
General-Purpose vs. GPU: Comparison of Many-Cores on Irregular

Workloads

George C. Caragea, Fuat Keceli, Alexandros Tzannes, and Uzi Vishkin
University of Maryland, College Park

{gcaragea,keceli,tzannes,vishkin}@umd.edu

Abstract

XMT1 is a general-purpose many-core parallel architec-

ture. The foremost design objective for XMTwas to meet

the highest standards for ease of parallel programming.

GPUs, on the other hand, have acquired a strong reputa-

tion on performance, sometimes at the expense of ease-

of-programming. The current paper presents a perfor-

mance comparison on diverse workloads between XMT

and an NVIDIA CUDA-enabled GPU. Configured with

roughly the same amount of chip resources as the GPU,

XMT achieves an average speedup of 6.05x on irregu-

lar applications, while incurring an average slowdown of

2.07x on regular ones. Namely, XMT comes ahead for

significant applications without having to pay a (possibly

worthwhile) price for easier programming. This surpris-

ing result suggests a yet untapped opportunity: A high-

performance easy-to-programgeneral-purpose 1000-core

computer.

1 Introduction
Multiple core and multithreaded processors will be the

pervasive computing platform of the future. Currently,

the two predominating paradigms are: (1) Limited-scale

multi-cores that replicate the single-processor model on

one die and strive to maintain backwards compatibil-

ity. They generally target applications with low de-

grees of parallelism, programmed to take advantage of

local caches and limit expensive inter-core communica-

tion. Presently such systems have 2-8 cores, each sup-

porting coarse grained threads and they are not expected

to exceed around 20 cores in the foreseeable future. And

(2) Many-cores that are not typically confined to tradi-

tional architectures and programming models, and use

hundreds of lightweight cores in order to provide stronger

speedups. GPUs are the the main example, perform-

ing best on applications with very high degrees of paral-

lelism; at least 5,000 – 10,000 threads according to [25].

Advances in GPU programming languages (by GPU ven-

dors NVIDIA – CUDA [22], AMD – Brook [5], the

upcoming OpenCL standard [20]), and architecture up-

grades have led to strong performance demonstrated for

a considerable range of software. When all optimizations

are applied correctly by the programmer, GPUs provide

remarkable speedups for certain types of applications. As

of January 2010, the NVIDIA CUDA Zone website [24]

1This refers to the XMT architecture developed at the University of

Maryland and not the Cray XMT system.

lists 198 CUDA reported applications, 28 of which re-

porting speedups of 100× or more. On the other hand,

the programming effort required to extract performance

can be quite tedious. The fact that the implementation

of basic algorithms on GPUs, such as sorting, merit so

many research papers (e.g., [4, 8, 27]) affirms that. Nev-

ertheless, the notable performance benefits led some re-

searchers to regard GPUs as the most promising solution

for the pervasive computing platform of the future. The

emergence of General-Purpose GPU (GPGPU) commu-

nities is perhaps one indication of this belief.

A radically different approach tries to look-up to the

serial paradigm in order to understand what made it

such a success. In particular, the serial general-purpose

paradigm gave “dreamers” of new applications a proper

intellectual and business environment that facilitated in-

novation. We aspire to create a similar environment

for future innovators. The main features of the serial

paradigm include: a simple abstraction at the heart of

the “contract” between programmers and builders, the

software spiral (the cyclic process of hardware improve-

ments leading to software improvements, which lead

back to hardware improvements and so on), ease-of-

programming, and backwards compatibility on existing

code and on application programming. The only serial

feature that seems generally impossible to provide in a

future dominated by pervasive parallel systems is con-

tinued performance improvement for serial code. The

above discussion motivated the XMT framework (e.g.,

[29]), a general-purpose manycore architecture. Prior

work showed that XMT has the potential to outperform

systems such as Intel Core 2 and AMD Opteron proces-

sors [6, 26, 34], and require a much lower learning and

programming effort [15, 28, 32].

The main contributions of this paper are:

• A meaningful performance comparison of a state-of-

the-art GPU to XMT, a general-purpose highly parallel

architecture, on a range of irregular applications. We

show via simulation that XMT can outperform GPUs

on these applications, while not falling behind signifi-

cantly on regular ones. Fig. 3 summarizes our results.
• Beyond the specific comparison to XMT, the results

demonstrate that an easy to program, truly general-

purpose architecture can challenge a performance-

oriented architecture – a GPU – once applications ex-

ceed a specific scope of the latter.

Related Work. Numerous works evaluate and compare

1



...

...

...

Streaming
Multiproc.

Shared
Memory

Interconnection Network

DRAM

Register File

Warp SchedulerWarp State

Instruction
Cache

Constant
Cache

SP

Special
Function

Unit (SFU)

SP

SP

SP

Shared Memory

Thread Block Scheduler

SP SP

SP SP

...

...

Texture Cache

Special
Function

Unit (SFU)

Texture
Cache

Load/Store
Unit

Controler

DRAM

Texture Cache

Controler

Streaming
Multiproc.

Shared
Memory

SP SP

SP SP
...

(a)

Global 
Register

File

Prefix-Sum Unit (PS)

...
Master
TCU

Interconnection Network

Shared
Cache

...

Cluster

TCU TCU

TCU TCU

...
 

Cache

Load/Store
Unit

Prefix Sum
Unit

Instruct.
Buffer

Register
File

Prefetch
Buffer

TCU
Instruct.
Buffer

Register
File

Prefetch
Buffer

ALU

TCU

...

Floating
Point Unit

Mult./Div.
Unit

...DRAM

Read Only Cache (ROC)

DRAM

...Shared
Cache

Shared
Cache

... Shared
Cache

Broadcast

Cluster

TCU TCU

TCU TCU

...

ALU

(b)

Figure 1: Overview of the compared architectures. (a) The Tesla architecture. (b) The XMT architecture.

different parallel architecture approaches. Some studies

focus on a particular application (e.g. [10, 16, 36, 11, 4]),

while others aim to run a comparison on heterogeneous

benchmark suites (e.g. [9]). In this paper, we focus

on two architectures with similar performance goals and

means (accelerating single-task completion time through

fine grained parallelism), and examine the impact that the

design objective of supporting ease of programming has

on execution time.

2 The Tesla/CUDA and XMT Frameworks

Tesla/CUDA Framework. In the recent years, the GPU

architectures have evolved from purely fixed-function

devices to increasingly flexible, massively parallel pro-

grammable processors. The CUDA [22, 23] program-

ming environment together with the NVIDIA Tesla [18]

architecture is one example of a GPGPU system gaining

acceptance in the parallel computing community.

Fig. 1.a depicts an overview of the Tesla architecture. It

consists of an array of Streaming Multiprocessors (SMs),

connected through an interconnection network to a num-

ber of memory controllers and off-chip DRAM modules.

Each SM contains a shared register file, shared memory,

constant and instruction caches, special function units

and several Streaming Processors (SPs) with integer and

floating point ALU pipelines. SFUs are 4-wide vector

units that can handle complex floating point operations.

The CUDA programming and execution model are dis-

cussed elsewhere [18].

The CUDA framework provides a relatively famil-

iar environment for developers, which led an impressive

number of applications to be ported since its introduc-

tion [24]. Nevertheless, a non-trivial development ef-

fort is required when optimizing an application in the

CUDA model. Some of the considerations that must be

addressed in order to get real performance gains follow.

Degree of parallelism: a minimum of 5,000 - 10,000 of

threads need to be in-flight for achieving good hardware

utilization and latency hiding. Thread divergence: in

the CUDA Single Instruction Multiple Threads (SIMT)

model, divergent control flow between threads causes se-

rialization, and programmers are encouraged to minimize

it. Shared memory: no standard cache is included at the

SM.2 Instead, a small user-controlled scratch-pad shared

memory is provided. Memory request coalescing: better

bandwidth utilization is achieved when data layout and

memory requests follow a number of temporal and spatial

locality guidelines. Bank conflicts: concurrent requests to

one bank of the shared memory incur serialization, and

should be avoided in the code, if possible.

XMT Framework. The primary goal of the eXplicit

Multi-Threading (XMT) on-chip general-purpose com-

puter architecture [31, 21] has been improving single-

task performance through parallelism. XMT was de-

signed from the ground up to capitalize on the huge on-

chip resources becoming available in order to support the

formidable body of knowledge, known as Parallel Ran-

dom Access Model (PRAM) algorithmics, and the latent,

though not widespread, familiarity with it. A 64-core

FPGA prototype was evaluated in [33, 34, 35].

The XMT architecture, depicted in Fig. 1.b, includes

an array of lightweight cores, Thread Control Units

(TCUs) and a serial core with its own cache (Mas-

ter TCU). The architecture includes several clusters of

TCUs connected by a high-throughput interconnection

network, for example using a mesh-of-trees (MOT) topol-

ogy [3, 2]; an instruction and data broadcast mecha-

nism; a global register file (GRF); a prefix-sum unit (PS).

The first level of cache is shared and partitioned into

mutually-exclusive cache modules sharing several off-

chip DDR2 DRAM memory channels. The TCU Load-

Store unit applies a hashing function on each address

to avoid memory hotspots. Cache modules handle con-

current requests and provide buffering and request re-

ordering to achieve better DRAM bandwidth utilization.

Within a cluster, a compiler-managed Read-Only Cache

(ROC) is used to store constant values across all threads.

TCUs include lightweight ALUs, but the more expensive

2We do not classify the constant and texture caches as regular caches

since they are read-only and use separate address spaces. This changed

in the NVIDIA Fermi architecture, which includes an option to use part
of the shared memory as an L1 cache. At the time of this writing, it is

not clear yet what implications this has on programmability and perfor-

mance. What limited our choice of a GPU architecture for the compar-

ison in this paper was the availability of third party application code.

2



int A[N],B[N],base=0;

spawn(0,N-1) {

int inc=1;

if (A[$]!=0) {

ps(inc,base);

B[inc]=A[$];

} } (a)

spawn

join

spawn

join$

(b)

Figure 2: (a) XMTC program example: Array Compaction. The non-

zero elements of array A are copied into an array B. The order is not
necessarily preserved. $ refers to the unique thread identifier. After

the execution of the prefix-sum statement ps(inc,base), the base

variable is increased by inc and the inc variable gets the original

value of base, as an atomic operation. (b) Execution of a sequence

of spawn and join commands.

Multiply/Divide (MDU) and Floating Point Units (FPU)

are shared by all TCUs in a cluster. TCUs also feature

prefetch buffers utilized via a compiler optimization to

hide memory latencies [7].

The underlying programming model of the XMT

framework is arbitrary CRCW (concurrent read/write)

reduced-synchrony PRAM-like [29], with serial and par-

allel execution modes. The spawn and join instructions

specify the beginning and the end of a parallel section

that contains an arbitrary number of virtual threads shar-

ing the same code, as shown in Fig. 2. An algorithm

designed in the XMT model usually permits each thread

to progress at its own speed from its initiating spawn to

the terminating join, without ever having to busy-wait

for other threads, methodology called “independence of

order semantics (IOS).” XMT also includes a hardware

implementation of a powerful prefix-sum primitive simi-

lar in function to the NYU Ultracomputer Fetch-and-Add

[12]; it provides constant, low overhead inter-thread co-

ordination, a key requirement for implementing efficient

intra-task parallelism. Fig. 2a illustrates the XMTC pro-

gramming language, a simple SPMD extension of C. The

XMTC compiler is based on the GCC 4.0 suite.

XMT allows concurrent instantiation of as many

threads as the number of processors. Threads are effi-

ciently started and distributed using prefix-sum for fast

dynamic allocation of work and a dedicated instruction

broadcast bus. The high-bandwidth interconnection net-

work and the low-overhead creation of many threads fa-

cilitate efficient support of fine-grained parallelism.

Ease-of-programming is a necessary condition for the

success of a many-core platform, and it is one of the

main objectives of XMT. Indications that XMT is an

easy-to-program efficient parallel architecture, include:

(i) XMT is based on a rich algorithmic theory (PRAM)

that provides a robust framework for designing and ana-

lyzing algorithms, equivalent to the serial model; (ii) us-

ing ease of teaching as a benchmark, significant evidence

regarding superiority of XMT programming relative to

alternative parallel approaches, such as MPI, OpenMP

and CUDA, has been established; demonstrations in re-

peated instances include middle-school and up, by inde-

pendent education experts [28, 32]; (iii) XMT provides

a programmer’s workflow for deriving efficient programs

from PRAM algorithms, and reasoning about their execu-

tion time and correctness[30], and (iv) in a semester-long

study supported through the DARPA HPCS program, the

development time of XMT was, not surprisingly, shown

to be about half that of MPI under circumstances favor-

ing MPI [15].

Comparison of Architectures. The key issues that

affect the design of both architectures, and the main dif-

ferences between them, are summarized in Table 1.

3 Experimental Evaluation
In this section, we present a head-to-head performance

comparison of a simulated XMT chip and an NVIDIA

GTX 280 GPU in terms of execution time on a set of

benchmarks.

Tested configurations. We needed to determine the

power-of-two configuration of XMT whose chip re-

sources are in the same ballpark as the GTX 280, the GPU

considered. We base our estimation on the detailed data

from the ASIC implementation of the MOT interconnec-

tion network [2] and a complete 64-TCU XMT integer-

only chip, both fabricated in 90nm IBM technology. Our

calculations below show that using the same generation

technology as the GTX 280, a 1024-TCU XMT configu-

ration could be fabricated.

A 1024-TCU XMT configuration requires 16 times

the cluster and cache modules resources of the 64-TCU

XMT ASIC prototype, reported by the design tools as

61mm2. The area of the MOT interconnection network

for the envisioned XMT configuration can be estimated

as 64mm2 in 90nm using the data from [2]. Apply-

ing a theoretical area scaling factor of 0.5 from 90nm to

65nm technology feature size we obtain an area estimate

of (61 × 16 + 64) × 0.5 = 520mm2. We assume that

with the same amount of engineering and optimization

effort put behind it as for the GPUs, XMT could support

a comparable clock frequency and addition of floating

point units (whose count, per Table 2, is around 20% of

the GTX 280) without a significant increase in area bud-

get. This is why the XMT clock frequency considered in

the comparison is the same as the shader clock frequency

(SPs and SFUs) of GTX280, which is 1.3GHz. Note that

this estimation does not include the cost of memory con-

trollers. The published die area of GTX280 is 576mm2

in 65nm technology and approximately 10% of this area

is allocated for memory controllers [17]. It is reasonable

to assume that the difference in the GPU area and the

estimated XMT area, which is also ≈ 10%, would ac-

count for the addition of the same number of controllers

to XMT. We expect that very limited area will be needed

for XMT beyond the sum of these components since they

comprise a nearly full design.

Table 2 gives a comparative summary of the hardware

3



Tesla XMT

Memory Latency

Hiding and Reduction

·Heavy multithreading (requires large register

files and state aware scheduler)
·Limited local shared scratchpad memory

·No coherent private caches at SM or SP

·Large globally shared cache

·No coherent private TCU or cluster caches

·Software prefetching

Memory and Cache

Bandwidth

·Memory access patterns need to be coordinated
by the user for efficiency (request coalescing)

·Scratchpad memories prone to bank conflicts

·Relaxed need for user-coordinated DRAM access due to caches

·Address hashing for avoiding memory module hotspots

·High bandwidth mesh-of-trees interconnect between clusters

and caches

Functional Unit

(FU) Allocation

·Dedicated FUs for SPs and SFUs

·Less arbitration logic required

·Higher theoretical peak performance

·Heavy FUs (FPU and MDU) are shared through arbitrators

·Lightweight FUs (ALU and branch unit) are allocated per TCU.

ALUs do not include multiply/divide functionality

Control Flow and

Synchronization

·Single instruction cache and issue per SM for

saving resources. Warps execute in lock-step

(penalizes diverging branches)
·Efficient local synchronization and communica-

tion within blocks. Global communication is ex-

pensive

·Switching between serial and parallel modes

(i.e. passing control from CPU to GPU) requires

off-chip communication

·One instruction cache and program counter per TCU enables

independent progress of threads
·Coordination of threads can be performed via constant time

prefix-sum. Other forms of thread communication are done over

the shared cache

·Dynamic hardware support for fast switch between serial and

parallel modes and load balance of virtual threads

Table 1: Implementation differences between XMT and Tesla. FPU and MDU stand for floating-point and multiply/divide units respectively.

GTX280 XMT-1024

Principal Computational Resources

Cores 240 SP, 60 SFU 1024 TCU

Integer Units 240 ALU+MDU 1024 ALU, 64 MDU

Floating Point Units 240 FPU, 60 SFU 64 FPU

On-chip Memory

Registers 1920KB 128KB

Prefetch Buffers – 32KB

Regular caches 480KB 4104KB

Constant cache 240KB 128KB

Texture cache 480KB –

Table 2: Hardware specifications of the GTX280 and the simulated

XMT configuration. In each category, the emphasized side marks the

more area-intensive implementation.

specifications of an NVIDIA GTX280 and the simulated

XMT configuration. The sharp differences in this ta-

ble are due to the different architectural design decisions

summarized in Table 1. From these calculations, we con-

clude that overall, the configurations of these very differ-

ent architectures appear to use roughly the same amount

of resources. We also evaluated the performance of a

XMT configuration using only 512 TCUs – a very conser-

vative estimation, to account for unforeseen overheads.

Data collection. On the GPU, we compiled and ran

CUDA code optimized by others, and collected timing

information. On XMT, we compiled and simulated our

XMTC implementations on XMTSim, the cycle-accurate

simulator of the XMT architecture. XMTSim is modeled

after the FPGA implementation, but it can be customized

to realistically simulate any configuration, beyond the re-

source limitations of the FPGA prototype. At this time,

off chip buses and DRAM modules are modeled as sim-

ple latency components in the simulator. In the 1024-

TCU configuration, the latency and bandwidth are set to

approximately match the specifications of the GPU. The

XMT compiler and simulator are publicly available [1].

Benchmarks. A “general-purpose” architecture

should provide good performance on both regular and ir-

0
1
2
3
4
5
6
7
8

Bfs Bprop Conv Msort NW Reduct Spmv

X
M

T
 S

p
e
e
d
u
p
 o

v
e
r 
G

T
X

2
8
0

5.38

7.36

0.23

8.10 7.35

0.74
2.05

73.4
110.6

Figure 3: Speedups of the 1024-TCU XMT configuration with respect

to GTX280. A value less than 1 denotes slowdown.

regular applications. This guided the selection of bench-

marks for this study, as listed in Table 3. We selected

benchmarkswhose GPU results are published and CUDA

source code made available by authors. This ensures that

we are using the most optimized code for the CUDA im-

plementation, highly tuned for GPUs. The XMT imple-

mentations of the benchmarks were developed by mem-

bers of the XMT project. The significantly lower number

of lines of code of the XMT implementations bring sup-

porting evidence to the ease-of-programming claim.

Note that all our benchmarks use single-precision

floating point arithmetic only, to allow for a fair compari-

son with Tesla. The addition of better support for dou-

ble precision in upcoming GPUs will not significantly

change the relative results, as the same support can be

added to XMT using similar additional resources.

Performance Comparison. Figure 3 presents the

speedups of all the benchmarks on a 1024-TCU XMT

configuration relative to GTX280. Speedups range be-

tween 2.05× and 8.10× for highly parallel irregular

benchmarks. For one application (BFS), we demonstrate

much stronger speedups for limited parallelism, using a

dataset with less available parallelism, a synthetic graph

with 1M nodes, 3M edges but a diameter of 50,000 Bfs

“levels”. With this dataset, the average number of ac-

tive threads per Bfs iteration is 20 (compared to 87.4K

4



Name Description CUDA implementation Lines of Code Dataset Parallel sectn. Threads/sectn.

source CUDA XMT CUDA XMT CUDA XMT

Bfs
Breadth-First Search

on graphs
Harish and Narayanan [13],

Rodinia benchmark suite [9]
290 86

1M nodes,

6M edges
25 12 1M 87.4K

Bprop
Back Propagation machine

learning algorithm
Rodinia benchmark suite [9] 960 522 64K nodes 2 65 1.04M 19.4K

Conv
Image convolution kernel

with separable filter
NVIDIA CUDA SDK [23] 283 87 1024x512 2 2 131K 512K

Msort Merge-sort algorithm Thrust library [14, 25] 966 283 1M keys 82 140 32K 10.7K

NW
Needleman-Wunsch

sequence alignment
Rodinia benchmark suite [9] 430 129

2x2048

sequences
255 4192 1.1K 1.1K

Reduct Parallel reduction (sum) NVIDIA CUDA SDK [23] 481 59 16M elts. 3 3 5.5K 44K

Spmv
Sparse matrix - vector mul-

tiplication.
Bell and Garland [4] 91 34

36Kx36K,

4M non-zero
1 1 30.7K 36K

Table 3: Benchmark properties

Name MEM Idle ALU FPU MD Misc

Spmv 71.8 2.1 6.1 19.1 0.0 0.9

NW 34.7 50.0 6.0 0.0 3.2 6.2

Bfs 94.7 1.2 2.4 0.0 0.0 1.7

Bprop 93.4 1.4 0.6 1.8 1.0 1.9

Msort 63.7 21.1 4.5 3.2 1.0 6.6

Conv 41.1 0.2 14.4 31.5 0.0 12.8

Reduct 71.0 0.9 3.2 23.0 0.0 1.8

Table 4: Percentage of time on XMT spent executing memory instruc-

tions (MEM), idling (due to low parallelism), integer arithmetic (ALU),
floating-point (FPU), integer multiply-divide (MD) and other.

threads/iteration above). For this input, the XMT imple-

mentation exhibited a speedup of 73.4× over [9], and

6.89× when compared to a CUDA Bfs implementation

for regular, low degree graphs [19], even when their in-

put processing was not counted. Furthermore, when a

64-TCU XMT configuration was used, the speedup com-

pared to [9] was 110.6×, the better result explained by

the lower latencies in the simpler 64-TCU design, with

still enough hardware to handle the problem parallelism.

The two regular benchmarks (Conv and Reduct) show

slowdown. This is due to the nature of the code, ex-

hibiting regular patterns that the GPUs are optimized to

handle, while the XMT abilities to dynamically handle

less predictable execution flow go underused. Moreover,

Conv on CUDA uses the specialized Tesla multiply-add

instruction, while on XMT two instructions are needed.

Table 3 shows the number of parallel sections executed

and the average number of threads per parallel section for

each benchmark. Table 4 provides the percentage of the

execution time spent executing instructions in different

categories as reported by the XMT Simulator. To the best

of our knowledge, there is no way of gathering such de-

tailed data from the NVIDIA products at this time.

We observed that benchmarks with irregular memory

access patterns such as Bfs, Spmv and Msort spend a sig-

nificant amount of their time in memory operations. We

believe that the high amount of time spent by Bprop is

due to the amount of memory queuing in this benchmark.

Conv is highly regular with lots of data reuse, and spends

less than half of its time on memory accesses; however, it

performs a non-trivial amount of floating-point computa-

tion (more than 50% of the remaining time).

Table 4 shows that in the NW benchmark, a signifi-

cant amount of time is spent idling by the TCUs. From

Table 3, we observe that the number of threads per par-

allel section is relatively low in this benchmark. In spite

of this high idling time, XMT outperforms the GPU by

a factor of 7.36x on this benchmark, illustrating the fact

that XMT performs well even on code with relatively low

amounts of parallelism. The very large number of paral-

lel sections executed for the NW benchmark (required by

the lock-step nature of the dynamic programming algo-

rithm) favors XMT and its low-overhead synchronization

mechanism, and explains the good speedup.

When using a smaller XMT configuration with only

512 TCUs, we observed that the speedup vs. Tesla for

the irregular benchmarks was 4.57x on average, while the

slowdown was 3.06x for the regular ones. This shows

that such an XMT configuration still outperforms the

GPU considered, and given XMT’s advantage on ease-of-

programming, the main point of this comparison holds.

4 Conclusion

Our work constructively questions what the industry cur-

rently offers. In [6, 26, 34] we already compared XMT to

existing general-purpose systems. In this paper, we com-

pare XMT, a general-purpose parallel architecture, with

a recent NVIDIA GPU programmed using the CUDA

framework. We showed that when using an equivalent

configuration, XMT outperformed the GPU on all irregu-

lar workloads considered. Performance results on regular

workloads show that even though GPUs are optimized for

these kind of applications, XMT does not fall behind sig-

nificantly, not an unreasonable price to pay for ease of

programming and programmer’s productivity.

This paper raises for consideration a promising can-

didate for the general-purpose pervasive platform of the

future, a system consisting of an easy-to-program, highly

parallel general-purpose CPU coupled with (some form

of) a parallel GPU – a possibility that appears to be un-

derrepresented in current debate. XMT has a big advan-

tage on ease-of-programming, offers compatibility on se-

rial code and rewards even small amount of parallelism

with speed-ups over uni-processing, while the GPU could

be used for the applications on which it has an advantage.

5



References

[1] Software release of the explicit multi-threading (xmt) pro-

gramming environment. http://www.umiacs.umd.edu/

users/vishkin/XMT/sw-release.html, August 2008.

[2] BALKAN, A. O., HORAK, M. N., QU, G., AND VISHKIN, U.

Layout-accurate design and implementation of a high-throughput

interconnection network for single-chip parallel processing. hoti

(2007), 21–28.

[3] BALKAN, A. O., QU, G., AND VISHKIN, U. A mesh-of-trees

interconnection network for single-chip parallel processing. In
ASAP ’06: Proceedings of the IEEE 17th International Con-

ference on Application-specific Systems, Architectures and Pro-

cessors (Washington, DC, USA, 2006), IEEE Computer Society,

pp. 73–80.

[4] BELL, N., AND GARLAND, M. Implementing sparse matrix-

vector multiplication on throughput-oriented processors. In SC

’09: Proceedings of the 2009 ACM/IEEE conference on Super-

computing (New York, NY, USA, 2009), ACM.

[5] BUCK, I., FOLEY, T., HORN, D., SUGERMAN, J., FATA-

HALIAN, K., HOUSTON, M., AND HANRAHAN, P. Brook for

gpus: stream computing on graphics hardware. ACM Trans.

Graph. 23, 3 (2004), 777–786.

[6] CARAGEA, G. C., SAYBASILI, A. B., WEN, X., AND VISHKIN,

U. Brief announcement: performance potential of an easy-to-
program pram-on-chip prototype versus state-of-the-art processor.

In SPAA ’09: Proceedings of the twenty-first annual symposium

on Parallelism in algorithms and architectures (New York, NY,

USA, 2009), ACM, pp. 163–165.

[7] CARAGEA, G. C., TZANNES, A., KECELI, F., BARUA, R., AND

VISHKIN, U. Resource-aware compiler prefetching for many-

cores. In Proc. International Symposium on Parallel and Dis-

tributed Computing (ISPDC) (July 2010), IEEE.

[8] CEDERMAN, D., AND TSIGAS, P. On sorting and load balancing

on gpus. SIGARCH Comput. Archit. News 36, 5 (2008), 11–18.

[9] CHE, S., BOYER, M., MENG, J., TARJAN, D., SHEAFFER,

J. W., LEE, S.-H., AND SKADRON, K. Rodinia: A benchmark

suite for heterogeneous computing. In In Proceedings of the IEEE

International Symposium on Workload Characterization (IISWC)

(October 2009), IEEE.

[10] CHRISTEN, M., SCHENK, O., MESSMER, P., NEUFELD, E.,

AND BURKHART, H. Parallel data-locality aware stencil com-

putations on modern micro-architectures. In 23rd IEEE Inter-

national Parallel and Distributed Processing Symposium (May

2009).

[11] FALCÃO, G., SILVA, V., AND SOUSA, L. How gpus can out-
perform asics for fast ldpc decoding. In ICS ’09: Proceedings of

the 23rd international conference on Supercomputing (New York,

NY, USA, 2009), ACM, pp. 390–399.

[12] GOTTLIEB, A., GRISHMAN, R., KRUSKAL, C. P., MCAULIFFE,

K. P., RUDOLPH, L., AND SNIR, M. The nyu ultracomputer: de-

signing a mimd, shared-memory parallel machine (extended ab-

stract). In ISCA ’82: Proceedings of the 9th annual symposium

on Computer Architecture (Los Alamitos, CA, USA, 1982), IEEE

Computer Society Press, pp. 27–42.

[13] HARISH, P., AND NARAYANAN, P. J. Accelerating large graph

algorithms on the gpu using cuda. In In proceedings High Perfor-

mance Computing - HiPC (2007), pp. 197–208.

[14] HOBEROCK, J., AND BELL, N. Thrust: A parallel template li-

brary, 2009. Version 1.1.

[15] HOCHSTEIN, L., BASILI, V. R., VISHKIN, U., AND GILBERT,

J. A pilot study to compare programming effort for two parallel

programming models. Journal of Systems and Software 81, 11

(2008), 1920 – 1930.

[16] KANG, S., BADER, D. A., AND VUDUC, R. Understanding the

design trade-offs among current multicore systems for numerical

computations. In IPDPS ’09: Proceedings of the 2009 IEEE Inter-

national Symposium on Parallel&Distributed Processing (Wash-

ington, DC, USA, 2009), IEEE Computer Society, pp. 1–12.

[17] KANTER, D. Nvidia’s gt200: Inside a parallel processor.

physical implementation. http://www.realworldtech.

com/page.cfm?ArticleID=RWT090808195242&p=11,

September 2008.

[18] LINDHOLM, E., NICKOLLS, J., OBERMAN, S., AND MON-

TRYM, J. Nvidia tesla: A unified graphics and computing ar-

chitecture. IEEE Micro 28, 2 (2008), 39–55.

[19] LUO, L., WONG, M., AND MEI HWU, W. An effective gpu im-
plementation of breadth-first search. In Proc. of Design Automa-

tion Conference (DAC) (2010). To appear.

[20] MUNSHI, A. Opencl specification version 1.0. Tech. rep.,

Khronos OpenCL Working Group, 2009.

[21] NAISHLOS, D., NUZMAN, J., TSENG, C.-W., AND VISHKIN,

U. Towards a first vertical prototyping of an extremely fine-

grained parallel programming approach. In SPAA ’01: Proceed-

ings of the thirteenth annual ACM symposium on Parallel algo-

rithms and architectures (New York, NY, USA, 2001), ACM,

pp. 93–102.

[22] NICKOLLS, J., BUCK, I., GARLAND, M., AND SKADRON, K.

Scalable parallel programming with cuda. Queue 6, 2 (2008), 40–

53.

[23] NVIDIA. NVIDIA CUDA SDK 2.3. NVIDIA Corporation, Santa

Clara, California, 2009.

[24] NVIDIA. Cuda zone. http://www.nvidia.com/cuda, 2010.

[25] SATISH, N., HARRIS, M., AND GARLAND, M. Designing

efficient sorting algorithms for manycore gpus. In Proc. 23rd

IEEE International Parallel and Distributed Processing Sympo-

sium (May 2009).

[26] SAYBASILI, A. B., TZANNES, A., BROOKS, B. R., AND

VISHKIN, U. Highly parallel multi-dimentional fast fourier trans-

form on fine- and coarse-grained many-core approaches. In PDCS

’09: The 21st IASTED International Conference on Parallel and

Distributed Computing and Systems (2009).

[27] SINTORN, E., AND ASSARSSON, U. Fast parallel gpu-sorting us-

ing a hybrid algorithm. J. Parallel Distrib. Comput. 68, 10 (2008),
1381–1388.

[28] TORBERT, S., VISHKIN, U., TZUR, R., AND ELLISON, D. Is

teaching parallel algorithmic thinking to high-school student pos-

sible? one teacher’s experience. In Proc. 41st ACM Technical

Symposium on Computer Science Education (SIG CSE) (Milwau-
kee, WI, March 2010).

[29] VISHKIN, U. Using simple abstraction to guide the reinvention of

computing for parallelism. Communications of the ACM (CACM)

(2010). To appear. Download from http://www.umiacs.

umd.edu/users/vishkin/XMT/cacm2010.pdf.

[30] VISHKIN, U., CARAGEA, G. C., AND LEE, B. C. Handbook of

Parallel Computing: Models, Algorithms and Applications. CRC

Press, 2007, ch. Models for Advancing PRAM and Other Algo-

rithms into Parallel Programs for a PRAM-On-Chip Platform.

[31] VISHKIN, U., DASCAL, S., BERKOVICH, E., AND NUZMAN,

J. Explicit multi-threading (xmt) bridging models for instruction

parallelism (extended abstract). In SPAA ’98: Proceedings of the

tenth annual ACM symposium on Parallel algorithms and archi-

tectures (New York, NY, USA, 1998), ACM, pp. 140–151.

[32] VISHKIN, U., TZUR, R., ELLISON, D., AND CARAGEA, G. C.

Programming for high schools. Keynote,The CS4HS Work-

shop. Download from http://www.umiacs.umd.edu/

˜vishkin/XMT/CS4HS_PATfinal.ppt, July 2009.

6



[33] WEN, X., AND VISHKIN, U. Pram-on-chip: first commitment to

silicon. In SPAA ’07: Proceedings of the nineteenth annual ACM

symposium on Parallel algorithms and architectures (New York,

NY, USA, 2007), ACM Press, pp. 301–302.

[34] WEN, X., AND VISHKIN, U. Fpga-based prototype of a pram-on-

chip processor. In CF ’08: Proceedings of the 2008 conference on

Computing frontiers (New York, NY, USA, 2008), ACM, pp. 55–

66.

[35] WEN, X., AND VISHKIN, U. The xmt fpga prototype/cycle-

accurate-simulator hybrid. In WARP08: The 3rd Workshop on

Architectural Research Prototyping (Beijing, China, June 2008).

In conjunction with ISCA 2008.

[36] WILLIAMS, S., OLIKER, L., VUDUC, R., SHALF, J., YELICK,

K., AND DEMMEL, J. Optimization of sparse matrix-vector mul-

tiplication on emerging multicore platforms. Parallel Computing

35, 3 (2009), 178 – 194. Revolutionary Technologies for Accel-

eration of Emerging Petascale Applications.

7


