

Select a Chapter

Subsections

Bits and Bytes
Introduction to the 68HC11

Memory Map
Registers

Programming the 68HC11
Machine Code vs. Assembly Language
Addressing Modes
Data Types
Arithmetic Operations
Signed and Unsigned Binary Numbers
Condition Code Register and Conditional Branching
Stack Pointer and Subroutine Calls
Interrupts and Interrupt Routines

Interrupt Vectors
Architecture of the 68HC11

Register Block
Block Diagram of 68HC11
Port B
Port C
Analog Input Port
Timers and Counters

Timers
Counters

Real Time Interrupt
Serial Interface

The Motorola 68HC11 Assembler (AS11)
Labels
Arithmetic Expressions
Assembler Pseudo-Operations

ORG
EQU
FCC
FCB and FDB
RMB

Comments
Assembler Specifics

68HC11 Assembly Language
Programming
This chapter introduces the inner workings of the 68HC11 microprocessor, and
provides details on writing assembly language programs for the 68HC11. Since most,
if not all, programming for ELEC 201 will be in IC most ELEC 201 readers can just
skim this material for background information. This chapter is adapted from the
`` 68HC11 PROGRAMMING GUIDE'', written by Fred Martin of M.I.T.

Bits and Bytes
Most humans, having ten fingers, think in decimal numbers. In computers,
information is represented with voltages, and it is most convenient for the voltage levels
to represent only two states: a binary one or binary zero. Thus computers process
binary digits, or bits.

For convenience, microprocessors group bits together into words. The first
microprocessor, the Intel 4004, operated on a word composed of four bits. Today, most
microprocessors use eight bit words, called bytes.

In an eight bit numeral, 256 different states can be represented (28=256).
Programmers use these 256 states to represent different things. Some common usages
of a byte of data are:

a natural number from 0 to 255;
an integer in the range of -128 to 127;
a character of data (a letter, number, or printable symbol).

When programmers need to represent larger numerals, they group bytes together. A
common grouping is two bytes, often called a (16-bit) word. A word can have 65536
states, since 216 = 65536 .

Decimal numbers are painful to use when talking about binary information. To make
life easier, programmers started to use the base 16 hexadecimal (or hex for short)
numbering system when talking about bits, bytes, and other binary data.

The hex system uses 16 different digits to represent each place value of a numeral.
Using hex, one would count as follows: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10
...etc. The letters A though F are then used to represent the values of (decimal) 10
through 15, respectively. This is wonderful, because a hex digit (of 16 possible states)
is equivalent to four bits exactly. Then, a byte can be represented by exactly two hex
digits, and a sixteen bit word by four of them.

The following conventions are supported by Motorola's software products for their
microprocessors. Binary numbers are represented by the prefix %. Hexadecimal

numbers are specified by $. Decimal numbers don't have a prefix. (These aren't the
only conventions that are used in the computer world, but they are standard
throughout these notes and Motorola software.)

Figure 12.1: Some Numeric
Conversions

Consider the numeric conversions in Figure 12.1. Notice that four bits equal one hex
digit. This is helpful in converting binary to hex. Notice some entries don't have their
decimal values filled in. This is to make the point that it is easy to transcribe between
binary and hexadecimal representation, but using decimal is often cumbersome.

It is good to know some general quantities. For example, eight bits, or one byte, is 256
values. Then the largest unsigned integer representable in a byte is 255. The largest
integer representable in two bytes is 65535.

A byte can be used to represent one character of information. A standard has been
devised for this, called the American Standard Code for Information Interchange
standard, or ASCII code, which is pronounced as "ass-key". ASCII is almost universally
accepted for representing the English character set, including upper and lower case
letters, numbers, and typical punctuation (like !@#$%&*()). An old competing IBM
standard, the EBCDIC code, is largely defunct except on some of their mainframes, but
modern computer scientists are presently devising a 16-bit international character

 code.

In the back of the Motorola 68HC11 programmer's handbook is a table of the ASCII
codes. The most important thing to know is first that it exists, but then some other
details. First, notice that it only uses seven of the eight bits in a byte. So, there are
actually only 128 ASCII characters, using the values $00 to $7F hex.

Printable characters start at $20 hex (32 decimal). The codes from $0 to $1F are used
for things like cursor control, line feeds, and the like. Knowing the ASCII characters
becomes important when doing interactive programming on the 68HC11, in which
case the user might type ASCII information to the 68HC11 over the serial line, and it
would respond in kind. In this case, the programmer must deal with the characters as
bytes.

Introduction to the 68HC11

Memory Map

Microprocessors store their programs and data in memory. Memory is organized as a
contiguous string of addresses, or locations. Each memory location contains eight bits
of data (this is because the 68HC11 is an 8-bit micro; other processors can have 16 or
32 bits of data at each memory location).

The entire amount of memory that a processor can access is called its address space.
The 68HC11 has an address space of 65,536 memory locations, corresponding exactly
to 16 bits of address information. This means that a 16-bit numeral can be used to
point at, or address, any of the memory bytes in the address space of the 68HC11.
Thus four hexadecimal digits (4 bits per digit � 4 digits) can exactly specify one
memory location (in which the user will find one byte of information).

In general, any area of memory should be equivalent to any other. Because the
68HC11 is a special-purpose chip, and all of its memory is etched right on the
microprocessor chip itself, its designers had to dedicate portions of its memory to
particular functions. Figure 12.2 shows a "memory map" of one of the members of the
68HC11 family of processors, the MC68HC811E2FN.

Figure 12.2: Memory Map of the
MC68HC811E2FN Microprocessor

The first area of memory, from address $00 to $FF, is the chip's random access
memory, or RAM. RAM can be both written and erased. It is "volatile," which means
that when power is removed from the chip, it loses its state. RAM is typically used for
storing programs and data.

When you program the 68HC11, however, on-chip RAM is not typically used to store
programs, because there is only 256 bytes of it ($00 to $FF is 256 bytes). It is normally
used to store data and variable values that the program will use while it is running.

Programs will reside normally in the external, non-volatile RAM, or in the EEPROM,
an acronym for electrically erasable programmable read-only memory. EEPROM is the
culmination of a trend in programmable, yet permanent, memory technology.

Read-only memory (ROM) means what it suggests: that memory can only be read, not
written to like RAM. It is programmed at the factory, in mass quantities. This is good
for companies that are selling a production version, but to satisfy R & D engineers,
PROM (programmable read-only memory) was developed.

PROM chips can't be erased, so in order to make changes to code, the chip is thrown
away and a new one is used. PROM chips are not especially expensive, but this process
still imposes a high development cost.

EPROM, or erasable programmable read only memory, was the next step. Most EPROM
chips are erased by exposing the chip to ultraviolet light for half an hour. This is a vast
improvement over PROM, but unless there is a large supply of blank chips for
reprogramming, the programmer will have a long wait time between code downloads.

Many members of the 68HC11 processor family have the latest development in ROM
technology: EEPROM, which is electrically erasable. This means that the chip can
erase its own ROM, and download new data to be written into it. This allows new
programs to be downloaded into the chip in just ten seconds or so. Also, because it is
ROM, when the processor is powered down, its program does not go away.

EEPROM is not a substitute for RAM: writing new data in is extremely slow by RAM
standards, and can only be done a finite number of times (about one to ten thousand

erase/write cycles).

If present, the EEPROM resides at the top end of the 68HC11's address space. There is
2K of EEPROM (2048 bytes) in the MC68HC811E2FN, from addresses $F800 to
$FFFF, and 512 bytes, from addresses $B600 to $B6FF, in most other members of the
68HC11 family. The 'A1 version of the 68HC11 used in ELEC 201 does not have any
EEPROM, because the entire external RAM is non-volatile (The part used has internal
battery backup). The last hundred bytes or so of the address space, from addresses
$FFC0 to $FFFF, are reserved for special interrupt vectors, which are discussed in
Section 12.3.8.

In the middle part of the address space, starting at address $1000, is an area for
special control registers. By storing and reading values from this area of memory, you
can control input/output functions like the serial ports, sensors and motor ports, and
a host of other 68HC11 special functions. These features are discussed in in
Section 12.4.

Registers

A microprocessor does its work by moving data from memory into its internal registers,
processing on it, and then copying it back into memory. These registers are like
variables that the processor uses to do its computations. There are two different types
of registers: accumulators, and index registers.

Accumulators are used to perform most arithmetic operations, like addition,
subtraction, or performing logical and bit operations (and, or, invert). Results of such
operations are often placed back into a register; for example, an instruction may add
something to the "A" register and place the sum back into that same register. It is for
this reason that the name accumulator is appropriate for these register types: they
accumulate the results of on-going computations.

Index registers are used to point at data that is located in memory. For example, in the
add operation just described, the addend (the number getting "added in" to the sum)
might be indexed by the "X"' register, meaning that the X register is being used to
indicate the address of the data in memory.

Figure 12.3 shows the "programmer's model" of the registers of the 68HC11.

Figure 12.3: Programmer's Model of 68HC11 Registers

The 68HC11 has two accumulators, labeled A and B. Each are 8-bit registers: they
hold one byte of data.

The general-purpose index registers are the X and Y registers. These are 16-bit
registers and are most commonly used to address data in memory.

The A and B registers can be used together as a 16-bit arithmetic register, in which
case they are named the D register. As indicated in the diagram, the A register forms
the "high bits," or most significant digit, in this mode.

The Stack Pointer, or SP register, is used to store the location of the program stack.
The stack, which is explained in detail later, is used for temporary storage of data, and
to store the return address before a subroutine is called.

The Program Counter, or PC, is used to keep track of the current instruction being
executed. The PC is automatically incremented as the microprocessor proceeds
through the instruction stream.

Programming the 68HC11
When a microprocessor runs a program, it advances sequentially through memory,
fetching and executing one instruction at a time. As mentioned earlier, the PC
(program counter) register keeps track of the address of the instruction currently being
executed. The microprocessor automatically advances the PC to the next instruction
after it is finished executing the current one.

Consider a typical instruction: load a number into the A register. The machine code for
this instruction is (in hex): 86 nn, where nn is the byte to be loaded into the register.
The hex value $86 is called the operational code, or op-code, that signifies the "load A
register" instruction.

Instructions may be one, two, three, or four bytes long, depending on what their
function is. When the microprocessor encounters the byte $86 in the instruction
stream, it knows, "I'm going to fetch the next byte of data, and load that into my A
register." After the microprocessor evaluates the first byte of an instruction, it knows

how many more bytes it needs to fetch to complete the instruction, if it is longer than
one byte. Then, it executes the next instruction, and so on, ad infinitum.

Instructions take varying numbers of machine cycles to execute, depending on their
complexity. The 68HC11 for ELEC 201 operates at a frequency of 2 megahertz (MHz.),
meaning that it executes 2,000,000 machine cycles per second. The period of a
machine cycle is then 0.5 microseconds (�sec), so an instruction that requires 3
machine cycles will take 1.5 �sec of real time to execute.

In general, longer instructions (those needing two, three, or four bytes) take longer
(more machine cycles) to execute, although there are some exceptions to this rule.

Machine Code vs. Assembly Language

The terms machine code and assembly language refer to the same thing: the program
that is executed directly by the microprocessor. However, these terms refer to the
program in different states of development. Machine code usually refers to the raw data
stored as a microprocessor's program. This is commonly described in the hexadecimal
notation we've been using.

Assembly language is a set of mnemonics, or names, and a notation that is a readable
yet efficient way of writing down the machine instructions. Usually, a program that is
written in assembly language is processed by an assembler program, that converts the
mnemonic instructions into machine code. This output from the assembler program is
often called the object code, which can then be executed directly by the
microprocessor.

In the 68HC11 assembly language, the "Load A register" instruction that we discussed
earlier is written as follows:

 LDAA #$80

The word "LDAA" is the assembly language mnemonic for "LoaD Accumulator A." Then,
the #$80 is the hexadecimal value to be loaded (the value $80 was chosen at random).

When a 68HC11 assembler program processes an input file, it knows the mnemonics
for all of the 68HC11 instructions, plus their corresponding op-codes. It uses this
information to create the object code file.

The assembly process is a straight-forward, mechanical operation. Each assembly-
language instruction is converted to one machine-language instruction (though that
instruction may be one to four bytes in length). Assembler programs lack much of the
sophistication that high-level language compilers must have.

But, assemblers typically have features to make writing assembly programs easier.
These features allow the creation of symbolic labels for constant values or memory
addresses, perform arithmetic in binary, decimal, and hex format, and convert
character strings to binary values (among other functions).

The basic Motorola 68HC11 assembler is described in Section 12.5. The assembler
cannot be used to directly build ".icb" files suitable for downloading. Rather than
presenting an overview of assembly language all at once, 68HC11 instructions are
introduced throughout this document in a progressive fashion.

Addressing Modes

In our previous example (LDAA #$80), the hex value $80 is loaded into the A register.
This method of loading data into the register is called immediate addressing, because
the data to be loaded is located "immediately" in the instruction itself. Immediate
addressing is commonly used to load a known piece of data into a register.

There are other ways to address data bytes that need to be operated on. These different
methods are known as addressing modes. Other than the immediate addressing mode,
most addressing modes provide ways of accessing data that is stored somewhere in
memory.

The extended addressing mode is one way to access data stored in memory. In this
mode, the 16-bit address of a memory byte is specified in the instruction. For example,
the instruction

 LDAA $1004

will load the A register with the contents of memory location $1004. This instruction
uses three bytes of memory: one byte is the op-code, and two more bytes are needed to
specify the 16-bit memory address.

The direct addressing mode is similar to the extended mode, but works only for data
stored in the first 256 bytes of the chip's address space, from addresses $00 to $FF.
This happens to be the chip's RAM, as shown in Figure 12.2, the 68HC11 Memory
Map. So, the direct mode is used to store and load data to the RAM.

In the direct mode, only one byte of address data is required to specify the memory
address, since it is known to be in the first 256 bytes of memory. Instructions using
direct addressing may require only two bytes: one for the op-code, and one for the
address information. They execute in fewer cycles as a result of this savings. The
68HC11 assembler will automatically choose the direct addressing mode if the address
specified is in the range $00 to $FF. Extended addressing could also be used to access
this portion of memory, but it would rarely be preferable.

The indexed addressing mode uses the X or Y register as a pointer into memory. The
value contained in the index register and an offset byte are added to specify the
location of the desired memory byte or word.

Consider the following example: Suppose the X register currently has the value $1000.
Then the instruction

 LDAA 0,X

will load the A register with the contents of location $1000, and the instruction

 LDAA 5,X

will load the A register with the contents of location $1005.

The offset value is contained in one byte of data, and only positive or zero offsets are
allowed. This means that only offsets in the range of 0 to 255 decimal are possible.

Why would a programmer use the indexed addressing mode, when the extended
addressing mode will access the desired byte directly? The indexed addressing mode is
useful when you are repeatedly accessing locations from a particular region of memory,
and is useful in part because of the associated offset bytes.

For example, the 68HC11 special register area begins at location $1000 and ends at
location $103F. Suppose there were a series of instructions that accessed the registers
located in this area. We could then set up the X register as a base pointer, pointing to
the beginning of this area of memory (we'd load the X register with $1000: LDX #$1000).
Then, we can use the two-byte indexed instructions to do a series of loads, stores, etc.
to the locations in this region in which we are interested.

This is good programming practice because each indexed instruction saves a byte over
the extended instruction. Once the cost is paid of loading the X register with the base
address (a three byte instruction), each use of an indexed instruction will save code
space and execution time.

Indexed addressing is most useful when working with arrays of common data
structures. Then, one can set up an index register to point at the base of each data
structure and use indexed operations to access individual fields of that data element.
To move to the next data element, only the index base pointer needs to be changed, the
offsets will then access the subsequent structure.

Finally, there are a few instructions that do not support the extended addressing mode
(they support only direct and indexed addressing), so if one must work with a byte not
in the direct addressing area, then indexed addressing must be used.

Here is a list of all of the addressing modes that are supported on the 68HC11
architecture:

Immediate
Data is part of the instruction itself. This mode is specified with the use of the
prefix "#" before the data byte or word. Example:
LDAA #$80 loads the A register with the hex number $80.

Direct
Data is located in RAM (within addresses $0000 to $00FF). One byte is used to
specify which RAM location is to be used. Example: STAA $80 stores the A register
to the memory location $0080.

Extended
Location of data is specified by a 16-bit address given in the instruction.

Example: STAA #$1000 stores the contents of the A register at memory location
$1000.

Indexed
Location of data is specified by the sum of a 16-bit index register (register X or Y)
and an offset value that is part of the instruction. Example: LDAA 5,X takes the
sum of the value currently in the X register and 5, then loads the A register with
the memory byte at that address. Offsets range in value from 0 to 255.

Inherent
Data is "inherent" to the microprocessor and does not require an external memory
address. Example: TAB transfers the contents of the A register to to the B register.
No external memory address is required.

Relative
Location is specified by an offset value from the address of the instruction
currently being executed. Example: BRA 5 causes a branch to be formed that skips
five bytes ahead in the instruction stream. Relative addressing is only used in
branching instructions. Offsets range in value from -128 to +127, allowing jumps
both forward and backward in the instruction stream.

Data Types

The 68HC11 supports a few different "data types," or ways of representing numbers.
Most high-level languages (like C) support many data types, such as integers, floating
point numbers, strings, and arrays. In assembly language, a programmer is given only
"the bits" and must build more complex data types with subroutine libraries.

The 68HC11 has two data types: 8-bit numbers and 16-bit numbers. This means that
there are instructions that process numbers of length eight bits (bytes), and there are
instructions that process numbers of length sixteen bits (words).

Keep in mind the range of an eight-bit number versus a sixteen-bit number. An eight-
bit number can have 256 different values (28=256), and a sixteen-bit number can
have 65536 different values (216=65536).

Arithmetic Operations

Microprocessors give the programmer a standard set of arithmetic and logical
operations that can be performed upon numeric data.

The 68HC11 provides instructions that work on both eight-bit data values (such as the
A or B registers or memory bytes) and sixteen-bit data values (such as the X and Y
index registers). Earlier processors provided only eight-bit operations; the programmer
had to combine them to get sixteen-bit ones. The 68HC11 also provides multiplication
and division instructions.

The 68HC11 supports the following instructions:

Addition

for both 8-bit and 16-bit values.
Subtraction

for both 8-bit and 16-bit values.
Multiplication

of two 8-bit values to yield a 16-bit result.
Division

of two 16-bit values to yield an integer or fractional result.
Increment

of both 8-bit and 16-bit values. The increment operation adds one to its operand.
Decrement

of both 8-bit and 16-bit values. The decrement operation subtracts one from its
operand.

Logical AND
for 8-bit values. This instruction performs a bit-wise "and" operation on two pieces
of data. The result of an AND operation is 1 if and only if both of its operands are
1. (e.g., %11110010 ANDed with %11000011 yields %11000010.

Logical OR
for 8-bit values. This instruction performs a bit-wise "or" operation on two pieces
of data. The result of an OR operation is 1 if either or both of its operands is 1.

Logical Exclusive OR
for 8-bit values. The result of an exclusive-OR operation (called "EOR") is 1 if
either, but not both, of its inputs are 1.

Arithmetic Shift operations
on 8-bit and 16-bit values. The Arithmetic Shift operation moves all the bits in an
operand to the left or to the right by one bit position. This is equivalent to a
multiplication or division by 2 (respectively) upon the operand.

Rotation operations
on 8-bit values. These are similar to the shift operations except that the bit that
gets shifted out of the high or low bit position (depending on the direction of the
rotation) gets placed in the bit position vacated on the other side of the byte.
Example: rotate right (ROR) of %11011001 produces %11101100.

Bitwise Set and Clear operations
on 8-bit values. These operations set or clear bits at specified bit positions within
an eight-bit data byte.

Clear operations
on 8-bit memory bytes or registers. This instruction is equivalent to writing a zero
into the memory location or 68HC11 register but does so more quickly.

There are a few arithmetic instructions not mentioned here, but they are relatively
obscure.

Signed and Unsigned Binary Numbers

There are two methods of representing binary numbers that are commonly used by
microprocessors. Using these two methods, the same string of 1's and 0's that
comprise a byte or word can represent two different numbers, depending on which
method is being used.

The two methods are: unsigned binary format and two's-complement signed binary
format.

The unsigned format is used to represent numbers in the range of 0 to 255 (one byte of
data) or 0 to 65535 (one word of data). This is the more simple way of representing
data; it is easy to understand because there is a direct translation from the binary
digits into the actual numeric value. But, the unsigned format has the limitation that
values less than zero cannot be represented.

Here are some unsigned binary numbers and their decimal equivalents:

Figure 12.3:
Programmer's Model of

68HC11 Registers

binary decimal

%0000

%0001 1

%0010 2

%0011 3

%0100 4

%0101 5

%0110 6

%10011100 156

%11100011 227

%11111111 255

Signed values are represented using the "two's complement" binary format. In this
format, a byte can represent a value from -128 to +127 , and a word can represent a
number from -32768 to +32767 .

The highest bit (most significant, or left-most bit) of the number is used to represent
the sign. A "0" in the high bit indicates a positive or zero value, and a "1" in the high
bit indicates a negative value.

If the number is positive or zero, then the signed representation is exactly equivalent to
the unsigned one. For example, the largest binary number representable in a byte,
using the signed format is %01111111. The leading zero is the sign bit, indicating a non-
negative number; the seven ones that follow are the significant digits.

If the number is negative, then the following process determines its value: invert the
significant digits (change zero's to one's and one's to zero's), and add one. Put a minus
sign in front of the number, and that is the equivalent value.

For example, what is the value of the signed number %10011011? We know this is a
negative number, since its high bit is one. To find its value, we take the significant
digits (%0011011) and invert them, obtaining %1100100. We add one, and obtain
%1100101. This value converted to decimal is 101; thus, our original number was equal
to -101 .

Two's complement is employed because it has one very useful property: signed binary
numbers can be added together like unsigned ones, and results of standard addition
and subtraction processes produce correct signed values.

Consider the following example, which shows an addition of two signed binary
numbers to produce a valid result:

 10011011 (-101 decimal)
 + 01110000 (112 decimal)

 (1)00001011 (11 decimal)

Ignoring the carry out of the highest bit position, we can see that performing regular
binary addition on the two numbers gives us the correct result. This is important,
because then the microprocessor doesn't have to implement different types of addition
and subtraction instructions to support both the signed and unsigned data
representations.

Condition Code Register and Conditional Branching

Whenever the 68HC11 performs any type of arithmetic or logical operation, various
condition codes are generated in addition to the actual result of the operation. These
condition codes indicate whether or not the following events happened:

The result of the operation was zero.
The result of the operation overflowed the 8- or 16-bit data word that it was
supposed to fit in. This condition is based on interpreting the data operands as
two's complement values.
The result was a negative value. Example: subtracting 50 from 10.
The result generated a carry out of the highest bit position. This happens (for
example) when two numbers are added and the result is too large to fit into one
byte.

There is a special register in the 68HC11, called the condition code register, or CCR,
where this information is kept. Each condition is represented by a one-bit flag in the
CCR; if the flag is 1, then the condition is true. The CCR has eight flags in all; four
more in addition to the four mentioned.

Each flag has a name: the zero flag is called Z; the overflow flag is V, the negative flag is
N, and the carry flag is C.

The usefulness of these flags is that programs may branch depending on the value of a
particular flag or combination of flags. For example, the following fragment of code will

repeatedly decrement the A register until it is zero. This code fragment uses the
"branch if not equal to zero" instruction (BNE) to loop until the A register equals zero.

Loop DECA * decrement A register
 BNE Loop * if not zero, jump back to "Loop"
 ... * program execution continues here
 ... * after A is zero

An entire set of these conditional branching instructions allows the programmer to test
if the result of an operation was equal to zero, not equal to zero, greater than zero, less
than zero, etc.

Some of the conditional branching instructions are designed for testing results of two's
complement operations, while others expect to test results of unsigned operations. As
mentioned earlier, the same arithmetic operations can be used on both signed and
unsigned data. This is true, but the way that one must interpret the condition codes of
the result is different. Fortunately, the 68HC11 branch instructions will perform this
interpretation properly, provided the correct instruction is used for the type of data the
programmer has in mind.

Here is a list of some of the conditional branching instructions supported by the
68HC11:

BEQ: Branch if Equal to Zero
Branch is made if Z flag is 1 (indicating a zero result).

BNE: Branch if Not Equal to zero:
Branch is made if Z flag is 0 (indicating a non-zero result).

BCC: Branch if Carry is Clear
Branch is made if C flag is 0, indicating that a carry did not result from the last
operation.

BCS: Branch if Carry is Set
Branch is made if C flag is 1, indicating carry occurred.

BLO: Branch if Lower
Branch is made if result of subtraction was less than zero. This instruction works
correctly when using unsigned data.

BGE: Branch if Greater Than or Equal
Branch is made if result of subtraction is greater than or equal to zero. This
instruction works correctly only when using unsigned data.

Other branching instructions work with signed data and check the proper
combination of flags to tell if results are greater or less than zero, etc.

One important thing to remember about branching instructions is that they use the
relative addressing mode, which means that the destination of a branch is specified by
a one-byte offset from the location of the branch instruction. As such, branches may
only jump forward or backward a maximum of about 128 bytes from the location of the
branch instruction.

If it is necessary to branch to a location further away, the JuMP instruction (JMP)

should be used, which takes an absolute two-byte address for the destination. The
destination of a JMP instruction thus may be anywhere in memory.

If necessary, use a conditional branch instruction to jump to a JMP instruction that
jumps to far-away locations.

Stack Pointer and Subroutine Calls

Almost all microprocessors support a special type of data structure called the stack. A
stack stores data in a last-in, first-out (LIFO) method.

To visualize the stack, one may imagine a dishwasher who is washing a sink full of
dishes. As he washes a dish, he places it on top of a pile of already-washed dishes.
When a chef removes dishes from the pile, the dish that she removes is the last dish
that the dishwasher placed on the pile. In this way, the stack of dishes stores the
dishes using a last-in, first-out algorithm.

The stack on the 68HC11 works the same way. Instead of a stack of dishes, the
68HC11 stores bytes in a contiguous area of memory. Instead of a dishwasher and a
chef, the 68HC11 uses a special register, called the stack pointer or SP, to keep track of
the location of the stack in memory.

When a number is placed on the stack (called a stack push), the number is stored in
memory at the current address of the stack pointer. Then the stack pointer is advanced
to the next position in memory.

When a number is taken off the stack (called a stack pull), the stack pointer is
regressed to the last location stored, and then the number at that memory location is
retrieved.

The stack has many different uses. One use is temporary storage of data. Suppose
there is a number in the A register to be stored and then retrieved a few instructions
later. One could push it on the stack (PSHA) to save it, and later pull it off the stack (
PULA) to restore it.

The data in several different registers may be temporarily stored and retrieved in this
way. It is important to remember that data goes on and comes off the stack in a
particular order. If data is stored with a PSHA and then a PSHB (push A register, push B
register), it must restored with the sequence PULB, PULA (pull B register, pull A register).

The most important use of the stack is involved with subroutines. Subroutines are
pieces of code that may be "called," or executed, by your main program. In this way,
they are like utility routines that your software uses.

For example, suppose a program often has need to execute a delay, simply waiting
1/10 of a second. Rather than repeatedly writing the code to perform the delay, it can
be written just once, as a subroutine. Then, whenever the main code needs execute the
delay, it can just call the subroutine.

The key thing about executing a subroutine properly is knowing where to return when
it finishes. This is where the stack comes in. When a subroutine is called, the 68HC11
automatically "pushes" the return address -- the place to continue after the subroutine
is done -- onto the stack. Then, it branches to begin executing the subroutine.

When the subroutine is finished, the 68HC11 pulls the return address directly off the
stack and branches to that location.

One may think, "Well, we don't need a stack for this; we could just have one particular
location where the return address is stored. We could just look there when returning
from a subroutine."

Actually, that is not a bad solution, but using the stack gives us a special power: it
enables nested subroutine calls. What happens when a subroutine calls a subroutine?
If a stack is being used, the second return address simply gets pushed on top of the
first, so that the first return address remains intact. In the other method, the first
return address would be overwritten and destroyed when the second subroutine call
occurred.

One detail worth mentioning about the stack's implementation on the 68HC11 is that
the stack builds downwards in memory. That is, when a number is pushed on the
stack, the stack pointer is actually decremented to point to the next available memory
location. This is somewhat counter-intuitive, but it is irrelevant to the function of the
stack.

Since the stack is a dynamic structure, it must be located somewhere in 68HC11 RAM
(read/write memory). It is customary to initialize the stack at the top of user RAM.
Then, as the stack grows, it moves downwards towards location $0000.

A good way to crash the processor is to repeatedly push a value on to the stack and
forget to pull it off. If this mistake is made inside a program loop, all of RAM will easily
be filled with garbage. When a subroutine attempts to return to its caller, the return
address will be nowhere in sight.

Just remember: each stack push must be matched with a stack pull. Each subroutine
call must be matched with a return from subroutine.

Interrupts and Interrupt Routines

Interrupt routines are a type of subroutine that gets executed when special events
happen. These special events are often called interrupts, and they may be generated by
a variety of sources. Examples of things that may generate interrupts are: a byte
coming in over the serial line, a programmable timer triggering, or a sensor line
changing state.

When an interrupt happens, the 68HC11 stops what it is doing, saves its local state
(the contents of all registers), and processes the interrupt. Each interrupt has code
associated with it; it is this code that is executed when the interrupt occurs.

Interrupts may be used to give the appearance that the 68HC11 is doing several things
at once. There are a several reasons for this:

The main code doesn't have to know when an interrupt occurs. This is because
after the interrupt finishes, control is returned to the main code exactly where it
left off. No information is lost.
The interrupt servicing process is automatic. In this way, it is different from a
subroutine call, which must be explicitly done each time it is required.
Many interrupts can be enabled at the same time. Whenever they occur, they are
serviced. Many "background jobs" can be taken care of independently of each
other.

If multiple interrupts are being used, it is possible for an interrupt to occur during the
servicing of a different interrupt routine. Typically, interrupting an interrupt routine is
not a good idea. The 68HC11 deals with this nested interrupt condition by queueing
up the interrupts and processing them sequentially, based on a predetermined
interrupt priority scheme.

In their usage of the stack, interrupts are implemented quite like subroutines. When
an interrupt call is processed, however, the state of all of the 68HC11 registers is saved
on the stack, not just the return address. This way, when the interrupt routine
returns, the processor can continue executing the main code in exactly the same state
that it left it.

Figure 12.4 shows the configuration of the stack immediately after an interrupt call.

Figure 12.4: Diagram of Stack After an Interrupt Call

Interrupt Vectors

When an interrupt occurs, the 68HC11 must know where the code associated with that
interrupt is located. An interrupt vector points to the starting address of the code
associated with each interrupt. When an interrupt occurs, the 68HC11 first finds its
associated interrupt vector, then jumps to the address specified by the vector.

These interrupt vectors are "mapped" into specific areas of system memory. In the

68HC11 architecture, the interrupt vectors are located at the top of memory. This area,
reserved for the interrupt vectors only, starts at address $FFC0 and continues to the
end of memory, address $FFFF. Two bytes are needed for each interrupt vector; thus it
may be calculated that the 68HC11 has ($FFFF - $FFC0 + 1) � 2 total interrupt
vectors. (This is 32 decimal.)

The location of each interrupt vector is predetermined. For example, the RESET interrupt
is generated when the system reset button is pressed. The RESET vector is located at
addresses $FFFE and $FFFF, the very last two bytes of memory. When the reset button
is pressed, the 68HC11 jumps to the location specified by the pointer contained in
those two bytes. Since pressing reset should restart the microprocessor, the reset
vector usually points to the start of the main code.

Figure 12.5 shows a map of the memory space from locations $FFC0 to $FFFF and the
interrupt vectors associated with each location. Please refer to it later, when we discuss
the purpose of some of the vectors that are listed here.

Figure 12.5: Table of 68HC11 Interrupt Vector Locations

Architecture of the 68HC11
The 68HC11 chip includes many features that often must be implemented with
hardware external to the microprocessor itself. Some of these features include:

serial line input and output
analog to digital converters

programmable timers
counters

This section explains how to use these advanced features of the 68HC11.

Register Block

The 68HC11 uses a particular area of memory to interface with the special functions.
This area of memory is called the register block and is located from addresses $1000 to
$103F.

The general method of controlling the various features of the chip is by reading and
writing data to the different registers in the register block. Since the register block is
mapped into memory, the typical 68HC11 instructions for reading and writing data to
any area of memory are used to interact with these registers.

Block Diagram of 68HC11

Figure 12.6 shows a simplified block diagram of the 68HC11 architecture. This
diagram depicts the 68HC11 in "single chip" mode, as opposed to the "expanded" mode
presented in Chapter 3, and used on the RoboBoard. A more complete block diagram
may be found in the Motorola M68HC11 Reference Manual.

Figure 12.6: Simplified Block Diagram of 68HC11

When scanning the diagram, notice that some of the ports have arrows running in
both directions (ports A, C, and D). These ports are bidirectional, meaning that they
can be used for either input or output.

Each port contains eight data bits, making it equivalent to one byte of data. Each data
bit is mapped to a physical pin on the microprocessor package. This means that when
data is written to a particular output port, that data appears as voltage levels on the
real pins connected to that port. In this way, the 68HC11 can interface with external

devices.

In many cases, ports may contain a mixture of pins used for either input or output. In
other cases, particular pins in a port are dedicated to a specific function.

Following is a brief description of each port on the diagram. The rest of this section
explains how to use each port in detail.

Port A.
This is a digital, bidirectional port that implements special timer and counter
circuitry. The timers can be used to generate waveforms of varying frequencies;
the counters can be used to count certain events (like rising edges of signal) on
the input lines.

Port B.
This is a digital port that may be used for output only.

Port C.
This is a digital, bidirectional port. Its default state is for input.

Port D.
This is a bidirectional port dedicated to serial input and output functions. On the
RoboBoard, two of these pins are used for communications with a host computer.
The other four pins are used to implement the SPI high speed link with other
RoboBoards.

Port E.
This is the analog input port.

The following section begins the in-depth explanation of these ports with Port B.

Port B

Port B is controlled by a register located at address $1004. In the 68HC11 literature,
this register is named PORTB. Port B is implemented as eight output pins on the
68HC11. The following two instructions write the value %00010000 at the Port B register
location, $1004.

 LDAA #%00010000
 STAA $1004 * store A at "PORTB" location

Port C

Port C may be configured as an output port and used in a similar fashion to Port B
using the DDRC (data direction for Port C) register, as detailed in the Motorola literature.

Port C is controlled by reading the value of the location $1003. Whatever input signals
that are present on the Port C lines are "latched" into Port C during the read operation.

The Port C register is referred to by the name PORTC.

The following code sample reads the digital inputs from Port C and branches to the
routine called AllZero if the input from Port C is zero.

 LDAA $1003 * load Port C value into A
 BEQ AllZero * if zero, branch

Analog Input Port

Port E is the analog input port. This port is controlled by several registers and may be
configured in a few different ways.

In order to use the analog-to-digital (A/D) converter, the A/D system must first be
powered-up (its default state is off).

The System Configuration Options register (OPTION) is used to turn on the A/D system.
Bit 7 of this register must be set to "1" in order to turn on the A/D system:

 LDAA #%10000000 * bit 7 set to 1
 STAA $1039 * location of OPTION register

The A/D system is actually configured as two banks of four channels each. In one of
its operating modes, it repeatedly samples values from either of these four-channel
banks.

In another operating mode, the A/D system will repeatedly sample only one of the eight
input channels. Because sampling takes a finite amount of time (about 17 �sec), this
is a useful mode if one wants to look at one channel very closely.

The A/D Control Status Register (ADCTL) is used to select these different modes.
Figure 12.7 is a pictorial of the ADCTL register.

Figure 12.7: Diagram of ADCTL Register

Bit 7 of the ADCTL register, CCF, is the Conversions Complete Flag. It is set to "1" when
the A/D system has finished converting a set of four values. It is important to wait for
this flag to be set only when the mode is changed of the A/D system. Then, the CCF will
be set to zero, and one should explicitly wait for it to turn to one before trusting the
converted values.

Bit 5 is SCAN, the Continuous Scan Control. If this bit is set to one, the A/D system will
repeatedly convert values. If it is set to zero, the A/D will convert four values and stop.
For typical usage, it is probably simpler to set it to one and expect the A/D system to
continuously convert values.

Bit 4 is MULT, the Multiple Channel/Single Channel Control. If this bit is set to one, the
A/D will convert banks of four channels. If it is set to zero, the A/D will convert one

channel only.

Bits 3 to 0 select the channel(s) to be converted. The results of the A/D conversion
appear in four other registers called ADR1, ADR2, ADR3, and ADR4.

Figure 12.8 is a table that maps the settings of the channel select bits to the readings
that appear in the ADRx registers when MULT equals one. If MULT is zero, then the channel
select bits select the channel that gets converted into all four ADRx registers.

Figure 12.8: Settings of A/D Channel Select Bits

ADCTL is located at address $1030; ADR1 through ADR4 are located at addresses $1031
through $1034.

Timers and Counters

Port A implements a complex set of timer and counter hardware. This section will
introduce some of the hardware features; for a more complete description of the
timer/counter system, refer to the pink book, The Motorola M68HC11 Reference
Manual.

Timers

There are five output timers. Each timer has independent configuration settings.

Each timer may be programmed to take an action on its output pin when a period of
time elapses. Four possible actions may be taken: do nothing, set the output high, set
the output low, toggle (invert) the output value.

Each timer may be programmed to generate an interrupt when its time period elapses.
Typically, the interrupt is used to set up the timer again for its next cycle.

Each timer measures elapsed time by using a single 16-bit free running counter, or
TCNT. Every timer has its own 16-bit output compare register that it compares against
TCNT. When the value of TCNT matches the value in a timer's output compare register,
then the timer takes its programmed action (changing its output state, and/or

generating an interrupt).

A typical way to generate a square wave on a timer output is to write a delay value into
the timer's output compare register. The period of the square wave is determined by the
length of time that TCNT must count in order to match the timer's output compare
register. By writing new values into the output compare register, the timer can be set
up to wait until TCNT advances to match it.

The following code uses timer 4 to generate a square wave. The square wave is
interrupt-driven: each time that TCNT advances to match timer 4's output compare
register, the interrupt routine writes a new value into the output compare register,
setting up the timer for another half-wave cycle.

The SetUp portion of the code enables timer 4's interrupt, and sets up the timer for a
toggle each time the compare matches. Assume that the interrupt vector for the timer
points to the routine Tim4Int. This routine reads the value in the timer's output
compare register, and adds the value 1000 decimal to it. This way, TCNT will have to run
for another 1000 counts before the timer toggles its output again. The default speed for
TCNT is 500 nanoseconds per count, so the half-wave period of the resulting square
wave will be 500 ns � 1000, which is 0.5 milliseconds. The full square wave would
have a period of 1 msec, or a frequency of 1000 Hz.

SetUp LDAA #%00000100 * timer 4 for toggle setting
 STAA $1020 * Timer Control Register 1 (TCTL1)
 LDAA #%00010000 * timer 4 select bit
 STAA $1023 * Timer Interrupt Flag enable (TFLG1)
 STAA $1022 * Timer Interrupt Mask enable (TMSK1)

Loop BRA Loop * do nothing; interrupt takes over
 ...
 ...

Tim4Int LDD 1000 * load D register with 1/2 wave time
 ADDD $101C * add to Timer 4 output compare
 STD $101C * save sum back for next edge
 LDX #$1000 * used in next instruction
 BCLR $23,X $EF * clears interrupt flag
 RTI * ReTurn from Interrupt

Counters

Port A also has three "input-capture" registers. These registers may trigger when any of
the following events happen: capture disabled, capture on rising edges only, capture
on falling edges only, or capture any edge.

These registers may be used to time the length of a waveform.

Finally, one bit of Port A can be use for a "pulse accumulator" function. An eight-bit
register PACNT can be configured to automatically count pulses on this input pin.

Real Time Interrupt

The 68HC11 also has a real time interrupt (RTI) function. This function generates
interrupts at a fixed periodic rate. This function would be useful, for example, in
generating a pulse-width modulated control of the motor output lines.

The RTI function can generate interrupts at any of four rates: 4.10 ms, 8.19 ms, 16.38
ms, and 32.77 ms.

TMSK2, the Miscellaneous Timer Interrupt Mask, is used to control the RTI system
(located at address $1024). Figure 12.9 is a diagram of this register.

Figure 12.9: Diagram of TMSK2 Register

The RTII bit enables the RTI system when the bit is set to one.

Two bits in the PACTL, the Pulse Accumulator Control Register, are used to control the
rate of the RTI interrupts. The following table shows the relationship of the RTR1 and
RTR0 bits to the interrupt rate.

Figure 12.9: Diagram of TMSK2
Register

RTR1 RTR0 Interrupt Rate

 4.10 msec

 1 8.19 msec

1 16.38 msec

1 1 32.77 msec

The PACTL register is located at address $1026. RTR1 and RTR0 are the one and zero bits,
respectively, of this register.

See the M68HC11 Reference Manual for more details on the RTI system.

Serial Interface

The serial interface port is controlled by five different registers. Of these, the following
three are most important:

SCI Baud Rate Control Register
called BAUD. This register controls the baud rate (speed) of the serial port. Location:
$1028.

SCI Data Register
called SCDR. This register is used to receive and transmit the actual serial data.
Location: $102F.

SCI Status Register

called SCSR. This register provides status information that indicates when
transmissions are complete or when errors in transmissions occur.

The following code sample initializes the serial port for transmission and reception of
9600 baud serial data:

 LDX #$1000 * used as index register
 BCLR SPCR,X #PORTD_WOM * turn off wired-or mode
 LDAA #BAUD9600 * mask for 9600 baud speed
 STAA BAUD,X * stored into BAUD register
 LDAA #TRENA * mask for Transmit,Rec. enable
 STAA SCCR2,X * store in control register

The following code transmits a character and waits for it to finish tranmission:

 LDY #$1000 * used as index reg
 STAA SCDR,Y * store A reg in SCDR
WCLoop BRCLR SCSR,Y TDRE WCLoop * wait until data sent

The following code receives a character from the serial port:

 LDX #$1000 * used as index reg.
RCLoop BRCLR SCSR,X RDRF RCLoop * wait until char ready
 LDAA SCDR,X * input character to A

See the M68HC11 Reference Manual for more details on the SCI serial system.

The Motorola 68HC11 Assembler (AS11)

Labels

The assembler has a facility to generate symbolic labels during assembly. This lets one
refer to the location of an instruction using a label rather than by knowing its exact
address.

The assembler does this by using a two-step assembly process. In the first step, the
lengths of all instructions is determined so that the labels may be assigned. In the
second step, instructions that used other labels have their values filled in, since those
labels are now known.

Here is an example of a program that uses a symbolic label:

Loop LDAA #$FF * load A with 255
 DECA * decrement A register
 BNE Loop * branch to Loop if not zero

Labels must begin in the first character position of a new line and may optionally end

in a colon (:).

Arithmetic Expressions

The assembler supports the following arithmetic operations, which may be used to
form values of labels or instruction arguments:

+ addition

- subtraction

* multiplication

/ division

% remainder after division

& bitwise AND

| bitwise OR

^ bitwise Exclusive-OR

Expressions are evaluated left to right and there is no provision for parenthesized
expressions.

Constants are constructed with the following syntax:

' followed by ASCII character

$ followed by hexadecimal constant

% followed by binary constant

Assembler Pseudo-Operations

An assembler program typically has its own set of commands, called pseudo-operations
or pseudo-ops, used to direct the assembly process. These pseudo-ops seem like real
68HC11 instructions, but they are interpreted as control information to the assembler
rather than assembled into machine code.

ORG

The ORG pseudo-op, for ORiGin, specifies the location for the assembler to deposit the
machine code (or object code). In 68HC11 programming, all code should be preceded
by the following ORG command:

 ORG $F800 * start of \glossary{EEPROM}EEPROM

Observe the following sequence in the RM-11 Monitor program:

 ORG $F800 * start of EEPROM
Start LDS #$FF * Initialize Stack Pointer
* to top of RAM

EQU

The EQU pseudo-op is used to EQUate a symbolic label to a numeric value. Equates are
useful so that one does not have to memorize the locations of various 68HC11 control
registers; if the registers' names are equated to their locations at the beginning of the
code, then one can simply use the labels in programming.

The following excerpt illustrates correct usage of the EQU pseudo-op to specify some of
the 68HC11 register locations:

PORTA EQU $1000 * Port A data register
RESV1 EQU $1001 * Reserved
PIOC EQU $1002 * Parallel I/O Control register
PORTC EQU $1003 * Port C latched data register
PORTB EQU $1004 * Port B data register
PORTCL EQU $1005 * Port C data register

In coding, the programmer may then use the label name rather than the numeric
value:

 LDAA PORTB * equiv. to LDAA $1004

FCC

The FCC, "Form Constant Character" pseudo-op, deposits a text string into the object
code. This is used to store messages in the EEPROM that later can be printed back by
the program.

The following excerpt illustrates usage of the FCC pseudo-op:

 FCC 'Entering repeat mode.'

FCB and FDB

The FCB, "form constant byte," and FDB, "form double byte" pseudo-ops deposit a single
byte or word into the object code. They are used to insert data that is not part of a
68HC11 instruction.

Example:

 FDB $1013
 FCB $FF

RMB

The RMB "reserve memory block" pseudo-op takes an argument and skips that many
bytes ahead in the stream of output. It is used to leave a gap in the object code that will
later be filled in by the program while it is running.

 RMB 10 * reserve 10 bytes

Comments

A comment is:

any text after all operands for a given mnemonic have been processed;
a line beginning with * up to the end of line;
an empty line.

The * is a special character that can also mean "the address of the current instruction."
Thus, the following sequence will create an infinite loop:

 BRA * <-- branch to this instruction

Assembler Specifics

The Motorola assembler is called as11. It is invoked by using the name of the file to be
assembled (which typically has the filename suffix .asm):

 as11 foo.asm

This will produce a listing of error messages to the screen and the output file foo.s19.
The ".s19" suffix indicates the object code file that can be downloaded to the 68HC11.

The assembler can be directed to produce an output listing that shows the object code
that is created for each instruction. The following invocation will tell the assembler to
create a listing file called foo.lis:

 as11 foo.asm -l > foo.lis

If writing an assembly language program that will be used with IC, as11_IC is used in
place of as11.

Select a Chapter

