
Kaitlyn Stumpf
February 21st, 2016
CSC 270, Spring
Dominique Thiebaut

Homework #4
Problem 1

• Using as few additional gates as possible, implement the function f(A, B, C, D) whose
Karnaugh map is shown below, on the left, using the multiplexer shown on the right.

 My work for part one of problem 1 is shown below. For each CD row I connected the C
& D binary value to its matching f (i.e. 11 maps to f3), and set the input to be the defining feature
of that row of the Kernaugh map.

! of !1 8

• Using as few additional gates as possible, implement the function g(A, B, C, D) whose
Karnaugh map is shown below, on the left, using the multiplexer shown on the right.

My work for part one of problem 1 is shown below. For each CD row I connected the C & D
binary value to its matching f (i.e. 11 maps to f3), and set the input to be the defining feature of
that row of the Kernaugh map.

! of !2 8

Problem 2
Implement your two answers for Problem 1 in Python, and shown that your design is correct
(although it might not be as minimal as required).

Your Python code should have the following features:
• It must contain a header with your name(s), and a description of what it does
• It must contain a mux() function with 6 inputs (A, B, C, D, C1, C0), and returning one value

(Y).
• It must generate the truth table for f and for g.

Include the code and a copy of the output in your pdf. Please use a non-proportional font when
displaying code and output: it makes it much easier for the reader to read and understand code
quickly.

CODE:
Kaitlyn Stumpf
Feb 23, 2016
CSC270, Thiebaut
Hw4, Python/Java Ques.

This program contains a mux() func w/ 6 inputs (F0, F1, F2, F3, C1, C0)
that returns one value (Y).
It prints out truth tables for my two answers for Prob 1,
by calling the mux() function w/ the values specific to the problem.

def mux(F0, F1, F2, F3, C1, C0):
 '''
 Gets F0, F1, F2, F3 input values as well as C1 and C0.
 Combines C1 & C0 into a binary string & then into a base ten value.
 Uses base ten value to pick which of the multiplexer inputs, f0, f1,
f2, or f3,
 is needed, and returns this vale.

 '''
 muxInputs = [F0, F1, F2, F3]
 Y = 0
 # Assuming inputs to C1 & C0 are ints equal to either 0 or 1, turns
into binary string.
 binaryStr = str(C1) + str(C0)
 # Then converts binary string into base ten int.
 baseTenVal = int(binaryStr, 2)

 return muxInputs[baseTenVal]

def truthTable():
 ''' truthTable() references mux() in order to print a truth table
 for the multiplexers f & g.
 '''

 print
 print(" For the following multiplexer: ")
 print(" F0 = B', F1 = B, F2 = B', F3 = B ")

! of !3 8

 print(" C1 = C, C0 = D ")
 print(" Given this info, I generated the following truth table.")
 print
 print(" A B C D | f ")
 print("-----------------+-----")
 for A in [0, 1]:
 for B in [0, 1]:
 BINV = 0
 if B == 0:
 BINV = 1
 for C in [0, 1]:
 for D in [0, 1]:
 f = mux(BINV, B, BINV, B, C, D)
 print(" {0} {1} {2} {3} | {4}
".format(A, B, C, D, f))

 print
 print
 print(" For the following multiplexer: ")
 print(" F0 = 1, F1 = D, F2 = D’, F3 = 1 ")
 print(" C1 = A, C0 = B ")
 print(" Given this info, I generated the following truth table.")
 print
 print(" A B C D | g ")
 print("-----------------+-----")
 for A in [0, 1]:
 for B in [0, 1]:
 for C in [0, 1]:
 for D in [0, 1]:
 DINV = 0
 if D == 0:
 DINV = 1
 g = mux(1, D, DINV, 1, A, B)
 print(" {0} {1} {2} {3} |
{4} ".format(A, B, C, D, g))

def main():
 ''' Calls truthTable in order to print the truth table.'''
 truthTable()

main()

OUTPUT:
Kaitlyns-MacBook-Pro:hw4 kaitlynstumpf$ python stumpf_hw4.py

 For the following multiplexer:
 F0 = B', F1 = B, F2 = B', F3 = B
 C1 = C, C0 = D
 Given this info, I generated the following truth table.

 A B C D | f
-----------------+-----
 0 0 0 0 | 1
 0 0 0 1 | 0
 0 0 1 0 | 1
 0 0 1 1 | 0
 0 1 0 0 | 0

! of !4 8

 0 1 0 1 | 1
 0 1 1 0 | 0
 0 1 1 1 | 1
 1 0 0 0 | 1
 1 0 0 1 | 0
 1 0 1 0 | 1
 1 0 1 1 | 0
 1 1 0 0 | 0
 1 1 0 1 | 1
 1 1 1 0 | 0
 1 1 1 1 | 1

 For the following multiplexer:
 F0 = 1, F1 = D, F2 = D’, F3 = 1
 C1 = A, C0 = B
 Given this info, I generated the following truth table.

 A B C D | g
-----------------+-----
 0 0 0 0 | 1
 0 0 0 1 | 1
 0 0 1 0 | 1
 0 0 1 1 | 1
 0 1 0 0 | 0
 0 1 0 1 | 1
 0 1 1 0 | 0
 0 1 1 1 | 1
 1 0 0 0 | 1
 1 0 0 1 | 0
 1 0 1 0 | 1
 1 0 1 1 | 0
 1 1 0 0 | 1
 1 1 0 1 | 1
 1 1 1 0 | 1
 1 1 1 1 | 1

Problem 3
Is the circuit below a latch? Why or why not?

If you find out that it is a latch, you should be able to indicate:
• What are the inputs that are "passing" and putting the latch in a stable state.
• What input (S or R) must be activated (and how) to force a 1 on Qi
• What input (S or R) must be activated (and how) to force a 0 on Qi

! of !5 8

 To solve this problem, I first tested if the circuit above was a latch. I did this test by using
a state table to test if changes in S and R caused Qi and Qj to change in a predictable way. If they
changed in a predictable way, (i.e. whenever S and R switched values, Qi and Qj switched values
as well), this would indicate that the values of S and R were being stored and remembered. My
state table is found below.

 I have used the state table above to prove by contradiction that this circuit is inconsistent,
and therefore not a latch. It does not always properly switch off the values saved in Qi and Qj
when S and R switch values. When the latch goes from S = 1, R = 0 to S = 0, R = 1, rather than
Qi and Qj switching values (and thus properly remembering which value was passed), it
accidentally sets both Qi and Qj to zero.
 Therefore, the above circuit is not a latch.

Problem 4

• Can a latch be created with the upper of the two circuits above (AND with one inverted
input)? You can use as many of these special ANDs as you need.

• Same question about the lower circuit (XOR with one inverted input)? You can use as many
of these special XORs as you need.

S R Qi Qj Is Circuit
Consistent?

0 1 1 0 Yes

0 1 1 0 Yes

1 0 0 1 Yes

1 0 0 1 Yes

1 0 0 1 Yes

0 1 0 0 No

! of !6 8

• Please explain carefully why it is possible to create a latch, or why it is not possible to create
a latch with each one the circuits.

 I was confused about how to go about this question, and so I asked Karen Diaz for help!
She guided me in how to think about the first part.

! of !7 8

 The special XOR gate with one inverted input, however, cannot be a latch. This is
because, as proven in homework 2, the special XOR gate with one inverted input is not a
universal gate. As shown by the truth table below, there is no exclusivity in the output of the
special gate. This means that we cannot isolate a single a or b value and use this to build a
universal gate.

 Because we cannot use this special gate as a universal gate, it follows that it would not be
possible to build either a NAND or a NOR gate using the special gate. Therefore, it would not be
possible to build a latch using the special gate.

a b a⊕b'

0 0 1

0 1 0

1 0 0

1 1 1

! of !8 8

