(#FFFFFF);
quad(61,60, 94,60, 99,83, 81,90);
rect(10,10,60,60);
ellipse(80,10,60,60);
triangle(12,50, 120,15, 125,60);

(Notice here, I am specifying colors in a different way than before - this time HTML
style)

Fill is introduced as the cousin of stroke. Fill is what makes the polygons green, while
stroke is what makes the outlines red. Fill's parameters specify a color, like stroke.
The default fill is white. But what if I want no fill?

size(150,100);
noFill();
stroke(#FFFFFF);
quad(61,60, 94,60, 99,83, 81,90);
rect(10,10,60,60);
ellipse(80,10,60,60);
triangle(12,50, 120,15, 125,60);

Now, you can see the quad underneath the oval because only the strokes are being
drawn. Similarly, there is noStroke, which disables the outline from being drawn. To
enable stroke or fill once more, you must call stroke or fill, specifying a color.

Drawing with curves is slightly more complex than drawing with straight lines.
Specifying a curve requires providing non-visual information that helps to define the
severity and direction of curvature. Processing provides both the curve() and bezier(
) methods.

curve(84, 91, 68, 19, 21, 17, 32,
100);

Processing (Proce55ing) Tutorial for Macromedia Minds http://www.jtnimoy.com/itp/p5/workshop/

8 of 19 11/13/2005 3:06 PM

curve(10, 26, 83, 24, 83, 61, 25, 65);

stroke(255, 102, 0);
line(85, 20, 10, 10);
line(90, 90, 15, 80);
stroke(0, 0, 0);
bezier(85, 20, 10, 10, 90, 90, 15,
80);

stroke(255, 102, 0);
line(30, 20, 80, 5);
line(80, 75, 30, 75);
stroke(0, 0, 0);
bezier(30, 20, 80, 5, 80, 75, 30, 75);

curve(x1, y1, x2, y2, x3, y3, x4, y4);
bezier(x1, y1, x2, y2, x3, y3, x4, y4);

For the curve() function, the first and second parameters specify the first point of
the curve and the last two parameters specify the second point of the curve. The
middle parameters set the points for defining the shape of the curve.

For the bezier() function, the first two parameters specify the first point in the
curve and the last two parameters specify the last point. The middle parameters
provide the context for defining the shape of the curve.

In the bezier() examples above, the orange lines reveal the hidden control points
for the curves.

Although Processing has provided these quick primitives, you are still free (and
encouraged) to construct your own shapes.

Using the beginShape() and endShape() methods are the key to creating more
complex forms. beginShape() begins recording vertices for a shape and
endShape() stops recording. The beginShape() command requires a parameter
to tell it which type of shape to create from the provided vertices. The parameters
available for beginShape() are LINES, LINE_STRIP, LINE_LOOP, TRIANGLES,
TRIANGLE_STRIP, QUADS, QUAD_STRIP, and POLYGON. After giving the
beginShape() command, a series of vertex() commands must follow. To stop
drawing the shape, give the endShape() command. Vertex() commands with two
parameters specify a position in 2D and vertex() commands with three parameters
specify a position in 3D. Each shape will be outlined with the current stroke color and
filled with the fill color (see the Color section for more information).

The following note is found in the Processing reference:

Processing is only able to draw convex polygons, but we are
working on the code for supporting concave polygons. For future
releases there will be separate parameters for
CONVEX_POLYGON and CONCAVE_POLYGON.

Although this is the case, you can still look up some examples on the web that will
tell you how to construct anything you want from convex polygons.

Here are some examples from Proce55ing.net

Processing (Proce55ing) Tutorial for Macromedia Minds http://www.jtnimoy.com/itp/p5/workshop/

9 of 19 11/13/2005 3:06 PM

beginShape(LINE_LOOP);
vertex(30, 20, -50);
vertex(85, 20, 0);
vertex(85, 75, -80);
vertex(30, 75, 0);
endShape();

beginShape(TRIANGLES);
vertex(30, 75);
vertex(40, 20);
vertex(50, 75);
vertex(60, 20);
vertex(70, 75);
vertex(80, 20);
vertex(90, 75);
endShape();

beginShape(TRIANGLE_STRIP);
vertex(30, 75);
vertex(40, 20);
vertex(50, 75);
vertex(60, 20);
vertex(70, 75);
vertex(80, 20);
vertex(90, 75);
endShape();

noFill();
beginShape(TRIANGLE_STRIP);
vertex(30, 75);
vertex(40, 20);
vertex(50, 75);
vertex(60, 20);
vertex(70, 75);
vertex(80, 20);
vertex(90, 75);
endShape();

noStroke();
fill(153, 153, 153);
beginShape(TRIANGLE_STRIP);
vertex(30, 75);
vertex(40, 20);
vertex(50, 75);
vertex(60, 20);
vertex(70, 75);
vertex(80, 20);
vertex(90, 75);
endShape();

noStroke();
fill(102);
beginShape(POLYGON);
vertex(38, 23);
vertex(46, 23);
vertex(46, 31);
vertex(54, 31);
vertex(54, 38);
vertex(61, 38);
vertex(61, 46);
vertex(69, 46);
vertex(69, 54);
vertex(61, 54);
vertex(61, 61);
vertex(54, 61);
vertex(54, 69);
vertex(46, 69);
vertex(46, 77);

Processing (Proce55ing) Tutorial for Macromedia Minds http://www.jtnimoy.com/itp/p5/workshop/

10 of 19 11/13/2005 3:06 PM

vertex(38, 77);
endShape();

beginShape(LINE_STRIP);
curveVertex(84, 91);
curveVertex(68, 19);
curveVertex(21, 17);
curveVertex(32, 100);
endShape();

beginShape(LINE_STRIP);
curveVertex(84, 91);
curveVertex(84, 91);
curveVertex(68, 19);
curveVertex(21, 17);
curveVertex(32, 100);
curveVertex(32, 100);
endShape();

beginShape(LINE_STRIP);
bezierVertex(30, 20);
bezierVertex(80, 0);
bezierVertex(80, 75);
bezierVertex(30, 75);
endShape();

For more detailed information about vector drawing, see the Processing Form
Examples, the Processing Shape reference.

There is much more to draw and render to the screen, but I have only given you the
2D drawing routines so that we can cover animation and interactivity. Then we will
return to the other drawing methods.

Time and
Motion In Director, there is the score. You are given a playback head, and tweening methods

for sprites. Things like video, embedded Flash, QTVRs, and sound seem to animate in
their own time-space. If you are working on more of a dynamic animation, you might
only use one frame and code in responses to an ExitFrame or PrepareFrame
event. In Flash, you are given a timeline, and a bit more complex tweening support
than director. Those who choose to work completely in ActionScript commonly use
two frames - one for setup and to call a looping frame, and the other to loop forever.
Actionscript also allows you to respond in code in an onClipEvent (enterFrame).
Processing has no timeline, score, or tweening methods, unless you choose to
structure your code as such. Like Lingo and Actionscript, Processing allows you to
respond to a frame-progression event handler with your own drawing routine. Up
until now, I have been showing you Processing code in Basic Mode. This mode is for
drawing static images. It is merely a shopping list of visual elements. Processing has
three modes of operation: basic, standard, and advanced. Advanced Mode is
conventional Java, without training wheels. In order to begin with time and motion,
we will now move forward to Standard Mode. If you had been clicking my tangential
links in my text, you may have seen one or two standard mode Processing programs.
Here is a simple example:

int x = 0;

void setup(){
 noStroke();
}

void loop(){
 background(190);
 rect(x, 0, 5, 100);
 x=x+1;
}

In this example, a white
rectangle moves from left to
right, only once.

An animated GIF shows this
motion on the right.

Processing (Proce55ing) Tutorial for Macromedia Minds http://www.jtnimoy.com/itp/p5/workshop/

11 of 19 11/13/2005 3:06 PM

The optional setup() section runs once when the program begins. The loop()
section runs forever until the program is stopped. In Lingo, setup() is similar to
beginSprite or startMovie - and loop() is similar to ExitFrame or
PrepareFrame. In Flash, setup() is similar to the first frame of the animation that
only executes once, then calls the loop. Setup() and loop() are both functions.
You can also write your own functions for organization and encapsulation of
complexity. For more information on writing custom functions in Java, see Sun's Java
language tutorial - Implementing Methods section.

Once you have written the first function in Processing, that program will
automatically switch to standard mode. Any statements outside of your function that
are not variable initializes will no longer work when you press play. You can move
this code to either setup() or loop(). If you want a variable to be global (meaning
that it retains its value outside the scope of the functions) then declare it at the top
of the program, outside of both loop() and setup(). In the example above, the
variable x was declared global.

In Processing, the framerate(n) function can be used to slow down or speed up the
entire sketch, but it is certainly possible to move things are differing speeds simply
by varying the amount that you increment, or by using floats and only adding a
fraction to them. For more long term and more time-precise control, Processing gives
you full access to Western time measurement.

Processing has several methods for getting the date and time from your computer's
clock.

year() // current year, i.e. 2002, 2003, etc.
month() // returns the current month, from 1..12
day() // returns the day of month, from 1..31
hour() // the current hour, from 0..23
minute() // the current minute, from 0..59
second() // the current second, from 0..59

A special function called millis() returns the number of milliseconds (thousandths of
a second) since starting the applet. This is often used for timing animation
sequences.

millis() // number of milliseconds since starting applet.

It is also possible to make your applet wait by using the delay function. Using this
function can effectively adjust frame rates.

delay(40); // takes a nap for 40 milliseconds

void loop(){
 print(month()+"/");
 print(day()+"/");
 print(year()+" ");
 print(hour()+":");
 print(minute(
)+":");
 println(second());
}

Here is a simple
example in which
the current time
and date are
constantly output
to the text area at
the bottom of the
Processing window.

This is not a very pretty example, but it's simple to understand. For some nicer (and
more complex) examples of time, see Clock, by Mescobosa, and Milliseconds, by
REAS. These two were done in Processing. Also, for more examples of animated
motion, see the Processing Motion Examples.

Mouse &
Keyboard Access to the mouse and keyboard are both similar to the way Flash and Director do

it. In Lingo, the mouse is addressed with the mouseLoc, the mouseH, and the
mouseV. Additionally, there are also mouse event handlers such as on
mouseDown. In Flash, there is onClipEvent (mouseDown), etc. In Processing,
the mousePressed() function is called every time the mouse is pressed and the
mouseReleased() method is called every time the mouse if released. All you have
to do is add the function to your code, just like loop().

Processing (Proce55ing) Tutorial for Macromedia Minds http://www.jtnimoy.com/itp/p5/workshop/

12 of 19 11/13/2005 3:06 PM

void loop() {
 background(190);
 rect(mouseX-5, mouseY-5, 10,
10);
}

void mousePressed() {
 fill(0);
}
void mouseReleased() {
 fill(255);
}

In this simple
example, a square is
drawn where ever the
mouse goes.

If you hold your
mouse down, the
square will turn black.

For further information on the mouse, see the Processing Mouse reference, and don't
forget to check out these exquisite Processing Mouse examples.

Keyboard input is equally similar to Flash and Director.

void loop() {
 if(keyPressed) {
 fill(102, 0, 0);
 } else {
 fill(204, 102, 0);
 }
 rect(30, 20, 55, 55);
}

In this simple
example, the square
turns dark red if any
keyboard key is being
held down. No
background redraw is
needed!

The keyboard input can also be delivered to you in the form of an event handling
function.

int x = 50;
int y = 50;

void loop(){
 background(190);
 rect(x,y,10,10);
}

void keyPressed(){
 if(key=='w'||key=='W'){
 y--;
 }else if(key=='s'||key=='S'){
 y++;
 }else if(key=='a'||key=='A'){
 x--;
 }else if(key=='d'||key=='D'){
 x++;
 }
}

In this simple
example, keys on the
keyboard will move
the square around.

For further information on keyboard input, see the Processing Keyboard reference,
and don't forget to check out these exquisite Processing Keyboard examples.

Presentation /
Exporting In Flash and Director, there are key-controls and menu

items that can be selected to run your program in a way
which uses up the entire screen and covers up all ornaments
present in the operating system. Fullscreen mode is very
useful in installation and presentation. In Processing, you
can choose the menu Sketch > Present, or you can press
Ctrl+P (+P on a Mac). Also try pressing the play button
while holding down SHIFT. The entire screen will turn a dark
gray, and you will see your creation in the middle. In order

Processing (Proce55ing) Tutorial for Macromedia Minds http://www.jtnimoy.com/itp/p5/workshop/

13 of 19 11/13/2005 3:06 PM

to return to normal, you will be able to press ESC. If that
does not work, then there is a "stop" button at the bottom
left corner.

Any Processing program can be "published" as a Java applet. First make sure
your sketch is saved, then choose File -> Export to Web, or press Ctrl+E (or

press the export button). You will see the Processing message area say "Exporting
for web . . ." for just a moment, and then it will say "Done Exporting." In order to get
the web files, venture into the Processing sketch folder. Look for the folder with the
name of your sketch and open it up. In that folder, you will see another folder called
applet. This folder can be uploaded to the web. I highly encourage editing the
default index.html that is generated from Processing. You must keep all the
included files relative to the HTML in the applet folder, as they are linked the same
way any other HTML media is linked.

Processing Folder/
 sketchbook/
 default/
 your_sketch_name/
 applet/
 your_sketch_name.java
 your_sketch_name.class
 your_sketch_name.jar
 index.html

save() and saveFrame()
If you need to export to non-interactive formats, it is possible to make .tif files of the
Processing window by using the saveFrame() function. Placing this method at the
end of the loop() will save the image on the screen. If saveFrame() is called
multiple times, it will create an image sequence as follows: screen-0001,
screen-0002, screen-0003, etc. Using save() will let you choose a file name. It is
simple to import these images into Quicktime or other video programs to make an
animated documentation of a Processing program. Although Processing has built in
this easy image saving function, it is also possible to export to other formats with a
bit more work. For example, here is a Processing program that exports to Adobe
Illustrator.

Drawing
Image Files Getting an image onto a Processing sketch is simple. Java only accepts JPGs or GIFs

(unless you want to do extra work). You can place the image into your sketch by
using the file system and a couple lines of code. First, save your sketch. Then you
can find the sketch file by looking in the Processing program folder. In that folder,
you will see a folder called sketchbook. In that folder, you will probably see two
folders - one called examples and another called default. In default, look for the
folder with the same name as your sketch. Inside that folder, you will see another
folder called data. This is the folder in which you must place your image file for easy
Processing. Here is another way to say it:

Processing Folder/
 sketchbook/
 default/
 your_sketch_name/
 data/
 your_imagefile.gif

Let us assume that I have a sketch called image_example_1 and I want to draw
the following image called twombly.jpg, a drawing by Cy Twombly:

Processing (Proce55ing) Tutorial for Macromedia Minds http://www.jtnimoy.com/itp/p5/workshop/

14 of 19 11/13/2005 3:06 PM

I would save it in the appropriate folder:

Processing Folder/
 sketchbook/
 default/
 image_example_1/
 data/
 twombly.jpg

And now I am ready to add the code.

size(150,150);
BImage b =
loadImage("twombly.jpg");
image(b,0,0,150,150);

BImage is an object that will hold your loaded file until you draw it. b is what I
chose to call this one. image() is what actually draws the image to the screen.
image(BImage, x, y, width, height);
You may also choose to omit the width and height, and the image will then draw at
normal scale.

Straight imported files are not the only way, as URLs also work.

For more detailed information concerning images, you may consult the Processing
reference. Here is the part called Loading_and_Displaying. Building upon this
knowledge, it is also possible to show sequencial images (video footage). For more
excitement, see the Processing Image Examples.

3D Form

There has been a lot of fuss concerning 3D being
introduced into inherently 2D environments. In the case
of Flash, numerous third party tools have been
developed. In Director's case, a 3D vector graphics
sprite was retrofitted very recently. The systems are so
complex that a lot of people are intimidated about even
starting to learn.

In Processing, 3D only means adding a z-axis.

vertex(x, y, z);
line(x1, y1, z1, x2, y2, z2);
bezierVertex(x, y, z);
curveVertex(x, y, z);

Processing (Proce55ing) Tutorial for Macromedia Minds http://www.jtnimoy.com/itp/p5/workshop/

15 of 19 11/13/2005 3:06 PM

box(size);
box(width, height, depth);
sphere(size);

translate(58, 48, 0);
rotateY(0.5);
box(40);

noFill();
translate(58, 48, 0);
rotateY(0.5);
box(40);

lights();
translate(58, 48, 0);
rotateY(0.5);
box(40);

noStroke();
lights();
translate(58, 48, 0);
rotateY(0.5);
box(40);

noStroke();
lights();
translate(58, 48, 0);
sphere(28);

Note that box and sphere do not ask you to specify position coordinates! In these
examples, it is necessary to use translate and rotate. There is also scale, and a
pair of functions called push and pop which allow you to bookmark your translations
in a very organized fashion. To learn the details on this useful way to organize your
drawing, see the Processing Transform Reference and the Processing Transform
Examples. Of course, if you do not care for these transformations, then there is
always a solution.

Also note the use of lights() and noLights(). Using lights will render the 3D shape
in a manner which suggests shading. For more information concerning lighting, see
the Processing Lights Reference.

"What? that's it for 3D?"

If you think that this is not enough 3D to allow you to make interesting things, then
check out all the wonderful art that has already been created at Processing Software.
And this is only the beginning.

Processing (Proce55ing) Tutorial for Macromedia Minds http://www.jtnimoy.com/itp/p5/workshop/

16 of 19 11/13/2005 3:06 PM

Pixels
Control over the pixels is currently far from Flash. SetPixel and GetPixel have just
been added to Director (and already, a well known Director-loving interactive artist
has adopted the nickname SetPixel). However, Director is quite possibly the slowest
pixel addressing system you will ever work with. ITP Students attend a class taught
by Danny Rozin called The World - Pixel by Pixel, and continue to program in C
because it is the only thing fast enough for them to achieve their conceptual goals
(Lingo and MAX being the only alternatives). It is popular for such ITP students to
prepare for Danny's class by attending a C course. Working with Processing pixels is
considerably faster than Image Lingo, and arguably less complex. Although Java does
not compare to the speed of C, soon Danny's students might explore the possibility of
using Processing to speed the learning curve.

get(x, y); // Returns an integer
set(x, y, color);
pixels[index]; // Array containing the display window

int width = 100;
int height = 100;
BImage b; // declare variable "b" of type BImage
b = loadImage("basel.gif");

image(b, 0, 0);
for (int i=30; i<(width-15); i++) {
 for(int j=20; j<(height-25); j++) {
 color here = get(30, j);
 set(i, j, here);
 }
}

With control over the pixels, you can also implement your very own drawing routines.
For example, here is transparency. Writing the rest of the Director inks would not be
so hard. Here is a dotted line function.

For more information about pixel play, see the Processing Image reference and the
Processing Image Examples.

Typography
The typographic rendering system currently uses a Processing-specific font file
format. The makers of the software have included a font import menu item to help
you out, and even then - they have provided the Processing programmer with a
wealth of fonts to choose from. Click here to see all of the currently included fonts.
These fonts are stored as bitmap images. Here is a very simple example of rendering
text to the sketch. Go ahead and run this program - and expect to get an error.

size(200,100);
background(#FFFFFF);
fill(#000000);
BFont f =
loadFont("Bodoni-Italic.vlw.gz");
textFont(f, 50);
text("handglove", 14, 60);

The error will say that it cannot find Bodoni-Italic.vlw.gz. This is because you have
not yet imported the font file into your data folder. (see the images section of this
tutorial for more information on your data folder). After choosing the font you like,
look in the fonts folder within the Processing program folder. Copy your font of
choice into your sketch's data folder, and the program should run fine after that.

Processing (Proce55ing) Tutorial for Macromedia Minds http://www.jtnimoy.com/itp/p5/workshop/

17 of 19 11/13/2005 3:06 PM

BFont f = loadFont("Bodoni-Italic.vlw.gz"); loads that font file into the variable f.

textFont(f, size); sets the current font and size before drawing the text.

text("handglove", x, y); renders the text in place.

This example incorporates rotation, and a simple for loop.

size(200,100);
noStroke();
BFont f =
loadFont("Univers66.vlw.gz");
textFont(f, 50);
fill(#FFFFFF);
ellipse(-50,-55,150,150);
fill(#CC6600);
for(int i=0;i<20;i++){
 rotateZ(0.2);
 text("dizzy", 90,0);
}

Okay. If you are not a "typography person" and do not care for any of this, there is
always a way to simplify things, at the expense of control. Furthermore, if you need
something like a text entry field, it's useful to write your own. Most widgets of
vernacular user interface are not hard to add to a project if you think of them as
small, modular, interactive exercises - rather than seeing them as some kind of thing
that the operating system exclusively provides. The thing you gain is ultimate control
over the design. For more vernacular interface re-inventions, see the Processing GUI
Examples.

Also see the whimsical Processing typography examples. Processing comes from a
group of people concerned with aesthetics and computation. New forms of
typography is one of the things that their particular MIT Media Lab research group is
world famous for.

Serial
Through a serial port, a computer can communicate with anything from Palm Pilots to
medical equipment. It is common in electronic arts to use the serial port to talk to
custom built devices. Director is able to do this with the help of third party Xtras.
Flash does not support serial ports, nor does it have a third-party plugin system.
Processing has serial communication built in. In this example, we will make a turning
knob interact with a Processing sketch. A word of warning, however; this section is
technically more advanced than the previous sections, as it requires a working
knowledge of basic electronic circuitry.

This circuit uses a BX-24, which is a common prototyping integrated circuit widely
used at ITP, but also at other similar places. For more information on setting up a
BX-24, see Tom Igoe's Physical Computing reference as well as the lab assignments
from his Physical Computing class at ITP.

Here is a picture of the circuit, excluding the +5v power supply - in order to
simplify the photo. It uses a 10K potentiometer with a 1K resistor at pin 13.
For details on setting this up, see the ITP Intro to BX-24.

sub main()
 delay 0.5
 do
 debug.print cStr(getADC(13))
 delay 0.1
 loop
end sub

Here is the program to download into the
chip. All it does is feed the angle of the knob
back to the PC. You will know it is working
when you see a stream of numbers in the
BasicX debug monitor.

Processing allows you to choose which serial port it will work with through the
interface Sketch -> Serial Port submenu.

Processing (Proce55ing) Tutorial for Macromedia Minds http://www.jtnimoy.com/itp/p5/workshop/

18 of 19 11/13/2005 3:06 PM

String buff = "";
int val = 0;

void setup() {
 beginSerial(19200);
}

void loop() {
 background(val,val,val);
}

void serialEvent() {
 if(serial!=10){
 buff += (char)serial;
 }else{
 buff =
buff.substring(0,buff.length()-1);
 val = Integer.parseInt(buff)/4;
 buff = "";
 }
}

This Processing program will listen
to the turning knob, and change the
background color between black and
white.

For more information about serial, see the Processing serial reference.

The Future
Processing is a brand new work in progress, and as I said before, it is important to
continue checking the website for updates. A new release can easily be installed in
place of the new one, and your sketchbook/default folder can simply be copied
from version to version. As I write this document, Processing is at version ALPHA
0050, when I came back to update the tutorial in Fall 2004, they were at ALPHA
0068. Processing might change the names of the three modes, basic, standard and
advanced to something more fitting. At the time of ALPHA 0050, Casey was telling
me it might also change its name from Proce55ing to Processing, and we all
watched the change happen. The graphics engine has improved by adding
anti-aliased rendering, alpha values in color (transparency factor), and the polygon
fill will be improved. This is not to say that one cannot already write these things with
a bit of research. Processing was written in the same language that it asks users to
program in. This is different from Flash and Director, which are authored mainly in C.
Amit Pitaru has created Sonia, a library for creating sound. As network
communication is very useful, it is a prime item on the todo list. This may include
downloading files from the web, but also generalized TCP/IP allowing you to talk to
telnet, FTP, Gnutella, Carnivore, other Processing apps, and even Flash and Director
programs. There is already network code floating around the Processing discussion
pages, and it will probably be formally supported in the future. For camera vision,
there is a library called JMyron. Myron is a Processing implementation of
WebCamXtra, an open source camera vision Xtra for Director. In the spirit of
integrated development environments, Processing hopes to add a more built-in tools
such as a color picker, and a bezier editor. In addition to the software, Casey and
Ben hope to expand the community. A code repository will be established as a central
directory for useful pieces of Processing code. Processing is also open-source, which
means that anyone can edit the Processing software itself. A proper open-source
framework will be established so that anyone can download the code, recompile
Processing, and then contribute the new version. There is already an accumilating
page of Processing extension libraries.

With all this in mind, I hope that you will find Processing useful in addition to
Macromedia tools that you are either learning, or have already mastered. Please
publish or send any Processing examples around so that we might learn from your
explorations, and do not forget to be a part of the online community by engaging in
the discourse section of the Processing site. Happy creating!

Josh Nimoy was a
graduate student in the
Interactive
Telecommunications

Benjamin Fry is a
doctoral candidate at the
MIT Media Laboratory. His
research focuses on

Casey Reas is an
Associate Professor at the
newly established
Interaction Design

Processing (Proce55ing) Tutorial for Macromedia Minds http://www.jtnimoy.com/itp/p5/workshop/

19 of 19 11/13/2005 3:06 PM

Program at New York
University's Tisch School
of the Arts in 2004. He
creates and exhibits
interactive media work
concerned with vernacular
digital interactivity,
nature, and experimental
typography systems.
Nimoy values the effects
of good teaching, good
communication, and
honest work. He also
holds a BA in Design and
Media Arts from UCLA
School of Arts and
Architecture, specializing
in digital cultures and
technologies. Josh was a
visiting undergraduate
researcher at the MIT
Media Laboratory in 1999
in the Aesthetics and
Computation Group, led
by John Maeda, where he
worked with Ben Fry and
Casey Reas.
website

methods of visualizing
large amounts of data
from dynamic information
sources. The work uses
ideas from distributed and
adaptive systems to form
organic representations
that react and respond to
the input data. This work
is currently directed
towards Genomic
Cartography which is a
study into new methods
to represent the data
found in the human
genome. At MIT, he is a
member of the Aesthetics
and Computation Group,
led by John Maeda. Ben
received an
undergraduate degree
from the School of Design
at Carnegie Mellon
University, with a major
in Graphic Design and a
minor in Computer
Science.
website

Institute Ivrea in northern
Italy. His work explores
abstractions of biological
and natural systems
through diverse digital
media including software
art, digital prints, and
responsive installations.
In 2001, Casey received
his M.S. degree in Media
Arts and Sciences from
the MIT Media Laboratory,
where he was a member
of John Maeda's
Aesthetics and
Computation Group
(ACG). Casey has lectured
and exhibited in Europe,
Asia, and the United
States. His work has
recently been shown at
the American Museum of
the Moving Image, Ars
Electronica, Interaction01
in Ogaki, New York Digital
Salon, Museum of Modern
Art, P.S.1, and
Siggraph2000.
website

last updated October 31, 2005

