AUTOMATIC EVALUATION OF COMPUTER PROGRAMS
USING MOODLE’S VIRTUAL PROGRAMMING LAB (VPL) PLUG-IN

Dominique Thiébaut
Department of Computer Science
Smith College

Northampton, MA 01060
dthiebaut@smith.edu

ABSTRACT

With the increased enrollment in CS courses and the growing interest in
providing MOOCs, automated grading of student programs is becoming more of a
need than an option. This paper describes the first experience of using Moodle’s
Virtual Programming Lab (VPL) for the automatic evaluation of students’ program
in two of our programming courses. Early experimentation in several courses
shows the plug-in to be flexible and robust, allowing for sophisticated ways to test
student programs. The automatic grading requires a significant shift of faculty time,
putting the bulk of the effort up-front, preparing the assignment, the testing
environment, and its validation. However, once this phase is over, very little effort
is required once the assignment deadline is passed.

INTRODUCTION

As enrollment is steadily increasing in computer science departments
nationwide [3], faculty and assisting staff find themselves having to spend an
increasing amount of time grading and evaluating student programs on a regular
basis. The choice is to either, 1) lower the frequency with which students return
assignments, 2) evaluate only a random sample of assignments, 3) include teaching
assistants in the grading process, 4) hire graders, 5) devote more personal time to
the grading, or 6) use automated evaluation systems. All have drawbacks and
advantages.

A few different automated grading systems are on the market [4], and this
paper presents an early evaluation of the use of Virtual Programming Lab (VPL), a
plug-in for the learning management system Moodle [1]. We are currently using it in
three different courses; Introduction to Computer Science, Data Structures in Java,
and Assembly Language, all taught during the Fall 2014 semester. VPL is a project
spearheaded by Prof. Juan Carlos Rodriguez-del-Pino at the University of las Palmas
de Gran Canaria, in Spain.

Although the plug-in documentation is succinct, the on-line support provided
by Rodriguez-del-Pino is remarkable. Furthermore, the richness of options VPL
provides, its overall robustness, and its ability to incorporate the instructor’s code
as part of the test frame, have contributed to a successful experience along with a
growing expertise, and we plan on adopting the plug-in more widely in the future.

There are many caveats, though. The most noticeable one is a time shift,
requiring a significant amount of work before releasing an assignment, and
practically none after the deadline is passed. Before the assignment is released, the
instructor must spend time preparing the assignment, writing a solution program,

Accepted at CCSCNE2015 Page 1 of 6 D. Thiebaut -- Jan 2015

generating scripts that will evaluate the student program, testing the complete
setup, and incorporating all this as a new VPL activity in Moodle. After the
assignment is closed, a brief review of the submissions will ensure that everybody
received a grade, and a quick scan of submitted programs will detect fraudulent
attempts. The VPL plug-in provides a similarity test to flag submitted programs that
have a high level of similarity, a useful feature for spotting possible cheating. After
this half-hour intervention, the instructor is basically free of the assignment.

VPL Setup and Operation

VPL is a Moodle plug-in, and requires a dedicated separate execution server,
or jail server for short. This jail server runs the test scripts on the programs
submitted by the students. Should a student program crash the jail server, the
Moodle server is unaffected.

We provide a quick summary of the VPL operations now. Interested readers
can find additional information on the VPL Web site [1][6].

. Moodle
AJaX Server xml| rpc
Student Jail
Browser Server
WS/WSS

Figure 1: technologies used in student to Moodle VPL connections.

A student interacts with the system as illustrated in Figure 1. When a
student submits her program, the Moodle server packages the instructor’s test
script along with the student program in an xmlrpc message, and ships it to the VPL
jail server. There, the test scripts are executed in a sandboxed environment, and the
captured output is sent back to the Moodle server. The output typically contains
feedback comments to the students generated by the test scripts (“Output OK”,
“Your function is not recursive”, “Your program timed out (infinite loop?)”), along
with a grade, also computed by the test scripts. These comments and grades are
formatted following a simple syntax supported by the plug-in. A window in the
student browser reports the feedback and the grade. Figure 2 shows the
instructor’s view, after having changed the role to a student. The grade is
automatically incorporated in the student’s internal record, under the rubric
selected by the instructor (lab, homework, quiz, etc.).

Page 2 of 6 D. Thiebaut -- Jan 2015

VPL Features and Options

VPL supports many options and features. We list here those we believe

computer science instructors will find most interesting.

The number of languages supported is quite large. The VPL Web site [3] lists
Ada, C, C++, C#, Fortran, Haskell, Java, Matlab, Octave, Pascal, Perl, Php,
Prolog, Python, Ruby, Scheme, SQL, and VHD languages as supported. We
have been successfully implementing VPL assignments for Python, Java, and
Assembly language. Any language with a compiler or interpreter supported
by Linux with executable that output text can be evaluated. Testing
programs outputting graphics requires additional tools.

The instructor defines how the student program is evaluated and graded.
This allows for testing properties of a program other than its. For example,
in assembly language, it may be important for an assignment to generate a
program with as small a memory footprint as possible. The instructor can
create a script that will measure the static footprint of the student program
and assign a grade inversely proportional to the program’s byte size.

The instructor can define the rubric under which a VPL grade is assigned.
This is controlled per VPL-assignment.

The instructor can make the grade visible to the student, or not. In the latter
case, the grade is revealed after the due date.

At the time of this writing, the instructor cannot limit the number of
submissions for a given program, or set of programs. A survey of some 30
VPL assignments given this semester indicates that approximately 85% of
the students submit a given program less than 10 times, while the remaining
15% fall in a long tail of recorded clicks. The largest recorded number of
submission for a given assignment is 51 times.

The instructor can controls the resources needed by the jail server.

For a given VPL activity, the programs submitted can be those of an
individual student, or from a group of students.

Access to the plug-in, including submission, can be restricted by IP address.
The instructor can enforce for programs to be typed by hand in the submit
window, and disable copy/paste of program code.

EXAMPLE VPL ACTIVITY

We now present a simple VPL module for evaluating a Python assignment.

The requirement for the student is to create a Python program containing a function
called randomInt() that returns a random integer. The given grade depends on
several criteria: 1) the Python file exists and bears the right name, 2) the program
contains a function named randomlInt(), and 3) the functions returns an integer.

Two scripts form the evaluation system provided by the instructor: a python
program that attempts to import the student’s function, and a bash script that

launches the python program. VPL requires that the main script, vpl_evaluate.sh,

must generate a second script, vpl_execution, and it is this second script that is

executed on the jail server. The vpl_evaluate.sh script, below, is remarkably short:

Page 3 of 6 D. Thiebaut -- Jan 2015

#! /bin/bash
vpl_evaluate.sh

echo "#! /bin/bash" > vpl execution
echo "python3.4 customEval.py">> vpl_execution

chmod +x vpl_execution

The program customEval.py, below, tests the student program by importing
and running its function. It also outputs the final grade that will be picked-up by the
VPL module, and added to the student’s record. Special prefixes must be added to
each output line for VPL to parse it correctly.

customEval.py
comment(s):
'''formats strings to create VPL comments
('Comment :=>> ' + s)

grade (num) :
'''formats a number to create a VPL grade
('Grade :=>> ' + str(num))

randomInts

comment ("unable to import randomInts")
grade(0)
exit()

randomInts.randomInt

comment ("randomInts.randomInt isn't defined")
grade(25)
exit()

(type(randomInts.randomInt()) int):
comment ("great job!")
grade(100)

comment ("randomInt doesn't return an int as required.")
grade(90)

comment ("randomInts.randomInt crashes")
grade(75)

Note that the main bash script is extremely short and relies on the python
test program for doing the heavy lifting. It is possible to generate a testing system
where the bash script does most of the evaluation work, and the attached programs
just provide an infrastructure for the testing. We provide several longer and more
sophisticated VPL examples on our own Web site [5].

OBSERVATIONS

A couple months of practice with Moodle and its VPL plug-in have been
satisfying enough to warrant continuing this experiment. We see VPL as a good
solution to cope with the growing enrollment and the need to test regularly growing
numbers of students anxious to learn programming.

Page 4 of 6 D. Thiebaut -- Jan 2015

ADMINISTRATION =E Description Submission Edit Submission view

. . i E
Switch role to... File » Edit > Options > ullscreen Run Evaluate Console About
<& Return to my normal role Hwd_3.java » Proposed grade: 100 / 100
> My profile settings 1o e v Comments
2 * Hw4_3.java
5 * @author thiebaut TEST O :
4 * Reads 4 arguments from the command line, a min distance, a mirYOUr program rantoc?mplehon.
5 * and two files containing (t, x, y) triplets. Congrats, your output is correct.
I | B e .

Course administration

N " : N Your program ran to completion.
2 import java.util.Arraylist; Congrats, your output is correct.
10 import java.util.Scanner; .
Student Program 1 | o .
NOT
12~ /**

Student Grade

mport java.io.File;

: TEST 1
import java.io. F\leNotFoundEx&pnon;

TEST 2

13 * Contains a pair of Your program ran to completion.

Feedback from
Evaluations

14 */ Congrats, your output is correct.
15~ class MyPair{ = = Ny 000 P [-,

16 public int x; CONTACT

17 public int y; TEST 3

18 MyPair(int xx, int yy) { x = xx; ¥y = yy; } Your program ran to completion.
19 public String toString() { return "(" + x + "," + y + ")I'; } Congrats, your output is correct.
2 s S ¢ A .

21 ! CONTACT

22+ /%

23 * The class opens two files that contain the same number of|[line

24 * reads them, and computes the distance between points in the ni

25 * line of both files. 7
.

e VPL 3.1

Figure 2: View of VPL program evaluation in the browser.

We share here some of our early observations, and provide additional

comments.

Adopting VPL requires a major pedagogical shift for the faculty used to grade
by hand weekly assignments. One loses an important connection with one’s
students, and a sense of their understanding of the class material. Steps must
be taken to maintain some level of connection. This can be accomplished
through quick reviews of the submitted work after the deadline

The bulk of the time spent on an assignment is concentrated prior to the
release of the assignment. This time is considerable the first time one sets up
new VPL activities, as one has to anticipate many different ways for student
programs to fail, or to miss the idea behind the assignment. Specialized tests
must be written to capture all possible shortcomings in student submissions.
Randomization of inputs is necessary, as well as a semi-opaqueness of the
way the programs are tested. While the stronger students will pride
themselves in submitting programs that answer the problem at hand using
the correct approach, some will be tempted to bypass the assignment and
create programs that spit out the expected answer. This can be
circumvented by randomizing the input data used to test the programs, and
by not fully disclosing the manner in which programs are tested. Some
explanatory feedback is necessary, but should not be blueprint for creating
programs that bypass the mission of the assignment.

While the number of submissions performed by a student is currently not
limited, we believe such a feature would be beneficial. We have observed
students using Eclipse to generate their Java program, submit their first draft

Page 5 of 6 D. Thiebaut -- Jan 2015

to VPL, and then stay in the VPL edit window to finish up getting rid of the
final bugs.

* The due date and time of an assignment can be recorded in the test script,
allowing the script to lower the grade by some selected amount for every day
past the deadline.

CONCLUSIONS

Both the financial appeal of MOOCs and the fast increase we see in CS
departments nationwide require changing the way we assess programming skills.
We have chosen to implement the automated evaluation of student programs in
three of our heavily enrolled classes. Our early experience with VPL is positive. The
wide array of programming languages VPL supports, its robustness of
implementation, and the flexibility it offers compensate for its complexity of use,
and its currently sparse documentation. We have started releasing scripts we have
generated for various assignment in an effort to share our experience, ideas, and
solutions, hoping others can benefit from our experiment.

ACKNOWLEDGEMENTS

We wish to thank Juan Carlos Rodriguez-del-Pino for his quick and friendly
help with our many questions about VPL, and for his insightful comments on an
early draft of this paper.

REFERENCES

[1] Juan Carlos Rodriguez-del-Pino, Enrique Rubio-Royo, Zendn, and]. Hernandez-
Figueroa, A Virtual Programming Lab for Moodle with automatic assessment and
anti-plagiarism features, Proc. WorldComp12, July 2012, Las Vegas, USA.

[2] Gray, I. M., Hyde, D. R,, Jekyll, M. R.,, NP-complete problems with no known
optimal solutions, Proc. 1st Conference on Hard, Hard Problems, 1 (1), 100-799, 1999.
[3] Graduate Education, Enrollment, and Degrees in the United States, National
Science Foundation, Feb. 2014, on-line document,
http://www.nsf.gov/statistics/seind14/index.cfm/chapter-2 /c2s3.htm, captured
Nov 2014.

[4]]. M. del Alamo, A. Alonso, M. Cortés, Automated Grading and Feedback Providing
Assignments Management Module, Proc. Int’l Conf. Educ., Research, & Innov., Nov.
2012, Madrid, Spain.

[5] D. Thiebaut, Moodle VPL Tutorials, on-line document,
http://cs.smith.edu/dftwiki/index.php/Moodle VPL Tutorials, captured Nov. 2014.
[6] Activities: Virtual Programming Lab, on-line document,

https://moodle.org/plugins/view.php?plugin=mod vpl, captured Jan. 2015.

Page 6 of 6 D. Thiebaut -- Jan 2015

