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Abstract

An important factor that needs to be taken into account by end-users and systems (sched-
ulers, resource brokers, policy brokers) when mapping applications to the Grid, is the performance
capacity of hardware resources attached to the Grid and made available through its Virtual Or-
ganizations (VOs). In this paper, we examine the problem of characterizing the performance
capacity of Grid resources using benchmarking. We examine the conditions under which such
characterization experiments can be implemented in a Grid setting and present the challenges
that arise in this context. We specify a small number of performance metrics and propose a suite
of micro-benchmarks to estimate these metrics for clusters that belong to large Virtual Organiza-
tions. We describe GridBench, a tool developed to administer benchmarking experiments, publish
their results, and produce graphical representations of their metrics. We describe benchmarking
experiments conducted with, and published through GridBench, and show how they can help
end-users assess the performance capacity of resources that belong to a target Virtual Organiza-
tion. Finally, we examine the advantages of this approach over solutions implemented currently
in existing Grid infrastructures. We conclude that it is essential to provide benchmarking services
in the Grid infrastructure, in order to enable the attachment of performance-related metadata to
resources belonging to Virtual Organizations and the retrieval of such metadata by end-users and
other Grid systems.

1 Introduction

Information about the performance capacity of Grid resources∗ is essential for the intelligent allocation
of resources to Grid applications. This need arises from the diversity in performance capacity, which
is common-place in Grid environments. Performance capacity estimates can help users and schedulers
make more informed resource allocation decisions by combining this information with information
about application performance (empirical or other). It is also important for users to be able to justify
their application performance running on a Grid resource, using low-level performance measurements
of the resource.

In order to achieve our goal, which is to provide a better source of performance capacity information
for Grid resources, a number of problems need to be addressed. First, we need to determine a
small set of basic metrics reflecting the basic factors affecting performance of computational Grid
resources. These metrics must undergo careful selection; they must be general enough to be applicable
to heterogeneous resources, they must be simple, easy to understand and clearly defined, and they
must be effective in the characterization of the basic factors affecting the basic performace of the
resources. Once the metrics are established, the right benchmarks must be selected (or implemented)
to deliver the metrics; the subtle differences of existing benchmarks and the different measurement
methodologies need to be studied. The benchmarks must then be executed at the different Grid

∗The term “Grid resource” and the term “site” are used throughout this article to refer to either 1) a set of machines
(single, dual or quad CPU) in the form of a cluster, or 2) a shared memory multiprocessor (SMP).
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resources of a Virtual Organization, both in a periodic and in an “on-demand” manner. Periodic
execution is necessary as a means to make results readily available to schedulers or other services.
On-demand execution is necessary for users who need to tune benchmark parameters. A user that
needs to investigate specific attributes of a resource by specifying special parameters to a benchmark,
e.g. specify a larger packet-size for a network benchmark, is given this opportunity through on-demand
execution.

The benchmark execution is itself a complex task, as it has to address heterogeneous resources,
using different Grid middleware (i.e. using different interfaces), with different configurations and
policies. In the case of unattended periodic execution, the benchmark parameters (such as the number
of CPU’s) must be determined automatically, without user intervention. Once the measurements are
gathered they need to be managed, stored and made available for retrieval by the decision maker, be
it an end-user or a scheduler. Last, but probably the most difficult, is the task of interpreting the
results and putting them to use in decision making.

In this article we address the issue of Grid resource characterization and it is important to mention
that a necessary precondition for choosing a resource onto which to execute an application, is that the
decision-maker has some understanding of the application’s behavior (see [21, 19, 23]). For example, a
tightly-coupled parallel application would require a resource (cluster or SMP) with a high-performance
interconnect, as indicated by the appropriate metric. In the same manner, an application with high
memory bandwidth requirements would better run on a resource that performed well on a memory
bandwidth benchmark. Undoubtedly, most decisions will not be so trivial. Good decision-making will
be based on the level of understanding of the application’s behavior and the understanding of the
provided metrics.

In the remainder of this article, Section 2 describes our approach to characterization of computa-
tional Grid resources through benchmarking, Section 3 provides a short description of the GridBench
framework which we used to obtain our results and Section 4 describes the metrics and benchmarks
which we propose for use in the characterization of resources. Section 5 presents the experiments we
conducted and the last section we present our conclusions.

2 Resource characterization

In existing Grid infrastructures, the performance capacities of Grid resources can be obtained through
Grid Information Services (such as the Monitoring and Discovery Service [6]). Scheduling decisions
based on the performace capacity (or “speed”) of the candidate resources have to rely, at best, on
the size of main memory, number of CPU’s, and their nominal speed (e.g. in MHz). This is due to
the fact that this is what users or schedulers can expect from information services like MDS. Despite
that, Grid information service designers recognizing the importance of performance capacity, have
made allowances in their information schemata for including performance information. An example
is the GLUE Schema [7], developed for interoperability between US and European projects (used by
projects such as the EDG [14], CG [13], LCG [16] and iVGDL [10]), which includes placeholders for
the SPECInt and SPECFloat benchmark metrics. An example of real MDS ouput is given in Figure
1. The extract shown in Figure 1 refers to the Grid resource “cgce.ifca.org.es”.

Taking the example of the EU-DataGrid, EU-CrossGrid, LCG and other projects currently utiliz-
ing the “GLUE” schema for MDS, performance information (more specifically the SPECint2000 and
SPECfloat2000 benchmarks) is provided as static data that needs to be determined and entered manu-
ally by the administrator during installation. This is shown in Figure 1 by the GlueHostBenchmarkSF00
and GlueHostBenchmarkSI00 attributes. Such information is potentially inaccurate because it is prone
to human error, be it intentional or unintentional. The fact that this is static information also creates
problems because experience shows that a resource’s performance capacity does change over time,
either by the addition or removal of CPU’s or even by simple alterations in the configuration of the
hardware or software.

Also, work has been done to “assess” the Grid using “probes” [3] but this work focuses mainly on file
transfers, remote execution, and Information Service responses. Computational resource performance
is not addressed.
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dn: GlueSubClusterUniqueID=cgce.ifca.org.es, dn: GlueCEUniqueID=cgce.ifca.org.es:2119/jobmanager-pbs-short,

GlueClusterUniqueID=cgce.ifca.org.es, Mds-Vo-name=ifcapro,mds-vo-name=local,o=grid

Mds-Vo-name=ifcapro,mds-vo-name=local,o=grid objectClass: GlueCETop

objectClass: GlueClusterTop objectClass: GlueCE

objectClass: GlueSubCluster objectClass: GlueSchemaVersion

objectClass: GlueSchemaVersion objectClass: GlueCEAccessControlBase

objectClass: GlueInformationService objectClass: GlueCEInfo

objectClass: GlueKey objectClass: GlueCEPolicy

GlueSchemaVersionMajor: 1 objectClass: GlueCEState

GlueSchemaVersionMinor: 1 objectClass: GlueInformationService

GlueChunkKey: GlueClusterUniqueID=cgce.ifca.org.es objectClass: GlueKey

GlueHostApplicationSoftwareRunTimeEnvironment: CG2_0_4 GlueSchemaVersionMajor: 1

GlueHostApplicationSoftwareRunTimeEnvironment: CROSSGRID GlueSchemaVersionMinor: 1

GlueHostApplicationSoftwareRunTimeEnvironment: LCG-2 GlueCEName: short

GlueHostApplicationSoftwareRunTimeEnvironment: MPICH GlueCEUniqueID: cgce.ifca.org.es:2119/jobmanager-pbs-short

GlueHostApplicationSoftwareRunTimeEnvironment: MPICH GlueCEInfoGatekeeperPort: 2119

GlueHostApplicationSoftwareRunTimeEnvironment: MPICH-G2 GlueCEInfoHostName: cgce.ifca.org.es

GlueHostArchitectureSMPSize: 2 GlueCEInfoLRMSType: pbs

GlueHostBenchmarkSF00: 328 GlueCEInfoLRMSVersion: OpenPBS_2.4

GlueHostBenchmarkSI00: 409 GlueCEInfoTotalCPUs: 20

GlueHostMainMemoryRAMSize: 627 GlueCEStateEstimatedResponseTime: 0

GlueHostMainMemoryVirtualSize: 1144 GlueCEStateFreeCPUs: 20

GlueHostNetworkAdapterInboundIP: FALSE GlueCEStateRunningJobs: 0

GlueHostNetworkAdapterOutboundIP: TRUE GlueCEStateStatus: Production

GlueHostOperatingSystemName: Redhat GlueCEStateTotalJobs: 0

GlueHostOperatingSystemRelease: 2.4.20-30.7.legacysmp GlueCEStateWaitingJobs: 0

GlueHostOperatingSystemVersion: 1 SMP Fri Feb 20 10:12:55 2004 GlueCEStateWorstResponseTime: 0

GlueHostProcessorClockSpeed: 1261 GlueCEPolicyMaxCPUTime: 900

GlueHostProcessorModel: Intel(R) Pentium(R) III family 1266MHz GlueCEPolicyMaxRunningJobs: 2

GlueHostProcessorVendor: GenuineIntel GlueCEPolicyMaxTotalJobs: 4

GlueSubClusterName: cgce.ifca.org.es GlueCEPolicyMaxWallClockTime: 7200

GlueSubClusterUniqueID: cgce.ifca.org.es GlueCEPolicyPriority: 1

GlueCEAccessControlBaseRule: VO:cg

GlueForeignKey: GlueClusterUniqueID=cgce.ifca.org.es

Figure 1: MDS output related to the resource “cgce.ifca.org.es”.

Characterization through benchmarking

Micro-benchmarks provide a commonly accepted basis for comparing different computer systems in
terms of their performance. They are also used to investigate performance properties of computer
systems under carefully tuned, benchmark-induced workloads that stress particular aspects of system
performance. For example, CPU benchmarks such as Whetstone [4] focus strictly on CPU arithmetic
operations in a tight loop with minimal memory requirements, thus disregarding the effect of other
factors on overall performance. Micro-benchmarks have many uses to different kinds of users; For
example, administrators could use benchmark measurements to detect and pin-point faults or problems
in general, and end-users could use measurements to select appropriate resources for running their
application.

A small set of suitable metrics is necessary for quantitative performance characterization. These
metrics need to reflect the basic factors affecting performance of heterogeneous computational Grid
resources. The size of this set, i.e. the number of metrics, should be of reasonable size. Too small a
set would run the danger of missing essential performance factors while a large set of metrics would
complicate decision-making by providing too much information, but more importantly it would impose
a higher cost from the additional benchmark executions.

Once the set of metrics is established, a carefully selected set of benchmarks must be employed.
It is also essential that the selected benchmarks run for the minimum amount of time and produce
reliable results. While long-running codes (i.e, real or synthetic kernel-benchmarks) may potentially
provide more accuracy or higher-level metrics, they are not desirable since they would tend to be more
application-specific and they would incur a large cost for running benchmarks, especially if they are
run at regular intervals.

The collected results must be made easily available for use by the decision-making process. The
benchmarking process produces a high volume of measurement data, considering that some mea-
surements are not simple scalars and that it would be of interest to maintain a historical record of
performance measurements, e.g. for the statistical assessment of resource availability and dependabil-
ity.
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Filtering results using monitoring

Grid resources are shared and not under our control. For this reason it is important to know the
state of the resource under measurement during benchmark executions. Monitoring of the resource
under measurement can help assess the validity of a benchmark by providing insight regarding the
conditions under which the benchmark was executed. The monitoring data should be collected and
maintained together with the benchmark results. The benchmark results can then be “filtered” based
on the results of monitoring, e.g. by dropping results where the monitoring indicates non-exclusive
use of a machine.

3 GridBench

Figure 2: Architectural overview of GridBench.

GridBench [22] is a set of tools that aim to facilitate the characterization of Grid nodes or collections
of Grid resources. In order to perform benchmarking measurements in an organized and flexible way,
we provide the GridBench framework as a means for running benchmarks on Grid environments as well
as collecting, archiving, and publishing the results. This framework allows for convenient integration
of new and existing benchmarks into the suite, as well as the customization of existing benchmarks
through parameters (e.g. specifying a different pattern for MPI communication).

Figure 2 is a diagram of the GridBench software architecture. The main components of this
software architecture are:

• The Orchestrator : manages benchmark execution and collects results. It is accessible through
a web-service interface;

• Benchmark Components : the benchmark executables, e.g. EPFlops;

• the GBDL Translator : converts XML descriptions of benchmarks to a Grid job description
language. The current implementation can produce RSL (for Globus) and JDL (for EU-
DataGrid/Condor);

• Monitoring Components: collect monitoring information from different monitoring services;

• the Archiver Database web-service: maintains benchmark results and makes them available
through a web-service interface;

• Benchmark Definition GUI for defining and executing benchmarks; and

• Benchmark Browser GUI for browsing and analyzing benchmark results.

4



GridBench Components

The core functionality of GridBench is implemented by the following components:
The GBDL Translator has the task of parsing the benchmark specification written in the XML-

based GridBench Definition Language (GBDL) (see [22] for more details). It then generates the
job description language that is necessary for running the benchmark on a specific infrastructure
(middleware). For prototyping purposes, the Globus RSL [5] and the EU DataGrid JDL [14], built
on Condor-G classads [18], are included as output job definition languages.

The Benchmark components are the actual benchmark kernels. E.g. the STREAM [11] bench-
mark. They are adapted from existing benchmarks or implemented from scratch.

The Orchestrator component, which is implemented as a web-service, is responsible for coordi-
nating the start-up and execution of the various components. On completion of the benchmark, the
Orchestrator uses the Archiver web-service to store the resultant XML into a database.

The Monitoring component is a client to monitoring services. Monitoring of the resources under
measurement is invaluable for understanding the results. The monitoring component takes a descrip-
tion of what to monitor through the GBDL and collects monitoring information. This is especially
useful for “on-demand” execution of customized benchmarks (e.g. monitor memory usage and swap).
The GBDL specifies the type of monitor (such as R-GMA [14] or JIMS [2]) and the target resource.

The results of the benchmarks are in the form of metrics. The metrics are incorporated back
into the GBDL XML document along with the definition of the benchmark. The reason for keeping
the specification and results together is that the benchmark results (especially for the more complex,
multi-component benchmarks) make little sense without the specifications under which they were
obtained.

4 Metrics and Micro-benchmarks

4.1 Metrics

A critical step in our methodology is the selection of a concise set of metrics for the low-level char-
acterization of the Grid’s computational resources. It is a reasonable assumption to make that the
resource’s performance depends mainly on the performance of its CPU’s, the performance of its mem-
ory and caches, and the performance of its interconnects. Of course there is a wealth of other factors
affecting machine performance ranging from I/O performance to Operating System robustness to fit-
ness for running a specific application. We chose to limit the set of metrics to a concise size, but
kept the design open for easy inclusion of more metrics as deemed necessary. In terms of specific
metrics we have chosen (i) Operations Per Second for CPU performance (integer/floating-point), (ii)
Available Memory and Bytes per second for writing and reading to and from main memory/cache,
and (iii) Latency and Bandwidth for evaluating the machine’s interconnects. These metrics are easily
understood and well-established for evaluating their respective performance factor.

4.2 Micro-benchmarks

In order to deliver the required metrics, eight benchmarks are employed:
(i)EPWhetstone, (ii)EPFlops, (iii)EPDhrystone, (iv)EPStream, (v)CacheBench, (vi) EPMemsize, (vii)MPPTest
and (viii) b eff io.

During the execution of each of the benchmarks listed above, it is imperative that the only process
imposing substantial load on the CPU is the benchmark process, especially since the results are
calculated using wall-clock time. Another thing to note is that the “EP” prefix of some benchmark
names (namely EPWhetstone, EPFlops, EPDhrystone and EPStream) denotes the “embarrassingly
parallel” nature of its execution, which means that each process runs on a CPU independently without
any communication during the computation. The accumulated result from all the processes is then
reported as the performance of the whole resource. In many cases it is useful to have results from
benchmarks executed as both 1) one process per CPU and 2) one process per SMP node (see the
description of EPStream for an example).
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Table 1: Metrics and Benchmarks.

Factor Metric Delivered By

CPU Operations per second (mixture of floating point
and integer arithmetic)

EPWhetstone

CPU Floating-Point operations per second EPFlops
CPU Integer operations per second EPDhrystone
memory sustainable memory bandwidth in MB/s

(copy,add,multiply,triad)
EPStream

memory Available physical memory in MB EPMemsize
cache memory bandwidth using different memory sizes

in MB/s
CacheBench

Interconnect latency, bandwidth and bisection bandwidth MPPTest
I/O Effective I/O bandwidth b eff io

Table 2: Metrics returned by the “EPFlops” benchmark and the operation counts
in each reported metric.

Metric name FADD FSUB FMUL FDIV Total

mflops-1 21 (40.4%) 12 (23.1%) 14 (26.9%) 5 (9.6%) 52
mflops-2 58 (38.2%) 14 (9.2%) 66 (43.4%) 14 (9.2%) 152
mflops-3 62 (42.9%) 5 (3.4%) 74 (50.7%) 5 (3.4%) 146
mflops-4 39 (42.9%) 2 (2.2%) 50 (54.9%) 0 (0.0%) 91

EPWhestone is a simple adaptation of the traditional Whetstone CPU benchmark [4] so that it
runs simultaneously on a set of CPU’s using MPI. It is implemented in C, and uses MPI for collecting
the final measurements from each process (communication time is excluded from measurements). Each
process performs a mixture of operations, such as integer arithmetic, floating point arithmetic, function
calls, trigonometric and other functions. The benchmark gets the current time using gettimeofday(),
runs for a few seconds, calculates the wall-clock time difference and reports the rate at which these
operations were performed on average. The typical execution time is less than 10 seconds.

EPFlops is a floating-point CPU benchmark adapted from the “flops” benchmark [1]. It is modified
so that it runs simultaneously on a set of CPU’s using MPI. It measures the performance of a CPU’s
floating-point operations in different “mixes” of floating-point operations. The benchmark employs a
set of 8 modules, where each module is made up of a different mix of operations. Different combinations
of the 8 modules yield a set of four metrics (“ratings”) with different ratios of each of the four floating-
point operations. The benchmark tries to maximize register usage in order to be as independent as
possible from the performance of the memory sub-system. It is implemented in C. Table 4.2 gives a
summary of the distribution of floating-point operations in the four metrics delivered by the “EPFlops”
benchmark. For example, the mflops-2 metric, which is also reported in Figure 6, does 152 operations
per loop. Out of the 152 operations, 58 (38.2%) are additions, 14 (9.2%) are subtractions, 66 (43.4%)
are multiplications, and 14 (9.2%) are divisions.

EPDhrystone is an integer operations benchmark, adapted from the C version of the “dhrystone”
benchmark [24]. It is modified so that it runs simultaneously on a set of CPU’s using MPI. Dhrystone is
based on a workload from an extensive set of applications, but does not target numerical computations.
It focuses on “systems programming” applications which perform mainly integer operations. As before,
the benchmark has been adapted to run concurrently on a set of CPU’s using MPI. The benchmark
returns the accumulated result from all the processes in ”dhrystones” per second.
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EPMemsize is a platform independent benchmark that aims to measure memory capacity. It
is written in C and it runs simultaneously on a set of CPU’s using MPI. It first determines the
maximum amount of memory that can be allocated. It then proceeds to determine the maximum
amount of memory that can be allocated in physical memory. The size of physical memory available
is important to memory-intensive applications that profit from allocating as much memory as possible
while avoiding the use of slow swap memory. Detecting the physical memory in the machine in a
platform-idependent way may not depend on any system-specific system call to get the memory size.
More importantly, the value that is returned by a “get free memory()” system call is usually not the
real amount of physical memory that can be allocated by an application; the system kernel, services
as well as other processes also take up memory, filesystem caches etc. The benchmark operates by
accessing memory until a substantial delay occurs (determined by a configurable delay threshold). The
process is performed repeadedly and the maximum amount of memory allocated without incurring
swapping is returned.

EPStream is a simple adaptation of the C implementation of the well-known STREAM memory
benchmark [11] so that it runs simultaneously on a set of CPU’s using MPI. The STREAM bench-
mark measures the sustainable local memory bandwidth (MB/s). It is a simple synthetic benchmark
program and in addition to providing memory bandwidth it also gives an idea of the corresponding
computation rate for simple vector kernels. The STREAM benchmark measures bandwidth while
performing four operations: copy, scale, sum and triad. Table 3 outlines each operation. In the case
of SMP machines, such as clusters of dual-CPU or quad-CPU machines, this benchmark can provide
useful information when run in either of two modes: 1) One process per SMP node (e.g. 1 process on
a dual node) and 2) One process per CPU (e.g. 4 processes on a quad node). This information can
be crucial since the memory bandwidth available may be shared between more than one CPU’s.∗

Table 3: The STREAM benchmark Operations.
Name Operation

copy a[i]=b[i]
scale a[i]=q*b[i]
sum a[i]=b[i]+c[i]
triad a[i]=b[i]+q*c[i]

The typical execution time of EPStream is around 10 seconds.

CacheBench is a benchmark aiming at evaluating the performance of the local memory hierarchy
of a machine [12]. The benchmark is implemented in C and performs a set of operations – read, write,
read/modify/write, memset() and memcopy() – varying the underlying array size thus exposing the
performance of the (potentially multi-level) cache. For example, a knee can be observed at the different
cache sizes when the results are plotted on a graph (see Figure 12). An instance of CacheBench is
invoked on each CPU of the resource under study and results are reported independently for each CPU.
The operations at each size run for a configurable amount of time (default is 2 seconds) and the average
bandwidth (MB/s) is reported. Table 4 outlines each operation. While this benchmark produces a
similar metric to the STREAM benchmark, it runs for a longer time since it takes measurements at
different memory sizes (execution times are typically in the order of 5 minutes). The time it takes to
finish depends strictly on the input parameters. It also focuses on the performance of memory caches
providing insight to the different levels of cache available to the CPU’s. Since this benchmark runs
considerably longer than the EPStream benchmark, it would make sense to invoke it when need arises
(i.e. the user is explicitly interested in cache performance, and the sustained memory bandwidth
produced by EPStream is not adequate).

∗An example of this is that Dual Intel “Xeon” nodes typically have a single memory controller per SMP machine,
while AMD “Opteron” SMP machines typically have a separate controller for each CPU and can thus achieve a highter
memory bandwidth.
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Table 4: The CacheBench Operations.
Name Operation

read register=m[i]
write m[i]=register++

read/write m[i]=m[i]++
memset() (system call)

memcopy() (system call)

MPPTest is a benchmark that tests MPI communication speeds by various ways and provides a va-
riety of options for a detailed performance analysis [9]. MPPtest is platform and MPI-implementation
independent and can therefore be used with any MPI implementation. MPPtest aims to make re-
producible measurements of MPI performance and results are claimed by the MPPTest creators to
be reproducible since the reported measurements are the minimum of several runs. For the purpose
of resource characterization it is desirable to have a focused set of measurements and to this end,
only three types of measurement are performed: (i) Latency, (ii) point-to-point bandwidth and (iii)
bisection bandwidth. “Bisection bandwidth” refers to an all-to-all measurement of bandwidth in
contrast to the point-to-point measurement where only two processes communicate at any time. The
typical execution time is in the order of minutes (depending on the measurement detail) and results
are calculated using wall-clock time.

The b eff io benchmark is included in order to evaluate the shared I/O performance of (shared)
storage at a resource (site). This benchmark is used “to achieve a characteristic average number for
the I/O bandwidth achievable with parallel MPI-I/O applications” [17]. B eff io produces a metric
given in Megabytes per second, which represents the average obtained by performing several storage
access patterns. Access patterns include: (i)Multiple processes read/write data scattered in a file;
(ii) Multiple processes read/write adjacent data; (iii) Multiple processes read/write data in separate
files; and (iv) each of the multiple processes accesses data in a different segment of a segmented file
(a detailed description of the access patterns can be found in [17]). Given that shared disk I/O is
usually performed over the network, the results obtained by this benchmark may be correlated with
the results obtained by the MPPTest benchmark. The benchmark is implemented in C.

5 Experimentation

The experiments described in this section were conducted on the EU CrossGrid testbed [8], which
follows the architecture presented in Figure 3. In this architecture, a Grid Virtual Organization (VO)
is made up of a set of geographically distributed sites (resources). Each site contains a Computing
Element (the Gatekeeper in Globus terminology) which manages a set of “Worker Nodes”. A site
may contain a “Storage Element” which is an interface to mass storage. Typically, the Computing
Element and Worker Nodes have direct (Local Area Network) access to mass storage on the Storage
Element that is close to them (e.g. via Network File System). The Grid VO also contains some VO
services such as a resource broker, VO membership server etc. The Sites are connected by shared
wide-area links. (In our specific test-bed, sites are connected through the Géant [15] network).

The charts presented in this article are examples of GridBench-generated charts. They show
benchmarks running at different resources on the EU CrossGrid testbed. These experiments were
conducted using the on-demand paradigm described earlier, and it is the type of experiment that
would help a user allocate the right resources for her application. The experiments were conducted
using the GridBench framework where:

1. The user selects which benchmark to run;

2. The system determines the currently available resources by accesssing the Grid Information
Service;

8



Figure 3: Basic Grid infrastructure architecture.

3. The system generates benchmark descriptions (see [22]) with appropriate parameters (e.g. cur-
rently available number of CPU’s) for the target resources;

4. The system executes the benchmarks and archives the results; archived metrics are used to
generate the charts;

5. The system collects monitoring information (by interfacing to external monitoring services) from
the resource in question for the duration of the benchmark execution.

Figure 4: Monitoring of CPU usage on the resource during execution of the
EPWhetstone Benchmark.

When a benchmark is performed using the GridBench framework, the user has the option of
specifying what is to be monitored. This monitoring data is archived together with the benchmark
results. During our experiments we monitored important machine parameters such as CPU load,
memory usage and network load, in order to validate the benchmark results (e.g. by establishing
that the benchmark had exclusive use of the machines on which it ran). For example, the monitoring
information shown in figure 4 was collected during the execution of the EPWhetstone benchmark on
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the resource. Each curve on the chart indicates the CPU load on one worker node for a time interval
that begins a few seconds before the benchmark execution and ends a few seconds after. (The CPU
load is given as the ratio of time spent in user-mode to wall-clock time; values greater than 1 are
due to the use of dual-processor machines). The obvious jump on the CPU load between seconds
30 and 80 was due to the load imposed by the benchmark. It is important for the evaluation of the
benchmark result that the CPU load just before and right after the execution is negligible. While
this is not proof that the benchmark was the only process putting load on the CPU, given the fact
that the benchmark runs for a very shot time, it is usually safe to assume that if the CPU was idle
just before and immediately after the execution then there was no other process imposing load on the
CPU.

(a) CPU usage monitoring (b) Benchmark result

Figure 5: A monitored execution of the EPWhetstone benchmark showing how
the invalid results shown in (b) can be explained by CPU usage monitoring in
chart (a).

Figure 5 shows an example of monitored benchmark execution where the results are invalid due to
non-exclusive use of the resources by the benchmark. Figure 5(a) shows the CPU usage (automatically
collected by GridBench) while Figure 5(b) shows the result. In Figure 5(a) there is significant CPU
usage on two of the three worker nodes before and after the ”grayed” area, which indicates the duration
of the benchmark execution.† As a result, the measured performance of cagnode34 and cagnode35

severely suffers, as shown in Figure 5(b), due to CPU usage by other applications.‡

Figure 6 shows the result of performing the three CPU micro-benchmarks EPDhrystone, EPWhet-
stone and EPFlops on a set of resources. Quite apparently, the graphs are very similar. While the
absolute numbers do change as far as the EPDhrystone benchmark is concerned, it is the relative per-
formance that is important. The similarity is expected since all the sites participating in the testbed
under study have pretty much the same type of processors (Intel PIII/P4), therefore the floating-
point versus integer performance does not vary from site to site. It is also apparent that results from
EPWhetstone and EPFlops are very close. Again this is expected since Whetstone relied more on
floating-point operations than on integer operations. Since for the given set of resources there is no
significant variance between results from the three benchmarks we select just one (EPWhetstone) for
analysis.

Figure 7 shows results for the EPWhetstone benchmark, providing a “view” of the available re-
sources at a point in time, from a CPU performance perspective. When EPWhetstone is executed on
a Grid resource it returns a set of values, each value measuring the CPU performance of a single CPU.

†Values of 200% for CPU usage are due to the worker nodes having dual CPU’s.
‡The benchmark was executed with two processes on each worker node
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Figure 6: Accumulated performance of several clusters using different CPU per-
formance metrics

Figure 7: Whetstone performance of all computational resources currently avail-
able on the CrossGrid testbed (generated using the GridBench Browser)
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When the resource under study is a cluster (as was always the case in our experiments) the hostname
is returned along with the performance measurement. In the stacked bar-chart in Figure 7 each bar
is made up of several segments. Each segment represents the contribution of a single cluster node. If
a number of CPU’s come from the same dual-CPU worker node, their performance is aggregated and
displayed as a single segment.

The first, and probably most important, deduction to be made is that these resources are oper-
ational. This means that for each resource, the requested number of CPU’s was allocated, all the
processes were initiated and completed successfully and the results returned. Our experience indi-
cates that job submissions do fail, and they fail frequently. There are many reasons for this, the most
notable being the use of “stale” information obtained from Grid information services. For example,
if the information service reports that a resource has more available (free) CPU’s than it really does,
then the job submission could fail or be postponed. Some data-intensive applications may require the
staging of huge amounts of data, risking a big waste of time and bandwidth in the case when the
application processes fail to spawn. Based on the success of the micro-benchmarks it is likely that
if an application is submitted to one of these resources, its processes will be spawned successfully.
A successfull benchmark execution, after reserving a resource and prior to staging and running the
actual application, can verify that the resource is operational from a hardware and middleware point
of view.

It is also evident in this chart that the different resources vary greatly in terms of process-
ing power. They vary both in terms of the number of CPU’s and in terms of individual CPU
performance. For example, resource zeus24.cyf-kr.edu.pl has a larger number of CPU’s than
xgrid.icm.edu.pl, but the latter resource has faster CPU’s. (See (1) in Figure 7). If we focus on
resource zeus24.cyf-kr.edu.plwe can observe that 3 CPU’s (indicated as (2) in Figure 7) appear to
be performing slightly worse than the rest. This could be attributed to other processes running on the
specific cluster nodes. This could also be attributed to other problems, ranging from hardware faults
to software misconfigurations. It was in fact determined, by observing the monitoring information col-
lected during the benchark execution, that on the three machines in question there was non-negligible
CPU load right before and immediately after the execution of the benchmark. For some applications
this could be of little importance, but for some tightly-coupled codes a single slow node could seriously
impact performance. Internal resource uniformity can also be evaluated. Unevenly sized segments
could result from a set of cluster nodes that are of dissimilar performance (e.g. (3) on Figure 7) where
the resource is known to contain single-CPU as well as dual-CPU nodes.

Figure 8: STREAM performance of all computational resources currently avail-
able on the CrossGrid testbed.

Figure 8 shows results for the EPStream benchmark, characterizing the Grid resources from a
memory bandwidth perspective. Again, it is observed that memory performance of the resources is
quite diverse. If the chart in Figure 8 is compared to the chart in Figure 7, it can be observed that
the relative performances of the resources are in fact different when comparing based on memory
performance rather than CPU performance. With memory intensive codes in mind, it would make
sense for the user to make a decision based on memory bandwidth results rather than CPU results. In
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Figure 9: STREAM performance on a cluster of 4 dual-CPU worker nodes, using
2 processes per node (i.e. one process per cpu) or one process per dual-CPU
worker node.

terms of internal resource uniformity, the same basic deductions described for the EPWhetstone results
in Figure 7 apply. It is also notable that the large difference in CPU performance between resource
zeus24.cyf-kr.edu.pl and resource gtbcg01.ifca.unican.es in Figure 7 is much smaller when
comparing memory performance in Figure 8. A user intending to run a memory intensive code could
choose to do so on resource zeus24.cyf-kr.edu.pl since it has good aggregate memory bandwidth
using a smaller number of CPU’s (potentially enjoying a speedup because of lower communication
overhead). Figure 9 illustrates how memory bandwidth is shared between processes running on the
same dual-CPU machine. The resource xgrid.icm.edu.pl provides 4 dual Intel PIII nodes. In this
case memory bandwidth does not scale with the number of CPU’s, in fact the aggregate memory
bandwidth remains almost the same. This is another factor that could be taken into account when
running memory-intensive codes.

Figure 10: EPMemsize benchmark showing the approximate maximum amount
of memory that could be allocated in physical memory.

In addition to memory bandwidth, the size of main memory is also important. Figure 10 shows
the maximum amount of memory that could be allocated on the worker nodes in a set of resources.
Lets take two examples: the resource cluster.ui.sav.sk having 16 nodes, each with 256MB without
any swap (the site uses disk-less nodes) and cgce.ifca.org.es having a set of machines of 512 MB each
and one with 1 GB. This information cannot be obtained from MDS. In the first case, an application
can allocate less than approximately 220MB on each cluster node. In the second case an application
can safely allocate close to 500MB with little chance of incuring swap memory. Therefore a memory-
intensive application with a large memory footprint would consider sending a job to cgce.ifca.org.es
over sending it to cluster.ui.sav.sk.

Figure 11 shows the point-to-point communication performace on four resources. Three of measure-
ments coincide since the three sites employ the same network infrastructure, i.e. switched 100Mbit/s
ethernet network. The fourth site ce101.grid.ucy.ac.cy has a 1Gbit/s network and performs signifi-
cantly better (at least in terms of bandwidth. Similar (almost identical) results are obtained when
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Figure 11: MPI point-to-point messaging performance on 4 resources. Three data
series coincide since the three resources employ a similar networking infrastructure
(100Mbit/s), while the other is significally different (1GBit/s).

measuring bisection bandwidth. The reason for this is that all the resources that were used in these
experiments used switched networks, and none of them had a big enough number of nodes so that
network performance degradation would manifest itself. The Latency is indicated by the time value of
the zero-sized packet, i.e. the first data point on the graph, which is approximately 0.07ms for the sites
with 100Mbit/s ethernet and 0.06ms for the site with 1Gbit/s ethernet. The bandwidth capability
is indicated by the data points on the curve towards the larger MPI packet sizes. The bandwidth is
calculated at approximately 8.7MBytes/s for the 100Mbit/s sites and at approximately 33MB/s for
the 1Gbit/s site (33MBytes/s is possibly a result of a PCI bus bottleneck).

Figure 12: CacheBench benchmark showing the effect of the memory cache on
memory bandwidth

Figure 12 shows the execution of the CacheBench benchmark on 4 CPU’s on a resource. The
specific metric is the “read/modify/write” metric giving the memory bandwidth in MB/s. The size of
the memory used by CacheBench to measure the bandwidth is varied from 256 Bytes to 32 MBytes.
The effect of the cache is apparent at the drop-off around 512 kBytes. A user could use this information
to determine the cache size or verify that information provided by information services is accurate
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(when such information is provided). The user could also use this information to tune her application
parameters for optimal use of the cache, of the specific site.

Figure 13: The b eff io benchmark on several sites on the testbed under. For
each execution 2 CPU’s (on separate worker nodes) were used

Figure 14: Varying the number of participating nodes for the b eff io benchmark
on cluster.ui.sav.sk.

Figure 13 shows the results of the effective I/O bandwidth measurements on several resources. For
each execution, 2 CPU’s were used on 2 separate worker nodes. We chose to use CPU’s on separate
worker nodes since the access to shared disk would be over a Local Area Network. Having more than
one process per worker node would (probably) mean that the processes on the same worker node (e.g.
a dual-CPU worker node) would perform I/O over the same network interface card. We avoided this
in order to keep result analysis less complicated. It can be seen that the resource cluster.ui.sav.sk
performs considerably better than the others. We discovered that while the worker nodes were in fact
connected over a 100Mbit network, the shared storage had a 1Gbit interface connected to the switch’s
1Gbit uplink. To investigate this further, we performed a set of measurements (shown in Figure 14)
on the specific resource. We varied the number of participating worker nodes and from those results
it can easily be seen that the effective I/O bandwith of a resource varied considerably. Performance
rises while going from 1 up to 6 worker nodes, probably due to parallelism, but drops off beyond 6
worker nodes, probably due to the storage device seeking too often trying to meet the requests from
too many worker nodes. This could be taken further: by running enough tests, an “optimal” number
of participating processes could be experimentally determined that is specific for each resource and
depends on network connectivity, I/O device type etc.

All charts shown in this article were generated using the GridBench GUI using data archived in
the XML database. This data is available for retrieval not only by end users, but also for automated
decision-makers such as schedulers. A scheduler could use micro-benchmark results to “rank” the

15



resources based on performance (CPU, memory or MPI). Additionally a scheduler could evaluate a
resource’s “health” by invoking one of the micro-benchmarks. Since execution times are typically less
than 10 seconds, this would impose little additional delay and would potentially save a scheduler from
time-consuming failed submissions.

Justifying application performance using micro-benchmarks

Figure 15 shows a set of charts in an attempt to show how a real application kernel’s performance can
be explained using micro-benchmark measurements on three Grid resources: ‘cluster.ui.sav.sk” (SK ),
“cgce.ifca.org.es” (ES ) and “xgrid.icm.edu.pl” (PL). SK has 12 CPU’s, ES has 10 CPU’s and PL has
8 CPU’s. It is our purpose to compare the performance of the three sites “based on what they offer”;
it is neither our purpose to compare the sites “on equal terms” (e.g. by using the same number of
CPU’s on each resource), nor evaluate the scalability of the code using different numbers of CPU’s.
This reflects scenarios where a user/broker has to make a choice of which resource to use. At a given
point in time the choices could be: A) SK - 12 CPU’s, B) ES - 10 CPU’s and C) PL - 8 CPU’s, while
the decision could be affected by additional factors such as pricing. We will asses the performace of
the three resources based on results from an application and then attempt to justify it with results
from micro-benchmarks.

The application used, “bstream”, is a blood-flow simulation code aimed as a pre-operative support
decision system for vasular surgeons. The blood-flow simulation is part of an interactive Grid appli-
cation that involves processing of 3D data obtained from MRI scanners, operation planning (such as
a bypass), simulation, and finally blood-flow visualization [20]. Shown here is the computationally
intensive part of the application, which is based on a lattice Boltzmann solver and uses MPI. This
code was instrumented to measure elapsed time for each iteration, and integrated into GridBench.

Figures 15(c), 15(a) and 15(b), show iteration times (i.e. average time taken to complete an
iteration of the blood-flow solver as the computation progresses), while the last six charts show results
from all micro-benchmarks described previously. Looking at the iteration times chart (Figures 15(a)
and 15(b)) we can compare performance of the application on the three chosen resources. SK is fastest
of the three while PL is slightly faster than ES. PL with 8 CPU’s is slightly faster (approximately
3%) than ES despite the fact that ES used 10 CPU’s. The effect of varying the number of CPU’s on
this kernel is shown in Figure 15(c). Average iteration time does decrease as the number of CPU’s
increases (though not in a scalable manner) up to 12 CPU’s (a limit imposed by the application).
The sudden jump during the last iteration on each curve in Figures 15(c) and 15(a) is due to the
“wrapping up” of the computation and the generation of output. It happens on the last iteration,
regardles of how many oterations are chosen contributes very little when the ap

Once we analyze the performance of the application we proceed to analyze the micro-benchmark
results. We can observe that the three sites do vary in their measurements, except for communication
performance (Figure 15(g)).

Network interconnect: In term of network interconnect performance the three resources show
identical performance. This is as expected since the three sites employ a similar 100Mbit/s switched
network.

CPU performance: Knowing that we will be looking for Floating Point performance in the
application kernel, we can consider the EPFlops performance, shown in Figure 15(d). Individual
worker node performance in SK and ES is similar while in PL it appears to be considerably better.
This is in fact the effect of aggregating the performance of the two CPUs on dual-CPU worker nodes.

Memory and cache performance: As indicated by Figure 15(e), there is no significant vari-
ation on the per-worker-node memory bandwidth. In terms of memory size, Figure 15(f), the three
resources again vary, with SK apparently having much less physical memory§ than the other two.
In terms of cache sizes, Figure 15(h), there is significan variation as indicated by the first “knee” on
each curve. The curve for SK shows a knee at approximately 512KB while the other two show a
knee at approximately 128KB¶. The values do not necessarilly indicate the actual size of the cache,

§SK has 256MB of RAM (without any swap) on each of its nodes
¶SK uses 1.8GHz Intel P4 CPU’s while the other two sites use 1.266GHz Intel PIII CPU’s.
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(d) (e)

(f) (g)

(h) (i)

Figure 15: Bstream benchmark performance on 3 resources. Charts 15(c), 15(a) and 15(b) shows the
average time per iteration as the computation progresses

but what is actually observed by the “triad” operation. Also noteworthy is that cache performance is
approximately 50% faster at PL.
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I/O performance: Figure 15(i) shows shared disk bandwidth where performance of the three
resources does vary, but given that the application in question is not I/O intensive this will play little
role.

The difference in performance between PL and ES (PL being faster) is probably not attributed
to the difference in the number of CPU’s, in fact the results should be the other way around. ES
shows better aggregate performance than PL for CPU (EPFlops) and memory (EPStream), and it
has more available physical memory (Memsize), yet it performs worse when running the “bstream”
kernel benchmark. The underlying reason can probably be found in cache performance (shown in
Figure 15(h)). ES cache performance is considerably less than that of PL, and SK displays a larger
first-level cache than both ES and PL. At this point it is probably safe to assume that: 1) The better
performance of “bstream” at SK is due to the additional number of CPU’s; and 2) “bstream” performs
better at PL than ES because of better cache performance.

Once the relationship between the micro-benchmarks and the application kernel has been estab-
lished it can then be applied to resource selection. From the findings above it could be concluded
that for this application the decision maker (user or broker) should prefer cache performance over
CPU count or CPU performance. A Resource Broker, scheduler, or end user can make more educated
resource selections based on micro-benchmark results by taking the behavior of specific applications
into account.

5.1 Practical Issues

During our experimentation and our effort to characterize a set of resources, we have come accross sev-
eral issues regarding the functionality of the infrastructure. These problems fall in two main categories
(i) configuration issues and (ii) general system issues. Configuration issues are administration-related
and usually involve blunders or omissions by the site administrator, as well as conscious policy deci-
sions that may cause problems. General system issues usually involve machines being in a erroneous
state, run away processes that should have been removed, full disks etc. The fact that these problems
surfaced, and could therefore be addressed, is another reason for running benchmarks. For example,
early on in the experimentation there were issues regarding the execution of MPI codes. The errors
were sometimes reproducible and sometimes not. By running microbenchmarks it was determined
that some cluster nodes at several Grid sites were inaccessible (due to outdated OpenSSH keys), yet
they were reported to be available in the local queues and the MDS. The administrators were con-
tacted and the problem resolved. Another configuration issue that was detected at some sites by the
execution of benchmarks was the incorrect spawining of processes. Specifically, more processes than
available CPU’s were spawned on a worker node, which was easily detected by looking at the results of
CPU microbenchmarks. A problem that was often met and is categorized as a ”gereral system issue”
is the presence of run-away processes on several resources. This was detected by the observation of
degraded performance by some microbenchmarks.

In many cases the underlying reason for failed benchmark executions or degraded performance of a
benchmark was not determined, it is important though that many problems were detected and action
could be taken to correct then. Some of these issues could have been detected by proper monitoring,
but many of them would not surface without using an end-to-end test (involving most of the hierarchy
of employed middleware) such as a benchmark.

Another issue we have come accross is database performance for storing the benchmark descriptions
and results. One of the main reasons for using a native XML database was flexibility. Benchmark
descriptions and results were in a semi-structured form and XML fits that purpose well. While
performing the experiments it has been observed that the performance of the XML database degraded
significantly. At one point the database was populated with approximately six thousand benchmark
definitions and results. At that point, even simple queries took considerably long to execute; reply
times were in the order of tens of seconds. Also, the fact that the data is in a semi-structured form
makes it quite difficult to query the results. We plan to improve this in the future by specifying a more
structured schema for benchmark results, which could even be implemented in a relational database
providing speed and query flexibility.
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(a)

<benchmark name="epwhetstone"

date="20040515023918"
type="mpi" >

<location>
<resource name="cluster.ui.sav.sk"

cpucount="16"

wncount="16"
jobmanager="jobmanager-pbs-workq"/>

</location>
<parameter name="executable" type="value"

dataType="0">epwhetstone</parameter>
<parameter name="execpath" type="value"

dataType="0">/opt/cg/gridbench/bin</parameter>

<parameter name="stage_executable" type="value"
dataType="0">manual</parameter>

<parameter name="nloops" type="value"
dataType="1">10000</parameter>

</benchmark>

(b)

(c)

Figure 16: Defining benchmarks using GridBench: (a) A screenshot of the GridBench GUI showing
the resource list, benchmark results and new benchmark defnitions, (b) a simple example of actual
GBDL (GridBench Definition Language)
and (c) the definition panel.
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6 Conclusions and Future Work

We have presented a concise set of benchmarks for the characterization of computational Grid re-
sources, in terms of the performance of CPU, main memory and interconnects. We have also presented
an adopted set of benchmarks to deliver those metrics. This small set of lightweight benchmarks can
be run on the Grid resources with little overhead and with minimal effort by the user. The bench-
marks can be invoked in a periodic and in an on-demand manner, using the GridBench framework.
The resulting measurements are archived and made available via a web-service.

Low-level performance metrics, serving as metadata annotations to Grid resources, can be an
aid for resource selection in the users’ effort to “map” application kernels to appropriate resources.
Micro-benchmark characterization of Grid computational resources can also be used by schedulers
in the resource allocation process, as they can provide a basis for ranking resources using low-level
performance metrics. Additionally, the execution of a micro-benchmark on a resource is in itself a
validation of the operational state of the resource. Benchmarking services for Grids can play a really
important role in tackling problems related to resource allocation.

We have also presented a set of results obtained from our Grid test-bed and described how results
such as these can be useful. These results emphasize the variation of the performance capacity of Grid
resources and the need to quantitatively assess the performance of each resource.

The use of benchmark results is not limited to just the ranking of resources according to perfor-
mance (or detecting performance problems). An example would be the combination of these per-
formance measurements with other external information such as resource pricing, which could prove
quite useful. The low-level nature of the measurements makes no presumptions on the performance
characteristics of any application, so these measurements could form the basis for a cost-model for
charging for the use of computational resources. Furthermore, users could verify the “advertised”
performance of a resource by running these light-weight benchmarks. Another example would be the
administrative use of benchmarks to detect problems or faults in the Grid’s computational resources.

In the future we plan to further investigate the relation between application performance and
micro-benhchmark performance in the context of Grid environments. Building on the work presented
in this article, we plan to further investigate the use of characterization in scheduling and resource
allocation on the Grid. In addition we plan to investigate the use of micro-benchmarks for automated
evaluation of Grid “resource health”.
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