D. Thiebaut Csc231

Understanding and Using Linux System Calls

D. Thiebaut
Nov 2008

The information on the Linux system calls is taken from Randall Hyde’s Linux
System Call document (http://webster.cs.ucr.edu/Page Linux/LinuxSysCalls.pdf),
and is the basis for the examples in assembly language.

Hyde says: If you read the on-line documentation for the Linux system calls, you’ll find that the API calls
are specified using a "C" language syntax. However, it’s very easy to convert the C examples to assembly
language. Just load the associated system call constant into EAX and then load the 80x86 registers with the
following values:

* 1st parameter: EBX

* 2nd parameter: ECX

 3rd parameter: EDX

* 4th parameter: ESI

* 5th parameter: EDI

File 1/0
This section describes the Linux system calls responsible for file I/O. The principal functions are open,
close, creat, read, write, and llseek. Advanced users make want to use some of the other functions as well.

File Descriptors

Linux and applications refer to files through the use of a
file descriptor

or
file handle

This is a small unsigned integer value (held in a dword) that Linux uses as an index into internal file tables.
When you open or create a file, Linux returns the file descriptor as the open/creat result. You pass this file
handle to other functions to operate upon that file.

Under Linux, the file handle values zero, one, and two have special meaning. These correspond to the

files associated with the standard input, standard output, and standard error devices. Theoretically, you
should use constants for these values (e.g., stdin.handle, stdout.handle), but their values are so entrenched
in modern UNIX programs that it would be very difficult for Linux kernel developers to change these
values.

Generally, the first file a process opens is given the value three for its file handle and successively open files
are given the next available (sequential) free handle value. However, your programs certainly should not
count on this behavior. Someone may decide to add another "standard" device handle to the mix, or a
kernel developer may decide it’s better to start the handles with a larger value for some reason. In general,
other than to satisfy your curiosity, you should never examine or modify the file handle value. You should
treat the value as Linux’s private data.

Dept. Computer Science—Smith College

D. Thiebaut Csc231

File operations

* Open/Create file (8)

* Open/Append to file (5)
* Read from file (3)

* Write to file (4)

* Close file (6)

Assembly Constants

The constants below are needed to define the mode of operation on the files (read,
write, or both), and what permissions are given to the file (user-only access, or
group, or world access).

$assign SYS_EXIT 1

$assign SYS_WRITE 4

%assign SYS_READ 3

%assign STDOUT 1

%assign SYS_OPEN 5

%assign SYS_CLOSE 6

%assign SYS_CREATE 8

$assign O_RDONLY 000000q ; file is read-only
%assign O_WRONLY 000001qg ; file is write-only
%assign O_RDWR 000002g ; read or write

%assign O_CREAT 000100qg ; create file or erase it
%$assign S_IRUSR 00400gq ; user permission to read
%assign S_IWUSR 00200gq ; to write

%assign S_IXUSR 00100gq ; to execute

How to create a new file

We can use several macros to create the file, write a string to it, and close the file.
The name of the file should be an ASCIIZ string (string terminated by a 0), and the
data to be written should be in an array of bytes, and the length of the data should
be known.

The macro createFile creates a file that is RWX by the user only. Group and Others
will not have access to the file.

;ii createNewFile.asm
;7; D. Thiebaut

;77 Create a new file with name data.txt and stores a
;7 string in it.
$assign SYS_EXIT 1
%assign SYS_WRITE 4
%assign SYS_READ 3
$assign SYS_LSEEK 1

Dept. Computer Science—Smith College

D. Thiebaut

%assign SEEKSET 0
%assign STDOUT 1
$assign SYS_OPEN 5
%assign SYS_CLOSE 6
%assign SYS_CREATE 8
%assign O_RDONLY 000000g
%assign O_WRONLY 000001g
%assign O_RDWR 000002g
%assign O_CREAT 000100g
%$assign S_IRUSR 00400g
%assign S_IWUSR 00200gq
%assign S_IXUSR 00100gq
iii i ——— MACRO
iiiog print msg, length
%macro print 2 ; %1 = address %2 = # of chars
pushad ; save all registers
mov edx, %2
lea ecx, [%1]
mov eax,SYS_WRITE
mov ebx, STDOUT
int 0x80
popad ; restore all registers
$endmacro
;ii i ——— MACRO
Piioi print2 "quoted string"
%macro print2 1 ; %1 = immediate string,
section .data
$%str db %1
$%strl equ $-%%str
section .text
print %%str, %%strl
$endmacro
;i —== MACRO

iii createFile filename, handle
$macro createFile 2
mov eax,SYS_CREATE
mov ebx, %1
mov ecx, S_IRUSR|S_IWUSR|S_IXUSR
int 0x80

test eax,eax

jns %%createfile

print2 "Could not open file"
mov eax,SYS_EXIT

mov ebx, 0

int 0x80 ; final system call
$%createfile:

mov %$2,eax ; save handle
%endmacro
iii ——= MACRO -

PP writeFile handle, buffer, noBytesToWrite
$macro writeFile 3
mov eax,SYS_WRITE

Dept. Computer Science—Smith College

Csc231

D. Thiebaut C€sC231
mov ebx, %1
mov ecx, %2
mov edx, %3
int 0x80
%endmacro
;ii; ——— MACRO
PP close handle
%macro close 1
mov eax,SYS_CLOSE
mov ebx, %1
int 0x80
%endmacro

;; data segment

section .data
fileName db "data.txt",0
handle dd 0
buffer db "A fine romance with no kisses", 0x0a
db "A fine romance my friend this is.", 0x0a
LEN equ S-buffer

;i code area

section .text
global _start

_start:
;i; write contents of buffer to file

createFile fileName, [handle]
writeFile [handle], buffer, LEN
close [handle]

7 oexit()

mov eax,SYS_EXIT
mov ebx, 0
int 0x80 ; final system call

How to read an existing file

The program below illustrates how to read the contents of a file, put it in a buffer in
memory, and display it on the screen.

Note that you will need a buffer to hold the data from the file. When you read the
contents of the file, you must specify how much information you want to read, and

Dept. Computer Science—Smith College

D. Thiebaut

this information cannot be larger than the size of the buffer. The system call that
reads data from the file returns the number of bytes read. This value is saved in a

variable (noRead).
7+ readFile.asm
;i D. Thiebaut

%assign SYS_EXIT
%assign SYS_WRITE
%$assign SYS_READ
%$assign SYS_LSEEK
%assign SEEKSET

%assign STDOUT

%assign SYS_OPEN
%assign SYS_CLOSE

%$assign SYS_CREATE

%assign O_RDONLY
$assign O_WRONLY
$assign O_RDWR
%assign O_CREAT

$assign S_IRUSR
%assign S_IWUSR
%assign S_IXUSR

popad
%endmacro

;i; —-— MACRO -

000000g
000001g
0000029
000100g

00400q

002009
001009

msg, length

2
edx, %2
ecx, [%1]

eax,SYS_WRITE
ebx, STDOUT
0x80

;; Reads a file called data.txt and displays its
; contents on the screen.

; %1 = address %2 = # of chars
; save all registers

; restore all registers

PP print2
$macro print2

"quoted string"
1

section .data

$%str db
strlL equ

51
$-%%str

section .text

print
$endmacro

;i; ——— MACRO

%$%str, %%strl

%1 = immediate string,

i openFile filename, handle

$macro openFile 2

mov eax,SYS_OPEN

mov ebx, %1

mov ecx, O_RDONLY

mov edx, S_TIRUSR|S_IWUSR|S_IXUSR
int 0x80

test eax,eax

jns $%readFile

print2 "Could not open file"

Dept. Computer Science—Smith College

D. Thiebaut

mov
mov
int

%%readFile:

mov
$endmacro

;:7 ———- MACRO

i readFile handle,

eax, SYS_EXIT
ebx, 0
0x80

buffer, buffer-length,

$macro readFile 4

int
mov
%endmacro

;77 ——— MACRO
P close
%macro close
mov
mov
int
$endmacro

eax,SYS_READ
ebx, %1

ecx, %2

edx, %3

0x80

%4, eax

final system call

; save handle

file descriptor in bx

buffer address

number-bytes-read

max number of bytes to read

save number bytes read

handle
1

eax, SYS_CLOSE

ebx, %1
0x80

;; data segment

section .data

fileName db
handle dd
noRead dd

"data.txt",0

0

section .bss

MAXBUF equ
buffer resb

100000
MAXBUF

; to store # of chars read from file

; 100,000 bytes of storage

;i code area

section .text

global

_start:

;77 open the file and put its contents in Buffer

_start

;7 keep track of # of bytes read in noRead

openFile
readFile

close

print

fileName, [handle]
[handle], buffer, MAXBUF,

[handle]

buffer, [noRead]

;ioexit()

mov
mov
int

eax,SYS_EXIT
ebx, 0
0x80

Dept. Computer Science—Smith College

final system call

[noRead]

Csc231

