
BinaryMatcher2

D. Thiebaut

March 19, 2017
This Jupyter Notebook illustrates how to design a simple multi-layer Tensorflow Neural Net to recognize integers
coded in binary and output them as 1-hot vector.

For example, if we assume that we have 5 bits, then there are 32 possible combinations. We associate with
each 5-bit sequence a 1-hot vector. For example, 0,0,0,1,1, which is 3 in decimal, is associated with
0,0,0,1,0,0,0,0...,0, which has 31 0s and one 1. The only 1 is at Index 3. Similarly, if we have 1,1,1,1,1, which is
31 in decimal, then its associated 1-hot vector is 0,0,0,0,...0,0,1, another group of 31 0s and one last 1.

Our binary input is coded in 5 bits, and we make it more interesting by adding 5 additional random bits. So the
input is a vector of 10 bits, 5 random, and 5 representing a binary pattern associated with a 1-hot vector. The 1-
hot vector is the output to be predicted by the network.

Preparing the Data
Let's prepare a set of data where we have 5 bits of input, plus 3 random bits, plus 32 outputs corresponding to
1-of for the integer coded in the 5 bits.

Preparing the Raw Data: 32 rows Binary and 1-Hot
We first create two arrays of 32 rows. The first array, called x32, contains the binary patterns for 0 to 31. The
second array, called y32, contains the one-hot version of the equivalent entry in the x32 array. For example,
[0,0,0,0,0] in x32 corresponds to [1,0,0,0,...,0] (one 1 followed by thirty one 0s) in y32. [1,1,1,1,1] in x32
corresponds to [0,0,0...,0,0,1] in y32.

In []: from __future__ import print_function
import random
import numpy as np
import tensorflow as tf

create the 32 binary values of 0 to 31
as well as the 1-hot vector of 31 0s and one 1.
x32 = []
y32 = []
for i in range(32):
 n5 = ("00000" + "{0:b}".format(i))[-5:]
 bits = [0]*32
 bits[i] = 1
 #print(n5,":", r3, "=", bits)
 nBits = [int(n) for n in n5]

 #print(nBits, rBits, bits)
 #print(type(x), type(y), type(nBits), type(rBits), type(bits))
 x32 = x32 + [nBits]
 y32 = y32 + [bits]

print both collections to verify that we have the correct data.
The x vectors will be fed to the neural net (NN) (along with some nois
y data), and
we'll train the NN to generate the correct 1-hot vector.
print("x = ", "\n".join([str(k) for k in x32]))
print("y = ", "\n".join([str(k) for k in y32]))

Addition of Random Bits
Let's add some random bits (say 7) to the rows of x, and create a larger collection of rows, say 100.

In []: x = []
y = []
noRandomBits = 5
for i in range(100):
 # pick all the rows in a round-robin fashion.
 xrow = x32[i%32]
 yrow = y32[i%32]

 # generate a random int of 5 bits
 r5 = random.randint(0, 31)
 r5 = ("0"*noRandomBits + "{0:b}".format(r5))[-noRandomBits:]

 # create a list of integer bits for r5
 rBits = [int(n) for n in r5]

 #create a new row of x and y values
 x.append(xrow + rBits)
 y.append(yrow)

display x and y
for i in range(len(x)):
 print("x[%2d] ="%i, ",".join([str(k) for k in x[i]]), "y[%2d]
 ="%i, ",".join([str(k) for k in y[i]]))

Split Into Training and Testing
We'll split the 100 rows in 90 rows of training, and 10 rows for testing.

In []: Percent = 0.10
x_train = []
y_train = []
x_test = []
y_test = []

pick 10 indexes in 0-31.
indexes = [5, 7, 10, 20, 21, 29, 3, 11, 12, 25]

for i in range(len(x)):
 if i in indexes:
 x_test.append(x[i])
 y_test.append(y[i])
 else:
 x_train.append(x[i])
 y_train.append(y[i])

display train and set xs and ys
for i in range(len(x_train)):
 print("x_train[%2d] ="%i, ",".join([str(k) for k in x_train[i]]
),
 "y_train[%2d] ="%i, ",".join([str(k) for k in y_train[i]])
)

print()

for i in range(len(x_test)):
 print("x_test[%2d] ="%i, ",".join([str(k) for k in x_test[i]]),
 "y_test[%2d] ="%i, ",".join([str(k) for k in y_test[i]]))

Package Xs and Ys as Numpy Arrays
We now make the train and test arrays into numpy arrays

In []: x_train_np = np.matrix(x_train).astype(dtype=np.float32)
y_train_np = np.matrix(y_train).astype(dtype=np.float32)
x_test_np = np.matrix(x_test).astype(dtype=np.float32)
y_test_np = np.matrix(y_test).astype(dtype=np.float32)

get training size, number of features, and number of labels, using
NN/ML vocabulary
train_size, num_features = x_train_np.shape
train_size, num_labels = y_train_np.shape

Get the number of epochs for training.
test_size, num_eval_features = x_test_np.shape
test_size, num_eval_labels = y_test_np.shape

Get the size of layer one.
if True:
 print("tain size = ", train_size)
 print("num features = ", num_features)
 print("num labels = ", num_labels)
 print()
 print("test size = ", test_size)
 print("num eval features = ", num_eval_features)
 print("num eval labels = ", num_eval_labels)

Definition of the Neural Network
Let's define the neural net. We assume it has just 1 layer.

Constants/Variables
We just have one, the learning rate with which the gradient optimizer will look for the optimal weights. It's a
factor used when following the gradient of the function y = W.x + b, in order to look for the minimum of the
difference between y and the target.

In []: learning_Rate = 0.1

Place-Holders
It will have place holders for

the X input
the Y target. That's the vectors of Y values we generated above. The network will generate its own
version of y, which we'll compare to the target. The closer the two are, the better.
the drop-probability, which is defined as the "keep_probability", i.e. the probability a node from the
neural net will be kept in the computation. A value of 1.0 indicates that all the nodes are used in the
processing of data through the network.

In []: x = tf.placeholder("float", shape=[None, num_features])
target = tf.placeholder("float", shape=[None, num_labels])
keep_prob = tf.placeholder(tf.float32)

Variables
The variables contain tensors that TensorFlow will manipulate. Typically the Wi and bi coefficients of each layer.

We'll assume just one later for right now, with num_features inputs (the width of the X vectors), and num_labels
outputs (the width of the Y vectors). We initialize W0 and b0 with random values taken from a normal
distribution.

In []: W0 = tf.Variable(tf.random_normal([num_features, num_labels]))
b0 = tf.Variable(tf.random_normal([num_labels]))
W1 = tf.Variable(tf.random_normal([num_labels, num_labels * 2]))
b1 = tf.Variable(tf.random_normal([num_labels * 2]))
W2 = tf.Variable(tf.random_normal([num_labels * 2, num_labels]))
b2 = tf.Variable(tf.random_normal([num_labels]))

Model
The model simply defines what the output of the NN, y, is as a function of the input x. The softmax function
transforms the output into probabilities between 0 and 1. This is what we need since we want the output of our
network to match the 1-hot vector which is the format the y vectors are coded in.

In []: #y0 = tf.nn.sigmoid(tf.matmul(x, W0) + b0)
y0 = tf.nn.sigmoid(tf.matmul(x, W0) + b0)
y1 = tf.nn.sigmoid(tf.matmul(y0, W1) + b1)
y = tf.matmul(y1, W2) + b2
#y = tf.nn.softmax(tf.matmul(y0, W1) + b1)

Training
We now define the cost operation, cost_op, i.e. measuring how "bad" the output of the network is compared to
the correct output.

In []: #prediction = tf.reduce_sum(tf.mul(tf.nn.softmax(y), target), reduc
tion_indices=1)
#accuracy = tf.reduce_mean (prediction)
#cost_op = tf.reduce_mean(tf.sub(1.0, tf.reduce_sum(tf.mul(y, target
), reduction_indices=1)))

#cost_op = tf.reduce_mean(
tf.sub(1.0, tf.reduce_sum(tf.mul(target, tf.nn.softmax
(y)), reduction_indices=[1]))
)

The cost_op below yields an ccuracy on training data of 0.86% and an a
ccuracy on test data = 0.49%
for 1000 epochs and a batch size of 10.
cost_op = tf.reduce_mean(
 tf.nn.softmax_cross_entropy_with_logits(labels = target, logits =
 y))

And now the training operation, or train_op, which is given the cost_op

In []: #train_op = tf.train.GradientDescentOptimizer(learning_rate = learning_
Rate).minimize(cost_op)
train_op = tf.train.AdagradOptimizer(learning_rate = learning_Rate).mi
nimize(cost_op)

Initialization Phase
We need to create an initialization operation, init_op, as well. It won't be executed yet, not until the session
starts, but we have to do it first.

In []: init_op = tf.initialize_all_variables()

Start the Session
We are now ready to start a session!

In []: sess = tf.Session()
sess.run(init_op)

Training the NN
We now train the Neural Net for 1000 epoch. In each epoch we feed just one vector of x to the network.

In []: batchSize = 5

prediction = tf.equal(tf.argmax(y, 1), tf.argmax(target, 1))
accuracy = tf.reduce_mean (tf.cast(prediction, tf.float32))

for epoch in range(10000):
 for i in range(0, train_size, batchSize):
 xx = x_train_np[i:i+batchSize, :]
 yy = y_train_np[i:i+batchSize, :]
 sess.run(train_op, feed_dict={x: xx, target: yy})

 if epoch%100 == 0:
 co, to = sess.run([cost_op,train_op], feed_dict={x: x_train_np,
 target: y_train_np})
 print(epoch, "cost =", co, end=" ")
 accuracyNum = sess.run(accuracy, feed_dict={x: x_train_np, targ
et : y_train_np})
 print("Accuracy on training data = %1.2f%%" %
(accuracyNum*100), end = " ")
 accuracyNum = sess.run(accuracy, feed_dict={ x: x_test_np, targ
et : y_test_np})
 print("Accuracy on test data = %1.2f%%" % (accuracyNum*100))

if False:
 print("y = ", sess.run(y, feed_dict={ x: x_train_np, target : y_tr
ain_np}))
 print("softmax(y) = ", sess.run(tf.nn.softmax(y), feed_dict={ x:
 x_train_np, target : y_train_np}))
 print("tf.mul(tf.nn.softmax(y), target) = ",
 sess.run(tf.mul(tf.nn.softmax(y), target),

 feed_dict={ x: x_train_np, target : y
_train_np}))

#prediction = tf.reduce_sum(tf.mul(tf.nn.softmax(y), target), reduc
tion_indices=1)
accuracyNum = sess.run(accuracy, feed_dict={x: x_train_np, target : y_t
rain_np})
print("Final Accuracy on training data = %1.2f%%" % (100.0*accuracyNum)
)

accuracyNum = sess.run(accuracy, feed_dict={ x: x_test_np, target : y_t
est_np})
print("Final Accuracy on test data = %1.2f%%" % (100.0*accuracyNum))

In []:

In []:

