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This Jupyter Notebook illustrates how to design a simple multi-layer Tensorflow Neural Net to recognize integers
coded in binary and output them as 1-hot vector.

For example, if we assume that we have 5 bits, then there are 32 possible combinations. We associate with
each 5-bit sequence a 1-hot vector. For example, 0,0,0,1,1, which is 3 in decimal, is associated with
0,0,0,1,0,0,0,0...,0, which has 31 0s and one 1. The only 1 is at Index 3. Similarly, if we have 1,1,1,1,1, which is
31 in decimal, then its associated 1-hot vector is 0,0,0,0,...0,0,1, another group of 31 0s and one last 1.

Our binary input is coded in 5 bits, and we make it more interesting by adding 5 additional random bits. So the
input is a vector of 10 bits, 5 random, and 5 representing a binary pattern associated with a 1-hot vector. The 1-
hot vector is the output to be predicted by the network.

Preparing the Data
Let's prepare a set of data where we have 5 bits of input, plus 3 random bits, plus 32 outputs corresponding to
1-of for the integer coded in the 5 bits.

Preparing the Raw Data: 32 rows Binary and 1-Hot
We first create two arrays of 32 rows. The first array, called x32, contains the binary patterns for 0 to 31. The
second array, called y32, contains the one-hot version of the equivalent entry in the x32 array. For example,
[0,0,0,0,0] in x32 corresponds to [1,0,0,0,...,0] (one 1 followed by thirty one 0s) in y32. [1,1,1,1,1] in x32
corresponds to [0,0,0...,0,0,1] in y32.



In [ ]: from __future__ import print_function 
import random 
import numpy as np 
import tensorflow as tf 
 
# create the 32 binary values of 0 to 31 
# as well as the 1-hot vector of 31 0s and one 1. 
x32 = [] 
y32 = [] 
for i in range( 32 ): 
    n5 = ("00000" + "{0:b}".format(i))[-5:] 
    bits = [0]*32 
    bits[i] = 1 
    #print( n5,":", r3, "=", bits ) 
    nBits = [ int(n) for n in n5 ] 
    
    #print( nBits, rBits, bits ) 
    #print( type(x), type(y), type(nBits), type(rBits), type( bits )) 
    x32 = x32 +  [nBits] 
    y32 = y32 +  [bits]  
     
# print both collections to verify that we have the correct data. 
# The x vectors will be fed to the neural net (NN) (along with some nois
y data), and 
# we'll train the NN to generate the correct 1-hot vector. 
print( "x = ", "\n".join( [str(k) for k in x32] ) ) 
print( "y = ", "\n".join( [str(k) for k in y32] ) ) 
     

Addition of Random Bits
Let's add some random bits (say 7) to the rows of x, and create a larger collection of rows, say 100.



In [ ]: x = [] 
y = [] 
noRandomBits = 5 
for i in range( 100 ): 
    # pick all the rows in a round-robin fashion. 
    xrow = x32[i%32] 
    yrow = y32[i%32] 
     
    # generate a random int of 5 bits 
    r5 = random.randint( 0, 31 ) 
    r5 = ("0"*noRandomBits + "{0:b}".format(r5))[-noRandomBits:] 
 
    # create a list of integer bits for r5 
    rBits = [ int(n) for n in r5 ] 
     
    #create a new row of x and y values 
    x.append( xrow + rBits ) 
    y.append( yrow ) 
     
# display x and y 
for i in range( len( x ) ): 
    print( "x[%2d] ="%i, ",".join( [str(k) for k in x[i] ] ), "y[%2d]
 ="%i, ",".join( [str(k) for k in y[i] ] ) ) 

Split Into Training and Testing
We'll split the 100 rows in 90 rows of training, and 10 rows for testing.



In [ ]: Percent = 0.10 
x_train = [] 
y_train = [] 
x_test  = [] 
y_test  = [] 
 
# pick 10 indexes in 0-31. 
indexes = [5, 7, 10, 20, 21, 29, 3, 11, 12, 25] 
 
for i in range( len( x ) ): 
    if i in indexes: 
        x_test.append( x[i] ) 
        y_test.append( y[i] ) 
    else: 
        x_train.append( x[i] ) 
        y_train.append( y[i] ) 
 
# display train and set xs and ys 
for i in range( len( x_train ) ): 
    print( "x_train[%2d] ="%i, ",".join( [str(k) for k in x_train[i] ]
 ),  
          "y_train[%2d] ="%i, ",".join( [str(k) for k in y_train[i] ] )
 ) 
 
print() 
 
for i in range( len( x_test ) ): 
    print( "x_test[%2d] ="%i, ",".join( [str(k) for k in x_test[i] ] ),  
          "y_test[%2d] ="%i, ",".join( [str(k) for k in y_test[i] ] ) ) 

Package Xs and Ys as Numpy Arrays
We now make the train and test arrays into numpy arrays



In [ ]: x_train_np = np.matrix( x_train ).astype( dtype=np.float32 ) 
y_train_np = np.matrix( y_train ).astype( dtype=np.float32 ) 
x_test_np = np.matrix( x_test ).astype( dtype=np.float32 ) 
y_test_np = np.matrix( y_test ).astype( dtype=np.float32 ) 
 
# get training size, number of features, and number of labels, using 
# NN/ML vocabulary 
train_size, num_features = x_train_np.shape 
train_size, num_labels   = y_train_np.shape 
     
# Get the number of epochs for training. 
test_size, num_eval_features = x_test_np.shape 
test_size, num_eval_labels   = y_test_np.shape 
 
# Get the size of layer one. 
if True: 
    print( "tain size         = ", train_size ) 
    print( "num features      = ", num_features )  
    print( "num labels        = ", num_labels ) 
    print() 
    print( "test size         = ", test_size ) 
    print( "num eval features = ", num_eval_features )  
    print( "num eval labels   = ", num_eval_labels ) 

Definition of the Neural Network
Let's define the neural net. We assume it has just 1 layer.

Constants/Variables
We just have one, the learning rate with which the gradient optimizer will look for the optimal weights. It's a
factor used when following the gradient of the function y = W.x + b, in order to look for the minimum of the
difference between y and the target.

In [ ]: learning_Rate = 0.1 

Place-Holders
It will have place holders for

the X input
the Y target. That's the vectors of Y values we generated above. The network will generate its own
version of y, which we'll compare to the target. The closer the two are, the better.
the drop-probability, which is defined as the "keep_probability", i.e. the probability a node from the
neural net will be kept in the computation. A value of 1.0 indicates that all the nodes are used in the
processing of data through the network.



In [ ]: x = tf.placeholder("float", shape=[None, num_features]) 
target = tf.placeholder("float", shape=[None, num_labels]) 
keep_prob = tf.placeholder(tf.float32)  

Variables
The variables contain tensors that TensorFlow will manipulate. Typically the Wi and bi coefficients of each layer.

We'll assume just one later for right now, with num_features inputs (the width of the X vectors), and num_labels
outputs (the width of the Y vectors). We initialize W0 and b0 with random values taken from a normal
distribution.

In [ ]: W0 = tf.Variable( tf.random_normal( [num_features, num_labels ] ) ) 
b0 = tf.Variable( tf.random_normal( [num_labels] ) ) 
W1 = tf.Variable( tf.random_normal( [num_labels, num_labels * 2 ] ) ) 
b1 = tf.Variable( tf.random_normal( [num_labels * 2] ) ) 
W2 = tf.Variable( tf.random_normal( [num_labels * 2, num_labels ] ) ) 
b2 = tf.Variable( tf.random_normal( [num_labels] ) ) 

Model
The model simply defines what the output of the NN, y, is as a function of the input x. The softmax function
transforms the output into probabilities between 0 and 1. This is what we need since we want the output of our
network to match the 1-hot vector which is the format the y vectors are coded in.

In [ ]: #y0 = tf.nn.sigmoid( tf.matmul(x, W0) + b0 )  
y0 = tf.nn.sigmoid( tf.matmul(x, W0) + b0 )  
y1 = tf.nn.sigmoid( tf.matmul(y0, W1) + b1 ) 
y =  tf.matmul( y1, W2) + b2 
#y = tf.nn.softmax( tf.matmul( y0, W1) + b1 ) 

Training
We now define the cost operation, cost_op, i.e. measuring how "bad" the output of the network is compared to
the correct output.



In [ ]: #prediction = tf.reduce_sum( tf.mul( tf.nn.softmax( y ), target ), reduc
tion_indices=1 ) 
#accuracy = tf.reduce_mean ( prediction ) 
#cost_op = tf.reduce_mean( tf.sub( 1.0, tf.reduce_sum( tf.mul( y, target
 ), reduction_indices=1 ) ) ) 
           
#cost_op =  tf.reduce_mean(  
#              tf.sub( 1.0, tf.reduce_sum( tf.mul( target, tf.nn.softmax
(y) ), reduction_indices=[1] ) )  
#           ) 
 
# The cost_op below yields an ccuracy on training data of 0.86% and an a
ccuracy on test data = 0.49%  
# for 1000 epochs and a batch size of 10. 
cost_op = tf.reduce_mean( 
      tf.nn.softmax_cross_entropy_with_logits( labels = target, logits =
 y ) ) 

And now the training operation, or train_op, which is given the cost_op

In [ ]: #train_op = tf.train.GradientDescentOptimizer( learning_rate = learning_
Rate ).minimize( cost_op ) 
train_op = tf.train.AdagradOptimizer( learning_rate = learning_Rate ).mi
nimize( cost_op ) 

Initialization Phase
We need to create an initialization operation, init_op, as well. It won't be executed yet, not until the session
starts, but we have to do it first.

In [ ]: init_op = tf.initialize_all_variables() 

Start the Session
We are now ready to start a session!

In [ ]: sess = tf.Session() 
sess.run( init_op ) 

Training the NN
We now train the Neural Net for 1000 epoch. In each epoch we feed just one vector of x to the network.



In [ ]: batchSize = 5 
 
prediction = tf.equal( tf.argmax( y, 1 ), tf.argmax( target, 1) ) 
accuracy = tf.reduce_mean ( tf.cast( prediction, tf.float32 ) ) 
 
for epoch in range( 10000 ): 
    for i in range( 0, train_size, batchSize ): 
        xx = x_train_np[ i:i+batchSize, : ] 
        yy = y_train_np[ i:i+batchSize, : ] 
        sess.run( train_op, feed_dict={x: xx, target: yy} ) 
         
     
    if epoch%100 == 0: 
        co, to = sess.run( [cost_op,train_op], feed_dict={x: x_train_np,
 target: y_train_np} ) 
        print( epoch, "cost =", co, end=" " ) 
        accuracyNum = sess.run( accuracy, feed_dict={x: x_train_np, targ
et : y_train_np} ) 
        print( "Accuracy on training data = %1.2f%%" % 
(accuracyNum*100), end = " " ) 
        accuracyNum = sess.run( accuracy, feed_dict={ x: x_test_np, targ
et : y_test_np} ) 
        print( "Accuracy on test data = %1.2f%%" % ( accuracyNum*100 ) ) 
 
if False: 
    print( "y = ", sess.run( y, feed_dict={ x: x_train_np, target : y_tr
ain_np} ) ) 
    print( "softmax(y) = ", sess.run( tf.nn.softmax( y ), feed_dict={ x:
 x_train_np, target : y_train_np} ) ) 
    print( "tf.mul(tf.nn.softmax(y), target) = ", 
                         sess.run( tf.mul( tf.nn.softmax( y ), target ),
  
                                   feed_dict={ x: x_train_np, target : y
_train_np} ) ) 
 
#   
#prediction = tf.reduce_sum( tf.mul( tf.nn.softmax( y ), target ), reduc
tion_indices=1 ) 
accuracyNum = sess.run( accuracy, feed_dict={x: x_train_np, target : y_t
rain_np} ) 
print( "Final Accuracy on training data = %1.2f%%" % (100.0*accuracyNum)
 ) 
 
accuracyNum = sess.run( accuracy, feed_dict={ x: x_test_np, target : y_t
est_np} ) 
print( "Final Accuracy on test data = %1.2f%%" % (100.0*accuracyNum) ) 

In [ ]:   

In [ ]:   


