
Introduction to “The First Draft Report on the EDVAC”

by John von Neumann

Michael D. Godfrey

Normally first drafts are neither intended nor suitable for publication. This report is an exception.
It is a first draft in the usual sense, but it contains a wealth of information, and it had a pervasive
influence when it was first written. Most prominently, Alan Turing cites it, in his Proposal for the
Pilot ACE,* as the definitive source for understanding the nature and design of a general-purpose
digital computer.

After having influenced the first generation of digital computer engineers, the von Neumann
report fell out of sight. There were at least two reasons for this: The report was hard to find and
it was very hard to read. This is where its first draft quality resurfaced. The draft was typed at
the Moore School from von Neumann’s hand written manuscript. It is clear that the typescript was
never proof read. There are numerous typographical mistakes, and serious misunderstandings about
the intended use of mathematical symbols and Greek letters. There are also a considerable number
of errors which may have been in the manuscript. (Efforts to locate the manuscript have failed.)

In addition, throughout the text von Neumann refers to subsequent Sections which were never
written. Most prominently, the Sections on programming and on the input/output system are miss-
ing. It would have been wonderful if somehow von Neumann had found the opportunity to write
those sections.

I undertook the task of carrying out a careful proof reading.** Initially, this was in order to fully
understand the Report. However as the effort became increasingly time-consuming, I realized that
the result could usefully save time and effort for others. It seemed reasonable to create a machine-
readable copy and to use TEX to make the editing easier and more effective. Here is the final result.
I have taken great pains NOT to modify the intended expression, nor to editorialize on the original
work. The report is still not easy reading, but to the best of my ability this version is a correct
rendering of what von Neumann wrote.

A careful reading of the Report will be instructive to anyone with an interest in the past, present,
or future of computing.

This report has been published in: IEEE Annals of the History of Computing, Vol. 15, No. 4,
pp.27-75, 1993.

* A.M. Turing, “Proposals for Development in the Mathematics Division of an Automatic Com-
puting Engine (ACE),” presented to the National Physical Laboratory, 1945. Reprinted as Com Sci
57, National Physical laboratory, Teddington, UK, 1972.
** See also M.D. Godfrey and D.F. Hendry, “The Computer as von Neumann Planned It,” IEEE

Annals of the History of Computing, Vol. 15, No. 1, 1993, pp. 11-21.
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1.0 DEFINITIONS

1.1 The considerations which follow deal with the structure of a very high speed automatic digital
computing system, and in particular with its logical control. Before going into specific details, some
general explanatory remarks regarding these concepts may be appropriate.

1.2 An automatic computing system is a (usually highly composite) device, which can carry out
instructions to perform calculations of a considerable order of complexity—e.g. to solve a non-linear
partial differential equation in 2 or 3 independent variables numerically.

The instructions which govern this operation must be given to the device in absolutely exhaus-
tive detail. They include all numerical information which is required to solve the problem under
consideration: Initial and boundary values of the dependent variables, values of fixed parameters
(constants), tables of fixed functions which occur in the statement of the problem. These instruc-
tions must be given in some form which the device can sense: Punched into a system of punchcards
or on teletype tape, magnetically impressed on steel tape or wire, photographically impressed on
motion picture film, wired into one or more fixed or exchangeable plugboards—this list being by no
means necessarily complete. All these procedures require the use of some code to express the logical
and the algebraical definition of the problem under consideration, as well as the necessary numerical
material (cf. above).

Once these instructions are given to the device, it must be able to carry them out completely and
without any need for further intelligent human intervention. At the end of the required operations
the device must record the results again in one of the forms referred to above. The results are
numerical data; they are a specified part of the numerical material produced by the device in the
process of carrying out the instructions referred to above.

1.3 It is worth noting, however, that the device will in general produce essentially more numerical
material (in order to reach the results) than the (final) results mentioned. Thus only a fraction of
its numerical output will have to be recorded as indicated in 1.2, the remainder will only circulate
in the interior of the device, and never be recorded for human sensing. This point will receive closer
consideration subsequently, in particular in {12.4}.
1.4 The remarks of 1.2 on the desired automatic functioning of the device must, of course, assume
that it functions faultlessly. Malfunctioning of any device has, however, always a finite probability—
and for a complicated device and a long sequence of operations it may not be possible to keep this
probability negligible. Any error may vitiate the entire output of the device. For the recognition
and correction of such malfunctions intelligent human intervention will in general be necessary.

However, it may be possible to avoid even these phenomena to some extent. The device may
recognize the most frequent malfunctions automatically, indicate their presence and location by
externally visible signs, and then stop. Under certain conditions it might even carry out the necessary
correction automatically and continue (cf. {3.3}).

2.0 MAIN SUBDIVISIONS OF THE SYSTEM

2.1 In analyzing the functioning of the contemplated device, certain classificatory distinctions sug-
gest themselves immediately.

2.2 First: Since the device is primarily a computer, it will have to perform the elementary opera-
tions of arithmetics most frequently. These are addition, subtraction, multiplication and division:
+,−,×,÷. It is therefore reasonable that it should contain specialized organs for just these opera-
tions.

It must be observed, however, that while this principle as such is probably sound, the specific
way in which it is realized requires close scrutiny. Even the above list of operations: +,−,×,÷, is
not beyond doubt. It may be extended to include such operation as √ , 3

√ , sgn, | |, also log10,

1
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log2, ln, sin and their inverses, etc. One might also consider restricting it, e.g. omitting ÷ and
even ×. One might also consider more elastic arrangements. For some operations radically different
procedures are conceivable, e.g. using successive approximation methods or function tables. These
matters will be gone into in {10.3, 10.4}. At any rate a central arithmetical part of the device will
probably have to exist, and this constitutes the first specific part: CA.

2.3 Second: The logical control of the device, that is the proper sequencing of its operations can
be most efficiently carried out by a central control organ. If the device is to be elastic, that is as
nearly as possible all purpose, then a distinction must be made between the specific instructions
given for and defining a particular problem, and the general control organs which see to it that these
instructions—no matter what they are—are carried out. The former must be stored in some way—
in existing devices this is done as indicated in 1.2—the latter are represented by definite operating
parts of the device. By the central control we mean this latter function only, and the organs which
perform it form the second specific part: CC.
2.4 Third: Any device which is to carry out long and complicated sequences of operations (specif-
ically of calculations) must have a considerable memory. At least the four following phases of its
operation require a memory:

(a) Even in the process of carrying out a multiplication or a division, a series of intermediate
(partial) results must be remembered. This applies to a lesser extent even to additions and subtrac-
tions (when a carry digit may have to be carried over several positions), and to a greater extent to
√ , 3

√ , if these operations are wanted. (cf. {10.3, 10.4})
(b) The instructions which govern a complicated problem may constitute a considerable mate-

rial, particularly so, if the code is circumstantial (which it is in most arrangements). This material
must be remembered.

(c) In many problems specific functions play an essential role. They are usually given in form of
a table. Indeed in some cases this is the way in which they are given by experience (e.g. the equation
of state of a substance in many hydrodynamical problems), in other cases they may be given by
analytical expressions, but it may nevertheless be simpler and quicker to obtain their values from
a fixed tabulation, than to compute them anew (on the basis of the analytical definition) whenever
a value is required. It is usually convenient to have tables of a moderate number of entries only
(100–200) and to use interpolation. Linear and even quadratic interpolation will not be sufficient
in most cases, so it is best to count on a standard of cubic or biquadratic (or even higher order)
interpolation, (cf. {10.3}).

Some of the functions mentioned in the course of 2.2 may be handled in this way: log10, log2,
ln, sin and their inverses, possibly also √ , 3

√ . Even the reciprocal might be treated in this manner,
thereby reducing ÷ to ×.

(d) For partial differential equations the initial conditions and the boundary conditions may
constitute an extensive numerical material, which must be remembered throughout a given problem.

(e) For partial differential equations of the hyperbolic or parabolic type, integrated along a
variable t, the (intermediate) results belonging to the cycle t must be remembered for the calculation
of the cycle t + dt. This material is much of the type (d), except that it is not put into the device
by human operators, but produced (and probably subsequently again removed and replaced by the
corresponding data for t + dt) by the device itself, in the course of its automatic operation.

(f) For total differential equations (d), (e) apply too, but they require smaller memory capacities.
Further memory requirements of the type (d) are required in problems which depend on given
constants, fixed parameters, etc.

(g) Problems which are solved by successive approximations (e.g. partial differential equations of
the elliptic type, treated by relaxation methods) require a memory of the type (e): The (intermediate)
results of each approximation must be remembered, while those of the next one are being computed.

(h) Sorting problems and certain statistical experiments (for which a very high speed device
offers an interesting opportunity) require a memory for the material which is being treated.
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2.5 To sum up the third remark: The device requires a considerable memory. While it appeared
that various parts of this memory have to perform functions which differ somewhat in their nature
and considerably in their purpose, it is nevertheless tempting to treat the entire memory as one
organ, and to have its parts even as interchangeable as possible for the various functions enumerated
above. This point will be considered in detail, cf. {13.0}.

At any rate the total memory constitutes the third specific part of the device: M.

2.6 The three specific parts CA, CC (together C) and M correspond to the associative neurons in
the human nervous system. It remains to discuss the equivalents of the sensory or afferent and the
motor or efferent neurons. These are the input and the output organs of the device, and we shall
now consider them briefly.

In other words: All transfers of numerical (or other) information between the parts C and M of
the device must be effected by the mechanisms contained in these parts. There remains, however,
the necessity of getting the original definitory information from outside into the device, and also of
getting the final information, the results, from the device into the outside.

By the outside we mean media of the type described in 1.2: Here information can be produced
more or less directly by human action (typing, punching, photographing light impulses produced by
keys of the same type, magnetizing metal tape or wire in some analogous manner, etc.), it can be
statically stored, and finally sensed more or less directly by human organs.

The device must be endowed with the ability to maintain the input and output (sensory and
motor) contact with some specific medium of this type (cf. 1.2): That medium will be called the
outside recording medium of the device: R. Now we have:

2.7 Fourth: The device must have organs to transfer (numerical or other) information from R into
its specific parts, C and M. These organs form its input, the fourth specific part: I. It will be seen
that it is best to make all transfers from R (by I) into M, and never directly into C (cf. {14.1, 15.3}).
2.8 Fifth: The device must have organs to transfer (presumably only numerical information) from
its specific parts C and M into R. These organs form its output, the fifth specific part: O. It will be
seen that it is again best to make all transfers from M (by O) into R, and never directly from C,
(cf. {14.1, 15.3}).
2.9 The output information, which goes into R, represents, of course, the final results of the op-
eration of the device on the problem under consideration. These must be distinguished from the
intermediate results, discussed e.g. in 2.4, (e)–(g), which remain inside M. At this point an important
question arises: Quite apart from its attribute of more or less direct accessibility to human action
and perception R has also the properties of a memory. Indeed, it is the natural medium for long
time storage of all the information obtained by the automatic device on various problems. Why is
it then necessary to provide for another type of memory within the device M? Could not all, or at
least some functions of M—preferably those which involve great bulks of information—be taken over
by R?

Inspection of the typical functions of M, as enumerated in 2.4, (a)–(h), shows this: It would
be convenient to shift (a) (the short-duration memory required while an arithmetical operation is
being carried out) outside the device, i.e. from M into R. (Actually (a) will be inside the device,
but in CA rather than in M. Cf. the end of 12.2). All existing devices, even the existing desk
computing machines, use the equivalent of M at this point. However (b) (logical instructions) might
be sensed from outside, i.e. by I from R, and the same goes for (c) (function tables) and (e), (g)
(intermediate results). The latter may be conveyed by O to R when the device produces them, and
sensed by I from R when it needs them. The same is true to some extent of (d) (initial conditions
and parameters) and possibly even of (f) (intermediate results from a total differential equation). As
to (h) (sorting and statistics), the situation is somewhat ambiguous: In many cases the possibility
of using M accelerates matters decisively, but suitable blending of the use of M with a longer range
use of R may be feasible without serious loss of speed and increase the amount of material that can
be handled considerably.
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Indeed, all existing (fully or partially automatic) computing devices use R—as a stack of punch-
cards or a length of teletype tape—for all these purposes (excepting (a), as pointed out above).
Nevertheless it will appear that a really high speed device would be very limited in its usefulness
unless it can rely on M, rather than on R, for all the purposes enumerated in 2.4, (a)–(h), with
certain limitations in the case of (e), (g), (h), (cf. {12.3}).

3.0 PROCEDURE OF DISCUSSION

3.1 The classification of 2.0 being completed, it is now possible to take up the five specific parts
into which the device was seen to be subdivided, and to discuss them one by one. Such a discussion
must bring out the features required for each one of these parts in itself, as well as in their relations
to each other. It must also determine the specific procedures to be used in dealing with numbers
from the point of view of the device, in carrying out arithmetical operations, and providing for
the general logical control. All questions of timing and of speed, and of the relative importance of
various factors, must be settled within the framework of these considerations.

3.2 The ideal procedure would be, to take up the five specific parts in some definite order, to treat
each one of them exhaustively, and go on to the next one only after the predecessor is completely
disposed of. However, this seems hardly feasible. The desirable features of the various parts, and
the decisions based on them, emerge only after a somewhat zigzagging discussion. It is therefore
necessary to take up one part first, pass after an incomplete discussion to a second part, return after
an equally incomplete discussion of the latter with the combined results to the first part, extend
the discussion of the first part without yet concluding it, then possibly go on to a third part, etc.
Furthermore, these discussions of specific parts will be mixed with discussions of general principles,
of arithmetical procedures, of the elements to be used, etc.

In the course of such a discussion the desired features and the arrangements which seem best
suited to secure them will crystallize gradually until the device and its control assume a fairly definite
shape. As emphasized before, this applies to the physical device as well as to the arithmetical and
logical arrangements which govern its functioning.

3.3 In the course of this discussion the viewpoints of 1.4, concerned with the detection, location,
and under certain conditions even correction, of malfunctions must also receive some consideration.
That is, attention must be given to facilities for checking errors. We will not be able to do anything
like full justice to this important subject, but we will try to consider it at least cursorily whenever
this seems essential (cf. {}).

4.0 ELEMENTS, SYNCHRONISM, NEURON ANALOGY

4.1 We begin the discussion with some general remarks:

Every digital computing device contains certain relay like elements, with discrete equilibria.
Such an element has two or more distinct states in which it can exist indefinitely. These may
be perfect equilibria, in each of which the element will remain without any outside support, while
appropriate outside stimuli will transfer it from one equilibrium into another. Or, alternatively, there
may be two states, one of which is an equilibrium which exists when there is no outside support,
while the other depends for its existence upon the presence of an outside stimulus. The relay action
manifests itself in the omission of stimuli by the element whenever it has itself received a stimulus of
the type indicated above. The emitted stimuli must be of the same kind as the received one, that is,
they must be able to stimulate other elements. There must, however, be no energy relation between
the received and the emitted stimuli, that is, an element which has received one stimulus, must be
able to emit several of the same intensity. In other words: Being a relay, the element must receive
its energy supply from another source than the incoming stimulus.
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In existing digital computing devices various mechanical or electrical devices have been used as
elements: Wheels, which can be locked into any one of ten (or more) significant positions, and which
on moving from one position to another transmit electric pulses that may cause other similar wheels
to move; single or combined telegraph relays, actuated by an electromagnet and opening or closing
electric circuits; combinations of these two elements;—and finally there exists the plausible and
tempting possibility of using vacuum tubes, the grid acting as a valve for the cathode-plate circuit.
In the last mentioned case the grid may also be replaced by deflecting organs, i.e. the vacuum tube
by a cathode ray tube—but it is likely that for some time to come the greater availability and various
electrical advantages of the vacuum tubes proper will keep the first procedure in the foreground.

Any such device may time itself autonomously, by the successive reaction times of its elements.
In this case all stimuli must ultimately originate in the input. Alternatively, they may have their
timing impressed by a fixed clock, which provides certain stimuli that are necessary for its functioning
at definite periodically recurrent moments. This clock may be a rotating axis in a mechanical
or a mixed, mechanico-electrical device; and it may be an electrical oscillator (possibly crystal
controlled) in a purely electrical device. If reliance is to be placed on synchronisms of several
distinct sequences of operations performed simultaneously by the device, the clock impressed timing
is obviously preferable. We will use the term element in the above defined technical sense, and call
the device synchronous or asynchronous, according to whether its timing is impressed by a clock or
autonomous, as described above.

4.2 It is worth mentioning, that the neurons of the higher animals are definitely elements in the
above sense. They have all-or-none character, that is two states: Quiescent and excited. They fulfill
the requirements of 4.1 with an interesting variant: An excited neuron emits the standard stimulus
along many lines (axons). Such a line can, however, be connected in two different ways to the next
neuron: First: In an excitatory synapse, so that the stimulus causes the excitation of the neuron.
Second: In an inhibitory synapse, so that the stimulus absolutely prevents the excitation of the
neuron by any stimulus on any other (excitatory) synapse. The neuron also has a definite reaction
time, between the reception of a stimulus and the emission of the stimuli caused by it, the synaptic
delay.

Following W.S. MacCulloch and W. Pitts (“A logical calculus of the ideas immanent in nervous
activity,” Bull. Math. Biophysics, Vol. 5 (1943), pp. 115–133) we ignore the more complicated aspects
of neuron functioning: Thresholds, temporal summation, relative inhibition, changes of the threshold
by after-effects of stimulation beyond the synaptic delay, etc. It is, however, convenient to consider
occasionally neurons with fixed thresholds 2 and 3, that is, neurons which can be excited only by
(simultaneous) stimuli on 2 or 3 excitatory synapses (and none on an inhibitory synapse). (cf. {6.4})

It is easily seen that these simplified neuron functions can be imitated by telegraph relays or by
vacuum tubes. Although the nervous system is presumably asynchronous (for the synaptic delays),
precise synaptic delays can be obtained by using synchronous setups. (cf. {6.3})

4.3 It is clear that a very high speed computing device should ideally have vacuum tube elements.
Vacuum tube aggregates like counters and scalers have been used and found reliable at reaction
times (synaptic delays) as short as a microsecond (= 10−6 seconds), this is a performance which no
other device can approximate. Indeed: Purely mechanical devices may be entirely disregarded and
practical telegraph relay reaction times are of the order of 10 milliseconds (= 10−2 seconds) or more.
It is interesting to note that the synaptic time of a human neuron is of the order of a millisecond
(= 10−3 seconds).

In the considerations which follow we will assume accordingly, that the device has vacuum tubes
as elements. We will also try to make all estimates of numbers of tubes involved, timing, etc., on
the basis that the types of tubes used are the conventional and commercially available ones. That
is, that no tubes of unusual complexity or with fundamentally new functions are to be used. The
possibilities for the use of new types of tubes will actually become clearer and more definite after a
thorough analysis with the conventional types (or some equivalent elements, cf. {}) has been carried
out.
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Finally, it will appear that a synchronous device has considerable advantages (cf. {6.3}).

5.0 PRINCIPLES GOVERNING THE ARITHMETICAL OPERATIONS

5.1 Let us now consider certain functions of the first specific part: The central arithmetical part
CA.

The element in the sense of 4.3, the vacuum tube used as a current valve or gate, is an all-or-
none device, or at least it approximates one: According to whether the grid bias is above or below
cut-off, it will pass current or not. It is true that it needs definite potentials on all its electrodes
in order to maintain either state, but there are combinations of vacuum tubes which have perfect
equilibria: Several states in each of which the combination can exist indefinitely, without any outside
support, while appropriate outside stimuli (electric pulses) will transfer it from one equilibrium into
another. These are the so called trigger circuits, the basic one having two equilibria and containing
two triodes or one pentode. The trigger circuits with more than two equilibria are disproportionately
more involved.

Thus, whether the tubes are used as gates or as triggers, the all-or-none, two equilibrium,
arrangements are the simplest ones. Since these tube arrangements are to handle numbers by means
of their digits, it is natural to use a system of arithmetic in which the digits are also two valued.
This suggests the use of the binary system.

The analogs of human neurons, discussed in 4.2–4.3 are equally all-or-none elements. It will
appear that they are quite useful for all preliminary, orienting, considerations of vacuum tube systems
(cf. {6.1, 6.2}). It is therefore satisfactory that here too the natural arithmetical system to handle
is the binary one.

5.2 A consistent use of the binary system is also likely to simplify the operations of multiplication
and division considerably. Specifically it does away with the decimal multiplication table, or with
the alternative double procedure of building up the multiples of each multiplier or quotient digit
by additions first, and then combining these (according to positional value) by a second sequence
of additions or subtractions. In other words: Binary arithmetics has a simpler and more one-piece
logical structure than any other, particularly than the decimal one.

It must be remembered, of course, that the numerical material which is directly in human use,
is likely to have to be expressed in the decimal system. Hence, the notations used in R should
be decimal. But it is nevertheless preferable to use strictly binary procedures in CA, and also in
whatever numerical material may enter into the central control CC. Hence M should store binary
material only.

This necessitates incorporating decimal-binary and binary-decimal conversion facilities into I
and O. Since these conversions require a good deal of arithmetical manipulating, it is most economical
to use CA, and hence for coordinating purposes also CC, in connection with I and O. The use of CA
implies, however, that all arithmetics used in both conversions must be strictly binary. For details,
cf. {11.4}.

5.3 At this point there arises another question of principle. In all existing devices where the element
is not a vacuum tube the reaction time of the element is sufficiently long to make a certain telescoping
of the steps involved in addition, subtraction, and still more in multiplication and division, desirable.
To take a specific case consider binary multiplication. A reasonable precision for many differential
equation problems is given by carrying 8 significant decimal digits, that is by keeping the relative
rounding-off errors below 10−8. This corresponds to 2−27 in the binary system, that is to carrying
27 significant binary digits. Hence a multiplication consists of pairing each one of 27 multiplicand
digits with each one of 27 multiplier digits, and forming product digits 0 and 1 accordingly, and
then positioning and combining them. These are essentially 272 = 729 steps, and the operations of
collecting and combining may about double their number. So 1000–1500 steps are essentially right.
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It is natural to observe that in the decimal system a considerably smaller number of steps
obtains: 82 = 64 steps, possibly doubled, that is about 100 steps. However, this low number is
purchased at the price of using a multiplication table or otherwise increasing or complicating the
equipment. At this price the procedure can be shortened by more direct binary artifices, too, which
will be considered presently. For this reason it seems not necessary to discuss the decimal procedure
separately.

5.4 As pointed out before, 1000–1500 successive steps per multiplication would make any non
vacuum tube device unacceptably slow. All such devices, excepting some of the latest special relays,
have reaction times of more than 10 milliseconds, and these newest relays (which may have reaction
times down to 5 milliseconds) have not been in use very long. This would give an extreme minimum
of 10–15 seconds per (8 decimal digit) multiplication, whereas this time is 10 seconds for fast modern
desk computing machines, and 6 seconds for the standard IBM multipliers. (For the significance
of these durations, as well as of those of possible vacuum tube devices, when applied to typical
problems, cf. {}.)

The logical procedure to avoid these long durations, consists of telescoping operations, that is
of carrying out simultaneously as many as possible. The complexities of carrying prevent even such
simple operations as addition or subtraction to be carried out at once. In division the calculation of
a digit cannot even begin unless all digits to its left are already known. Nevertheless considerable
simultaneisations are possible: In addition or subtraction all pairs of corresponding digits can be
combined at once, all first carry digits can be applied together in the next step, etc. In multiplication
all the partial products of the form (multiplicand) × (multiplier digit) can be formed and positioned
simultaneously—in the binary system such a partial product is zero or the multiplicand, hence this
is only a matter of positioning. In both addition and multiplication the above mentioned accelerated
forms of addition and subtraction can be used. Also, in multiplication the partial products can be
summed up quickly by adding the first pair together simultaneously with the second pair, the third
pair, etc.; then adding the first pair of pair sums together simultaneously with the second one, the
third one, etc.; and so on until all terms are collected. (Since 27 ≤ 25, this allows to collect 27
partial sums—assuming a 27 binary digit multiplier—in 5 addition times. This scheme is due to H.
Aiken.)

Such accelerating, telescoping procedures are being used in all existing devices. (The use of the
decimal system, with or without further telescoping artifices is also of this type, as pointed out at the
end of 5.3. It is actually somewhat less efficient than purely dyadic procedures. The arguments of
5.1–5.2 speak against considering it here.) However, they save time only at exactly the rate at which
they multiply the necessary equipment, that is the number of elements in the device: Clearly if a
duration is halved by systematically carrying out two additions at once, double adding equipment
will be required (even assuming that it can be used without disproportionate control facilities and
fully efficiently), etc.

This way of gaining time by increasing equipment is fully justified in non vacuum tube element
devices, where gaining time is of the essence, and extensive engineering experience is available
regarding the handling of involved devices containing many elements. A really all-purpose automatic
digital computing system constructed along these lines must, according to all available experience,
contain over 10,000 elements.

5.5 For a vacuum tube element device on the other hand, it would seem that the opposite procedure
holds more promise.

As pointed out in 4.3, the reaction time of a not too complicated vacuum tube device can
be made as short as one microsecond. Now at this rate even the unmanipulated duration of the
multiplication, obtained in 5.3 is acceptable: 1000–1500 reaction times amount to 1–1.5 milliseconds,
and this is so much faster than any conceivable non vacuum tube device, that it actually produces
a serious problem of keeping the device balanced, that is to keep the necessarily human supervision
beyond its input and output ends in step with its operations. (For details of this cf. {}.)

Regarding other arithmetical operations this can be said: Addition and subtraction are clearly
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much faster than multiplication. On a basis of 27 binary digits (cf. 5.3), and taking carrying into
consideration, each should take at most twice 27 steps, that is about 30–50 steps or reaction times.
This amounts to .03–.05 milliseconds. Division takes, in this scheme where shortcuts and telescoping
have not been attempted in multiplying and the binary system is being used, about the same number
of steps as multiplication. (cf. {7.7, 8.3}). Square rooting is usually, and in this scheme too, not
essentially longer than dividing.

5.6 Accelerating these arithmetical operations does therefore not seem necessary—at least not until
we have become thoroughly and practically familiar with the use of very high speed devices of this
kind, and also properly understood and started to exploit the entirely new possibilities for numerical
treatment of complicated problems which they open up. Furthermore it seems questionable whether
the method of acceleration by telescoping processes at the price of multiplying the number of elements
required would in this situation achieve its purpose at all: The more complicated the vacuum tube
equipment—that is, the greater the number of elements required—the wider the tolerances must be.
Consequently any increase in this direction will also necessitate working with longer reaction times
than the above mentioned one of one microsecond. The precise quantitative effects of this factor are
hard to estimate in a general way—but they are certainly much more important for vacuum tube
elements than for telegraph relay ones.

Thus it seems worthwhile to consider the following viewpoint: The device should be as simple
as possible, that is, contain as few elements as possible. This can be achieved by never performing
two operations simultaneously, if this would cause a significant increase in the number of elements
required. The result will be that the device will work more reliably and the vacuum tubes can be
driven to shorter reaction times than otherwise.

5.7 The point to which the application of this principle can be profitably pushed will, of course,
depend on the actual physical characteristics of the available vacuum tube elements. It may be,
that the optimum is not at a 100% application of this principle and that some compromise will be
found to be optimal. However, this will always depend on the momentary state of the vacuum tube
technique, clearly the faster the tubes are which will function reliably in this situation, the stronger
the case is for uncompromising application of this principle. It would seem that already with the
present technical possibilities the optimum is rather nearly at this uncompromising solution.

It is also worth emphasizing that up to now all thinking about high speed digital computing
devices has tended in the opposite direction: Towards acceleration by telescoping processes at the
price of multiplying the number of elements required. It would therefore seem to be more instructive
to try to think out as completely as possible the opposite viewpoint: That of absolutely refraining
from the procedure mentioned above, that is of carrying out consistently the principle formulated
in 5.6.

We will therefore proceed in this direction.

6.0 E-ELEMENTS

6.1 The considerations of 5.0 have defined the main principles for the treatment of CA. We continue
now on this basis, with somewhat more specific and technical detail.

In order to do this it is necessary to use some schematic picture for the functioning of the
standard element of the device: Indeed, the decisions regarding the arithmetical and the logical
control procedures of the device, as well as its other functions, can only be made on the basis of
some assumptions about the functioning of the elements.

The ideal procedure would be to treat the elements as what they are intended to be: as vacuum
tubes. However, this would necessitate a detailed analysis of specific radio engineering questions
at this early stage of the discussion, when too many alternatives are still open to be treated all
exhaustively and in detail. Also, the numerous alternative possibilities for arranging arithmetical
procedures, logical control, etc., would superpose on the equally numerous possibilities for the choice



First Draft of a Report on the EDVAC 9

of types and sizes of vacuum tubes and other circuit elements from the point of view of practical
performance, etc. All this would produce an involved and opaque situation in which the preliminary
orientation which we are now attempting would be hardly possible.

In order to avoid this we will base our considerations on a hypothetical element, which functions
essentially like a vacuum tube—e.g. like a triode with an appropriate associated RLC-circuit—but
which can be discussed as an isolated entity, without going into detailed radio frequency electro-
magnetic considerations. We re-emphasize: This simplification is only temporary, only a transient
standpoint, to make the present preliminary discussion possible. After the conclusions of the pre-
liminary discussion the elements will have to be reconsidered in their true electromagnetic nature.
But at that time the decisions of the preliminary discussion will be available, and the corresponding
alternatives accordingly eliminated.
6.2 The analogs of human neurons, discussed in 4.2–4.3 and again referred to at the end of 5.1,
seem to provide elements of just the kind postulated at the end of 6.1. We propose to use them
accordingly for the purpose described there: As the constituent elements of the device, for the
duration of the preliminary discussion. We must therefore give a precise account of the properties
which we postulate for these elements.

The element which we will discuss, to be called an E-element, will be represented to be a circle
©, which receives the excitatory and inhibitory stimuli, and emits its own stimuli along a line
attached to it: ©−−. This axon may branch: ©−−<, ©−−<−−. The emission along it follows the
original stimulation by a synaptic delay, which we can assume to be a fixed time, the same for all
E-elements, to be denoted by τ . We propose to neglect the other delays (due to conduction of the
stimuli along the lines) aside of τ . We will mark the presence of the delay τ by an arrow on the line:
©→−,©→−<. This will also serve to identify the origin and the direction of the line.
6.3 At this point the following observation is necessary. In the human nervous system the conduction
times along the lines (axons) can be longer than the synaptic delays, hence our above procedure of
neglecting them aside of τ would be unsound. In the actually intended vacuum tube interpretation,
however, this procedure is justified: τ is to be about a microsecond, an electromagnetic impulse
travels in this time 300 meters, and as the lines are likely to be short compared to this, the conduction
times may indeed by neglected. (It would take an ultra high frequency device—τ ≈ 10−8 seconds
or less—to vitiate this argument.)

Another point of essential divergence between the human nervous system and our intended
application consists in our use of a well-defined dispersionless synaptic delay τ , common to all E-
elements. (The emphasis is on the exclusion of a dispersion. We will actually use E-elements with
a synaptic delay 2τ , cf. {6.4, 7.3}.) We propose to use the delays τ as absolute units of time which
can be relied upon to synchronize the functions of various parts of the device. The advantages of
such an arrangement are immediately plausible, specific technical reasons will appear in {}.
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FIGURE 1

CLOCK PULSE

τ ′ τ ′ τ ′

tolerance limits

for the open

gate period

In order to achieve this, it is necessary to con-
ceive the device as synchronous in the sense of 4.1.
The central clock is best thought of as an electrical
oscillator, which emits in every period τ a short,
standard pulse of a length τ ′ of about (1/5)τ –
(1/2)τ . The stimuli emitted nominally by an E-
element are actually pulses of the clock, for which
the pulse acts as a gate. There is clearly a wide tol-
erance for the period during which the gate must
be kept open, to pass the clock-pulse without dis-
tortion. Cf. Figure 1. Thus the opening of the gate
can be controlled by any electric delay device with
a mean delay time τ , but considerable permissible
dispersion. Nevertheless the effective synaptic de-
lay will be τ with the full precision of the clock,
and the stimulus is completely renewed and syn-
chronized after each step. For a more detailed de-
scription in terms of vacuum tubes, cf. {}.
6.4 Let us now return to the description of the E-elements.

An E-element receives the stimuli of its antecedents across excitatory synapses: −−©→−, or
inhibitory synapses: −−•©→−. As pointed out in 4.2, we will consider E-elements with thresholds 1,
2, and 3, that is, which get excited by these minimum numbers of simultaneous excitatory stimuli.
All inhibitory stimuli, on the other hand, will be assumed to be absolute. E-elements with the above
thresholds will be denoted by ©,©2 ,©3 , respectively.

Since we have a strict synchronism of stimuli arriving only at times which are integer multiples
of τ , we may disregard phenomena of tiring, facilitation, etc. We also disregard relative inhibition,
temporal summation of stimuli, changes of threshold, changes of synapses, etc. In all this we are
following the procedure of W.J. MacCulloch and W. Pitts (cf. loc. cit. 4.2). We will also use E-
elements with double synaptic delay 2τ : −−©→−→−, and mixed types: −−©→−<→−.

The reason for our using these variants is that they give a greater flexibility in putting together
simple structures, and they can all be realized by vacuum tube circuits of the same complexity.

FIGURE 2
It should be observed that the authors quoted

above have shown that most of these elements can
be built up from each other. Thus −−©→−→− is
clearly equivalent to −−©→−©→−, and in the case of
2©→− at least −−−−2©→− is equivalent to the network of

Figure 2. However, it would seem to be misleading in
our application to represent these functions as if they
required 2 or 3 E-elements, since their complexity in
a vacuum tube realization is not essentially greater
than that of the simplest E-element −−©→−, cf. {}.

We conclude by observing that in planning networks of E-elements, all backtracks of stimuli
along the connecting lines must be avoided. Specifically: The excitatory and the inhibitory synapses
and the emission points—that is the three connections on −−•−−©→− will be treated as one-way
valves for stimuli—from left to right in the above picture. But everywhere else the lines and their
connections >•< will be assumed to pass stimuli in all directions. For the delays →− either assumption
can be made, this last point does not happen to matter in our networks.

6.5 Comparison of some typical E-element networks with their vacuum tube realizations indicates
that it takes usually 1–2 vacuum tubes for each E-element. In complicated networks, with many
stimulating lines for each E-element, this number may become somewhat higher. On the average,
however, counting 2 vacuum tubes per E-element would seem to be a reasonable estimate. This
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should take care of amplification and pulse-shaping requirements too, but of course not of the power
supply. For some of the details, cf. {}.

7.0 CIRCUITS FOR THE ARITHMETICAL OPERATIONS +,×

7.1 For the device—and in particular for CA—a real number is a sequence of binary digits. We
saw in 5.3, that a standard of 27 binary digit numbers corresponds to the convention of carrying 8
significant decimal digits, and is therefore satisfactory for many problems. We are not yet prepared
to make a decision on this point (cf. however, {12.2}), but we will assume for the time being, that
the standard number has about 30 digits.

When an arithmetical operation is to be performed on such numbers they must be present in
some form in the device, and more particularly in CA. Each (binary) digit is obviously representable
by a stimulus at a certain point and time in the device, or, more precisely, the value 1 for that
digit can be represented by the presence and the value 0 by the absence of that stimulus. Now the
question arises, how the 30 (binary) digits of a real number are to be represented together. They
could be represented simultaneously by 30 (possible) stimuli at 30 different positions in CA, or all 30
digits of one number could be represented by (possible) stimuli at the same point, occurring during
30 successive periods τ in time.

Following the principle of 5.6—to place multiple events in temporal succession rather than in
(simultaneous) spatial juxtaposition—we choose the latter alternative. Hence a number is repre-
sented by a line, which emits during 30 successive periods τ the stimuli corresponding to its 30
(binary) digits.

7.2 In the following discussions we will draw various networks of E-elements, to perform various
functions. These drawings will also be used to define block symbols. That is, after exhibiting the
structure of a particular network, a block symbol will be assigned to it, which will represent it in all
its further applications—including those where it enters as a constituent into a higher order network
and its block symbol. A block symbol shows all input and output lines of its network, but not their
internal connections. The input lines will be marked ⊃−− and the output lines −−•. A block symbol
carries the abbreviated name of its network (or its function), and the number of E-elements in it as
an index to the name. Cf. e.g. Figure 3 below.

FIGURE 3
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7.3 We proceed to describe an adder net-
work: Figure 3. The two addends come
in on the input lines a′, a′′, and the sum is
emitted with a delay 2τ against the addend
inputs on the output line s. (The dotted
extra input line c is for a special purpose
which will appear in 8.2) The carry digit is
formed by 2©. The corresponding digits of
the two addends together with the preced-
ing carry digit (delay τ !) excite each one
of © (left), 2©, 3© and an output stimulus
(that is a sum digit 1) results only when
© is excited without 2©, or when 3© is
excited—that is when the number of 1’s among the three digits mentioned is odd. The carry
stimulus (that is a carry digit 1) results, as pointed out above, only when 2© is excited—that is
when there are at least two 1’s among the three digits mentioned. All this constitutes clearly a
correct procedure of binary addition.

In the above we have made no provisions for handling the sign of a number, nor for the po-
sitioning of its binary point (the analog of the decimal point). These concepts will be taken up in
{8.0}, but before considering them we will carry out a preliminary discussion of the multiplier and
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the divider.
7.4 A multiplier network differs qualitatively from the adder in this respect: In addition every digit
of each addend is used only once, in multiplication each digit of the multiplicand is used an many
times as there are digits in the multiplier. Hence, the principle of 5.6 (cf. also the end of 7.1)
requires that both factors be remembered by the multiplier network for a (relatively) considerable
time: Since each number has 30 digits, the duration of the multiplication requires remembering for
at least 302 = 900 periods τ . In other words: It is no longer possible, as in the adder, to feed in the
two factors on two input lines, and to extract in continuous operation the product on the output
line—the multiplier needs a memory (cf. 2.4 (a)).

In discussing this memory we need not bring in M—this is a relatively small memory capacity
required for immediate use in CA, and it is best considered in CA.

FIGURE 4
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7.5 The E-elements can be used as mem-
ory devices: An element which stimulates
itself, , will hold a stimulus indef-
initely. Provided with two input lines rs,
cs for receiving and for clearing (forget-
ting) this stimulus, and with an output
line os to signalize the presence of the
stimulus (during the time interval over
which it is remembered), it becomes the
network of Figure 4.

It should be noted that this ml corresponds to the actual vacuum tube trigger circuits
mentioned at the beginning of 5.1. It is worth mentioning that ml contains one E-element,
while the simplest trigger circuits contain one or two vacuum tubes (cf. loc. cit.), in agreement with
the estimates of 6.5.

FIGURE 5
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Another observation is that m1 remembers only one stimulus, that is one binary digit.
If k-fold memory capacity is wanted, then k blocks m1 are required, or a cyclical arrange-
ment of k E-elements: . This cycle can be provided with inputs and outputs
in various ways, which can be arranged so that whenever a new stimulus (or rather the fact of its
presence or absence, that is a binary
digit) is received for remembering—
say at the left end of the cycle—the
old stimulus which should take its
place—coming from the right end of
the cycle—is automatically cleared.
Instead of going into these details,
however, we prefer to keep the cy-
cle open: −−©→−©→−. . .→−©→−
and provide it with such terminal equipment (at both ends, possibly connecting them) as may be
required in each particular case. This simple line is shown again in Figure 5. Terminal equipment,
which will normally cycle the output os at lk ’s right end back into the input at its left end,
but upon stimulation at s suppress (clear) this returning of the output os and connect instead the
input with the line rs, is shown in Figure 6.
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FIGURE 6
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7.6 lk , with the terminal equipment
of Figure 6, is a perfect memory organ,
but without it, in the form of Figure 5, it
is simply a delay organ. Indeed, its sole
function is to retain any stimulus for k pe-
riods t and then re-emit it and to be able
to do this for successive stimuli without
any interference between them.

This being so, and remembering that
each E-element represents (one or two)
vacuum tubes, it would seem wasteful to
use k–2k vacuum tubes to achieve nothing more than a delay kt. There exist delay devices which
can do this (in our present situation t is about a microsecond and k is about 30) more simply. We
do not discuss them here, but merely observe that there are several possible arrangements (cf. 12.5).
Accordingly, we replace the block lk of Figure 5 by a new block dl (k) , which is to represent
such a device. It contains no E-element, and will itself be treated as a new element.

We observe, that if dl (k) is a linear delay circuit, stimuli can backtrack through it (cf. the
end of 6.4). To prevent this, it suffices to protect its ends by E-elements, that is to achieve the first
and the last t delay by −−©→− or to use it in some combination like Figure 6, where the E-elements
of the associated network provide this protection.
7.7 We can now describe a multiplier network.

Binary multiplication consists of this: For each digital position in the multiplier (going from
left to right), the multiplicand is shifted by one position to the right, and then it is or is not added
to the sum of partial products already formed, according to whether the multiplier digit under
consideration is 1 or 0.

FIGURE 7
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Consequently the multiplier must contain an auxiliary network, which will or will not pass the
multiplicand into the adder, according to
whether the multiplier digit in question is
1 or 0. This can be achieved in two steps:
First, a network is required, which will
emit stimuli during a certain interval of
τ periods (the interval in which the mul-
tiplicand is wanted), provided that a cer-
tain input (connected to the organ which
contains the multiplier) was stimulated at
a certain earlier moment (when the proper multiplier digit is emitted). Such a network will be called
a discriminator. Second, a valve is required which will pass a stimulus only if it is also stimulated on
a second input it possesses. These two blocks together solve our problem: The discriminator must
be properly controlled, its output connected to the second input of the valve, and the multiplicand
routed through the valve into the adder. The valve is quite simple: Figure 7. The main stimulus is
passed from is to os, the second input enters at s.
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FIGURE 8
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A discriminator is shown in Figure 8.
A stimulus at the input t defines the mo-
ment at which the stimulus, which deter-
mines whether the later emission (at os)
shall take place at all, must be received
at the inputs. If these two stimuli coin-
cide, the left 2© is excited. Considering
its feedback, it will remain excited until
it succeeds in stimulating the middle 2©.
The middle 2© is connected to is© in such
a manner that it can be excited by the
left 2© only at a moment at which is© is
stimulated, but at whose predecessor is©
was not stimulated—that is at the beginning of a sequence of stimuli at is©. The middle 2© then
quenches the left 2©, and together with is© excites the right 2©. The middle 2© now becomes and
stays quiescent until the end of this sequence of stimuli at is© and beyond this, until the beginning
of the next sequence. Hence the left 2© is isolated from the two other 2©, and thereby is ready to
register the s, t stimuli for the next is© sequence. On the other hand the feedback of the right 2© is
such that it will stay excited for the duration of this is© sequence, and emit stimuli at os. There is
clearly a delay 2t between the input at is© and the output at os.

FIGURE 9
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Now the multiplier network can be put together: Figure 9. The multiplicand circulates through
dl I , the multiplier through dl II , and the sum of partial products (which begins with the value

0 and is gradually built up to
the complete product) through
dl III . The two inputs t, t′ re-
ceive the timing stimuli requir-
ed by the discriminator (they
correspond to t, is in Figure 8.)

7.8 The analysis of 7.7 avoided
the following essential features
of the multiplier: (a) The tim-
ing network which controls the
inputs t, t′ and stimulates them
at the proper moments. It will
clearly have to contain dl -like elements (cf. {}). (b) The k (delay lengths) of the dl I –
dl III . These too have certain functions of synchronization: Each time when the adder functions
(that is in each interval it–ft) the multiplicand and the partial product sum (that is the outputs of

dl I and of dl III ) must be brought together in such a manner that the former is advanced by
t (moved by one position to the right) relatively to the latter, in comparison with their preceding
encounter.

Also, if the two factors have 30 digits each, the product has 60 digits. Hence dl III should
have about twice the k of dl I and dl II , and a cycle in the former must correspond to about
two cycles in the latter. (The timing stimuli on t will be best regulated in phase with dl III .)
On the other hand, it is advisable to make provisions for rounding the product off to the standard
number of digits, and thereby keep the k of dl III near 30. (c) The networks required to get the
multiplicand and the multiplier into dl I and dl II (from other parts of the device), and to
get the product out of dl III . (d) The networks required to handle the signs and the binary point
positions of the factors. They are obviously dependent upon the way in which these attributes are
to be dealt with arithmetically (cf. the end of 7.3 and {}).

All these points will be dealt with subsequently. The questions connected with (d)—arithmetical
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treatment of sign and binary point—must be taken up first, since the former is needed for subtraction,
and hence for division too, and the latter is important for both multiplication and division.

8.0 CIRCUITS FOR THE ARITHMETICAL OPERATIONS −, ÷

8.1 Until now a number x was a sequence of (about 30) binary digits, with no definition of sign or
binary point. We must now stipulate conventions for the treatment of these concepts.

The extreme left digit will be reserved for the sign, so that its values 0,1 express the signs +, −,
respectively. If the binary point is between the digital positions i and i + 1 (from the left), then the
positional value of the sign digit is 2i−1. Hence without the sign convention the number x would lie
in the interval 0 ≤ x < 2i, and with the sign convention the subinterval 0 ≤ x < 2i−1 is unaffected
and corresponds to non-negative numbers, while the interval 2i−1 ≤ x < 2i corresponds to negative
numbers. We let the latter x represent a negative x′, so that the remaining digits of x are essentially
the complements to the digits of −x′. More precisely: 2i−1 − (−x′) = x − 2i−1, that is x′ = x − 2i,
for x′ in the interval −2i−1 ≤ x′ < 0.

In other words: The digital sequences which we use represent, without the sign convention,
the interval 0 ≤ x < 2i, and with the sign convention the interval −2i−1 ≤ x < 2i−1. The second
interval is correlated to the first one by subtracting 2i if necessary—that is their correspondence is
modulo 2i.

Since addition and subtraction leave relations modulo 2i unaffected, we can ignore these ar-
rangements in carrying out additions and subtractions. The same is true for the position of the
binary point: If this is moved from i to i′, then each number is multiplied by 2i′−i, but addition
and subtraction leave this relation invariant too. (All these things are, of course, the analogs of the
conventional decimal procedures.)

Thus we need not add anything to the addition procedure of 7.3, and it will be correct to set up
a subtraction procedure in the same way. The multiplication procedure of 7.7, however, will have
to be reconsidered, and the same caution applies to the division procedure to be set up.
8.2 We now set up a subtracter network. We can use the adder (cf. 7.3) for this purpose, if one
addend—say the first one—is fed in the negative. According to the above this means that this
addend x is replaced by 2i − x. That is each digit of x is replaced by its complement, and a unit of
the extreme right digital position is then added to this addend—or just as well as an extra addend.

This last operation can be carried out by stimulating the extra input c of the adder (cf. Figure
3) at that time. This takes automatically care of all carries which may be caused by this extra
addition.

FIGURE 10
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The complementation of each digit
can be done by a valve which does the
opposite of that of Figure 7: When stim-
ulated at s, it passes the complement of
the main stimulus from is to os: Figure
10.
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FIGURE 11
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Now the subtracter network is shown
in Figure 11. The subtrahend and the
minuend come in on the input lines s, m,
and the difference is emitted with a delay
3t against the inputs on the output line
d. The two inputs t′, t′′ receive the neces-
sary timing stimuli: t′ throughout the pe-
riod of subtraction, t′′ at its first t (corre-
sponding to the extreme right digital po-
sition, cf. above).
8.3 Next we form a divider network, in the same preliminary sense as the multiplier network of 7.7.

Binary division consists of this: For each digital position in the quotient (going from left to
right), the divisor is subtracted from the partial remainder (of the dividend) already formed; but
which has been shifted left by one position, preceding this subtraction. If the resulting difference is
not negative (that is, if its extreme left digit is 0) then the next quotient digit is 1, and the next
partial remainder (the one to be used for the following quotient digit, before the shift left referred
to above) is the difference in question. If the difference is negative (that is, if its extreme left digit
is 1) then the next quotient digit is 0, and the next partial remainder (in the same sense as above)
is the preceding partial remainder, but in its shifted position.

FIGURE 12
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The alternative in division is there-
fore comparable to the one in multiplica-
tion (cf. 7.7), with this notable difference:
In multiplication it was a matter of pass-
ing or not passing an addend: the multi-
plicand. In division the question is which
of two minuends to pass: the (shifted)
preceding partial remainder, or this quan-
tity minus the divisor. Hence we now
need two valves where we needed one in
multiplication. Also, we need a discrimi-
nator which is somewhat more elaborate
than the one of Figure 8: It must not only
pass a sequence of stimuli from is to os if there was a stimulus at s at the moment defined by the
stimulation of t, but it must alternatively pass that sequence from is to another output os′ if there
was no stimulus at s at the moment in question. Comparison of Figure 8, with Figure 12 shows,
that the latter possesses the desired properties. The delay between is and os or os′ is now 3t.
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FIGURE 13
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Now the divider network can be put together: Figure 13. The divisor circulates through dl I ,
while the dividend is originally in dl III , but is replaced, as the division progresses, by the successive
partial remainders. The valve v−1 routes the divisor negatively into the adder. The two valves

v1 immediately under it select the partial remainder (cf. below) and send it from their common
output line on one hand unchanged into dl II and on the other hand into the adder, from where
the sum (actually the difference) goes into dl III . The timing must be such as to produce the
required one position shift left. Thus dl II and dl III contain the two numbers from among
which the next partial remainder is to be selected. This selection is done by the discriminator d4
which governs the two valves controlling the (second addend) input of the adder (cf. above). The
sign digit of the resulting sum controls the discriminator, the timing stimulus at t must coincide with
its appearance (extreme left digit of the sum). t′ must be stimulated during the period in which the
two addends (actually minuend and subtrahend) are to enter the adder (advanced by 3t). t′′ must
receive the extra stimulus required in subtraction (t′′ in Figure 11) coinciding with the extreme right
digit of the difference. The quotient is assembled in dl IV , for each one of its digits the necessary
stimulus is available at the second output of the discriminator (os′ in Figure 12). It is passed into
dl IV through the lowest valve v1 , timed by a stimulus at t′′′.
8.4 The analysis of 8.3 avoided the same essential features of the divider which 7.7 omitted for the
multiplier, and which were enumerated in 7.8:
(a) The timing network which controls the inputs t, t′, t′′, t′′′.
(b) The k (delay lengths) of the dl I – dl IV . The details differ from those in 7.8, (b), but

the problem is closely parallel.
(c) The networks required to get the dividend and the divisor into dl III and dl I , and to get

the quotient out of dl IV .
(d) The networks required to handle signs and binary point positions.

As in the case of multiplication all these points will be dealt with subsequently.
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9.0 THE BINARY POINT

9.1 As pointed out at the end of 8.1, the sign convention of 8.1 as well as the binary point conven-
tion, which has not yet been determined, have no influence on addition and subtraction, but their
relationship to multiplication and division is essential and requires consideration.

It is clear from the definitions for multiplication and of division, as given at the beginning of
7.7 and of 8.3 respectively, that they apply only when all numbers involved are non-negative. That
is, when the extreme left digit (of multiplicand and multiplier, or dividend and divisor) is 0. Let us
therefore assume this for the present (this subject will be taken up again in {}) and consider the
role of the binary point in multiplication and division.

9.2 As pointed out in 7.8 (b), the product of the 30 digit numbers has 60 digits, and since the
product should be a number with the same standard number of significant digits as its factors, this
necessitates omitting 30 digits from the product.

If the binary point is between the digital positions i and i + 1 (from the left) in one factor, and
between j and j + 1 in the other, then these numbers lie between 0 and 2i−1 and between 0 and
2j−1 (the extreme left digit is 0, cf. 9.1). Hence the product lies between 0 and 2i+j−2. However, if
it is known to lie between 0 and 2k−1 (1 ≤ k ≤ i + j − 1) then its binary point lies between k and
k + 1. Then of its 60 digits the first i + j − 1 − k (from the left) are 0 and are omitted, and so it is
only necessary to omit the 29 − i − j + k last digits (to the right) by some rounding-off process.

This shows that the essential effect of the positioning of the binary point is that it determines
which digits among the supernumerary ones in a product are to be omitted.

If k < i+j−1, then special precautions must be taken so that no two numbers are ever multiplied
for which the product is > 2k−1 (it is only limited by ≤ 2i+j−2). This difficulty is well known in
planning calculations on IBM or other automatic devices. There is an elegant trick to get around
this difficulty, due to G. Stibitz, but since it would complicate the structure of CA somewhat, we
prefer to carry out the first discussion without using it. We prefer instead to suppress this difficulty
at this point altogether by an arrangement which produces an essentially equivalent one at another
point. However, this means only that in planning calculations the usual care must be exercised, and
it simplifies the device and its discussion. This procedure, too, is in the spirit of the principle of 5.6.

This arrangement consists in requiring k = i+ j − 1, so that every multiplication can always be
carried out. We also want a fixed position for the binary point, common to all numbers: i = j = k.
Hence i = j = k = 1, that is: The binary point is always between the two first digital positions
(from the left). In other words: The binary point follows always immediately after the sign digit.

Thus all non-negative numbers will be between 0 and 1, and all numbers (of either sign) between
−1 and 1. This makes it clear once more that the multiplication can always be carried out.

9.3 The caution formulated above is, therefore, that in planning any calculation for the device, it
is necessary to see to it that all numbers which occur in the course of the calculation should always
be between −1 and 1. This can be done by multiplying the numbers of the actual problem by
appropriate (usually negative) powers of 2 (actually in many cases powers of 10 are appropriate,
cf. {}), and transforming all formulae accordingly. From the point of view of planning it is no better
and no worse than the familiar difficulty of positioning the decimal point in most existing automatic
devices. It is necessary to make certain compensatory arrangements in I and O, cf. {}.

Specifically the requirement that all numbers remain between −1 and 1 necessitates to remember
these limitations in planning calculations:

(a) No addition or subtraction must be performed if its result is a number not between −1 and 1
(but of course between −2 and 2).

(b) No division must be performed if the divisor is less (in absolute value) than the dividend.

If these rules are violated, the adder, subtracter and divider will still produce results, but these
will not be the sum, difference, and quotient respectively. It is not difficult to include checking
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organs which signalize all infractions of the rules (a), (b) (cf. {}).
9.4 In connection with multiplication and division some remarks about rounding-off are necessary.

It seems reasonable to carry both these operations one digit beyond what is to be kept—under
the present assumptions to the 31st digit—and then omit the supernumerary digit by some rounding
process. Just plain ignoring that digit would, as is well known, cause systematical rounding-off errors
biased in one direction (towards 0). The usual Gaussian decimal procedure of rounding off to the
nearest value of the last digit kept, and in case of a (supernumerary digit) 5 to the even one means
in the binary system this: Digit pairs (30th and 31st) 00,10 are rounded to 0,1; 01 is rounded to
00; 11 is rounded by adding 01. This requires addition, with carry digits and their inconveniences.
Instead one may follow the equivalent of the decimal procedure of rounding 5’s to the nearest odd
digit, as suggested by J. W. Mauchly. In the binary system this means that digit pairs (30th and
31st) 00, 01, 10, 11 are rounded to 0, 1, 1, 1.

This rounding-off rule can be stated very simply: The 30th digit is rounded to 1 if either the
30th or the 31st digit was 1, otherwise it is rounded to 0.
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A rounding-off valve which does this
is shown in Figure 14. A digit (stimulus)
is passed from is to os while s is stim-
ulated, but when s′ is also stimulated,
the digit is combined with its predeces-
sor (that is the one to its left) according
to the above rounding-off rule.

10.0 CIRCUIT FOR THE ARITHMETICAL OPERATION √ .
OTHER OPERATIONS

10.1 A square rooter network can be built so that it differs very little from the divider. The
description which follows is preliminary in the same sense as those of the multiplier and the divider
networks in 7.7 and 8.3.

Binary square rooting consists of this: For each digital position in the square root (going from
left to right), the square root a (as formed up to that position) is used to form 2a + 1, and this
2a + 1 is subtracted from the partial remainder (of the radicand) already formed, but which has
been shifted left by two positions (adding new digits 0 if the original digits are exhausted), before
this subtraction. If the resulting difference is not negative (that is, if its extreme left digit is 0) then
the next square root digit is 1, and the next partial remainder (the one to be used for the following
quotient digit, before the double shift left referred to above) is the difference in question. If the
difference is negative (that is, if its extreme left digit is 1) then the next square root digit is 0, and
the next partial remainder (in the same sense as above) is the preceding partial remainder, but in
its doubly shifted position.

This procedure is obviously very similar to that one used in division (cf. 8.3), with the following
differences: First: The simple left shifts (of the partial remainder) are replaced by double ones (with
possible additions of new digits 0). Second: The quantity which is being subtracted is not one given
at the start (the dividend), but one that is determined by the result obtained so far: 2a + 1 if a is
the square root up to the position under consideration.

The first difference is a rather simple matter of timing, requiring no essential additional equip-
ment. The second difference involves a change in the connection, but also no equipment. It is true,
that 2a + 1 must be formed from a, but this is a particularly simple operation in the binary system:
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2a is formed by a shift left, and since 2a + 1 is required for a subtraction, the final +1 can be taken
into account by omitting the usual correction of the extreme right digit in subtraction (cf. 8.2, it is
the stimulus on t′′ in Figure 11 which is to be omitted).

FIGURE 15
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Now the square rooter network can be put together: Figure 15. The similarity with the divider
network of Figure 13 is striking. It will be noted that dl I is not needed. The radicand is
originally in dl III , but is replaced, as the square rooting progresses, by the successive partial
remainders. The valve v−1 routes the square root a (as formed up to that position) negatively
into the adder—the timing must be such as to produce a shift left thereby replacing a by 2a, and
the absence of the extra correcting pulse for subtraction (t′′ in Figures 11 and 13, cf. the discussion
above) replaces it by 2a+1. The two valves v1 immediately under it select the partial remainder
(cf. below) and send it from their common output line on one hand unchanged into dl II and
on the other hand into the adder, from where the sum (actually the difference) goes into dl III .
The timing must be such as to produce the required double position shift left. Thus dl II and
dl III contain the two numbers from among which the next partial remainder is to be selected.
This selection is done by the discriminator d4 which governs the two valves controlling the
(second addend) input of the adder (cf. the discussion of Figure 12 in 8.3). The sign digit of the
resulting sum controls the discriminator. The timing stimulus at t must coincide with its appearance
(extreme left digit of the sum) and t′ must be stimulated during the period during which the two
addends (actually minuend and subtrahend) are to enter the adder (advanced by 3t). The square
root is assembled in dl IV . For each one of its digits the necessary stimulus is available at the
second output of the discriminator (os′ in Figure 12). It is passed into dl IV through the lowest
valve v1 , timed by a stimulus at t′′′.

10.2 The concluding remarks of 8.4 concerning the divider apply essentially unchanged to the square
rooter.

The rules of 9.3 concerning the sizes of numbers entering into various operations are easily
extended to cover square rooting: The radicand must be non negative and the square root which
is produced will be non negative. Hence square rooting must only be performed if the radicand is
between 0 and 1, and the square root will also lie between 0 and 1.

The other remarks in 9.3 and 9.4 apply to square rooting too.
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10.3 The networks which can add, subtract, multiply, divide and square root having been described,
it is now possible to decide how they are to be integrated in CA, and which operations CA should
be able to perform.

The first question is, whether it is necessary or worth while to include all the operations enu-
merated above: +,−,×,÷,√ .

Little need be said about +,−: These operations are so fundamental and so frequent, and the
networks which execute them are so simple (cf. Figures 3 and 11), that it is clear that they should
be included.

With × the need for discussion begins, and at this stage a certain point of principle may be
brought out. Prima facie it would seem justified to provide for a multiplier, since the operation ×
is very important, and the multiplier of Figure 9—while not nearly as simple as the adder of Figure
3—is still very simple compared with the complexity of the entire device. Also, it contains an adder
and therefore permits to carry out +,− on the same equipment as ×, and it has been made very
simple by following the principle formulated in 5.3–5.7.

There are nevertheless possible doubts about the stringency of these considerations. Indeed
multiplication (and similarly division and square rooting) can be reduced to addition (or subtraction
or halving—the latter being merely a shift to the right in the binary system) by using (preferably
base 2) logarithm and antilogarithm tables. Now function tables will have to be incorporated into
the complete device anyhow, and logarithm-antilogarithm tables are among the most frequently used
ones—why not use them then to eliminate × (and ÷,√ ) as special operations? The answer is, that
no function table can be detailed enough to be used without interpolation (this would under the
conditions contemplated, require 230 ≈ 109 entries!), and interpolation requires multiplication! It is
true that one might use a lower precision multiplication in interpolating, and gain a higher precision
one by this procedure—and this could be elaborated to a complete system of multiplication by
successive approximations. Simple estimates show, however, that such a procedure is actually more
laborious than the ordinary arithmetical one for multiplication. Barring such procedures, one can
therefore state, that function tables can be used for simplifying arithmetical (or any other) operation
only after the operation × has been taken care of, not before! This, then, would seem to justify the
inclusion of × among the operations of CA.

Finally we come to ÷ and √ . These could now certainly be handled by function tables: Both
÷ and √ with logarithm–antilogarithm ones, ÷ also with reciprocal tables (and ×). There are also
well known, fast convergent iterative processes: For the reciprocal u ← 2u − au2 = (2 − au)u (two
operations × per stage, this converges to 1

a ), for the square root u ← (3/2)u−2au3 = (3/2−(2au)u)u
(three operations × per stage, this converges to 1√

4a
, hence it must be multiplied by 2a at the end,

to give
√

a).

However, all these processes require more or less involved logical controls and they replace ÷
and √ by not inconsiderable numbers of operations ×. Now our discussions of ×,÷,√ show that
each one of these operations lasts, with 30 (binary) digit numbers (cf. 7.1), on the order of 302t,
hence it is wasteful in time to replace ÷,√ by even a moderate number of ×. Besides the saving
in equipment is not very significant: The divider of Figure 13 exceeds the multiplier of Figure 9 by
above 50% in equipment, and it contains it as a part so that duplications are avoidable (cf. {below}).
The square rooter is almost identical with the divider, as Figure 15 and its discussion show.

Indeed the justification of using trick methods for ÷,√ , all of which amount to replacing them
by several ×, exists only in devices where × has been considerably abbreviated. As mentioned in
5.3–5.4 the duration of × and also of ÷ can be reduced to a much smaller number of t than what we
contemplate. As pointed out loc. cit. this involves telescoping and simultaneising operations, and
increasing the necessary equipment very considerably. We saw that such procedures are indicated
in devices with elements which do not have the speed and the possibilities of vacuum tubes. In such
devices the further circumstance may be important, that × can be more efficiently abbreviated than
÷ (cf. 5.4), and it may therefore be worth while to resort to the above mentioned procedures, which
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replace ÷,√ by several ×. In a vacuum tube device based on the principles of 5.3–5.7 however,
×,÷,√ are all of the same order of duration and complication and the direct arithmetical approach
to all of them therefore seems to be justified, in preference to the trick methods discussed above.

Thus all operations +,−,×,÷,√ would seem to deserve inclusion as such in CA, more or less
in the form of the networks of Figures 3, 9, 11, 13, 15, remembering that all these networks should
actually be merged into one, which consists essentially of the elements of the divider, Figure 13. The
whole or appropriate parts of this network can then be selected by the action of suitably disposed
controlling E-elements, which act as valves on the necessary connections, to make it carry out the
particular one among the operations +,−,×,÷,√ which is desired (cf. {}). For additional remarks
on specific operations and general logical control, cf. {}.

10.4 The next question is, what further operations (besides +,−,×,÷,√ ) would be included in
CA?

As pointed out in the first part of 10.3 once × is available, any other function can be obtained
from function tables with interpolation. (For the details cf. {}.) Hence it would seem that beyond
× (and +,− which came before it), no further operations need be included as such in CA. Actually
÷,√ were nevertheless included, and the direct arithmetical approach was used for them—but here
we had the excuse that the arithmetical procedures involved had about the same duration as those
of ×, and required an increase of only about 50% in equipment.

Further operations, which one might consider, will hardly meet these specifications. Thus
the cube root differs in its arithmetical treatment essentially from the square root, as the latter
requires the intermediate operation 2a+1 (cf. 10.1), which is very simple, particularly in the binary
system while the former requires at the same points the intermediate operation 3a2 + 3a + 1 =
3a(a + 1) + 1, which is much more complicated, since it involves a multiplication. Other desirable
operations—like the logarithm, the trigonometric functions, and their inverses—allow hardly any
properly arithmetical treatment. In these cases the direct approach involves the use of their power
series, for which the general logical control facilities of the device must be adequate. On the other
hand the use of function tables and interpolation, as suggested above is in most cases more effective
than the direct power series approach.

These considerations make the inclusion of further algebraical or analytical operations in CA
unnecessary. There are however some quite elementary operations, which deserve to be included for
logical or organizational reasons. In order to discuss these it is necessary to consider the functioning
of CA somewhat more closely, although we are not yet ready to do full justice to the viewpoints
brought up in 7.8 and at the end of 10.3.

11.0 ORGANIZATION OF CA. COMPLETE LIST OF OPERATIONS

11.1 As pointed out at the end of 10.3 CA will be organized essentially as a divider, with suitable
controls to modify its action for the requirements of the other operations. (It will, of course, also
contain controls for the purposes enumerated in 7.8.) This implies that it will in general deal with
two real number variables which go into the memory organs dl I , dl II of the divider network
of Figure 13. (These should coincide with the dl I , dl II of the multiplier, Figure 9. The
square rooter, Figure 15, needs no dl I , but it makes the same use of dl II . The adder and
subtracter were not connected in Figures 3 and 11 to such memory organs, but they will have to be
when the organization of CA is completed.) So we must think of CA as having two input organs,

dl I and dl II , and of course one output organ. (The latter has not been correlated with the
adder and subtracter, cf. above. For the multiplier it is dl III , for the divider and square rooter it
is dl IV . These things too will have to be adjusted in the final organization of CA.) Let us denote
these two inputs of CA by Ica and Jca, and the output by Oca (each of them with its attached
memory organ), schematically shown in Figure 16.
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FIGURE 16
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Now the following complex of prob-
lems must be considered: As mentioned
before, particularly in 2.5, an extensive
memory M forms an essential part of the
device. Since CA is the main internal op-
erating unit of the device (M stores, CC
administers, and I, O maintain the con-
nections with the outside, cf. the analy-
sis in 2.0.), the connections for transfers
between M and CA are very important.
How are these connections to be organized?

It is clearly necessary to be able to transfer from any part of M to CA, i.e. to Ica, Jca, and
conversely from CA, i.e. from Oca, to any part of M. Direct connections between various parts of
M do therefore not seem to be necessary: It is always possible to transfer from one part of M to
the other via CA (cf. however, {14.2}). These considerations give rise to two questions: First: Is
it necessary to connect each part of M with both Ica and Jca, or can this be simplified? Second:
How are the transfers from one part of M to another part of M to be handled, where CA is only a
through station?

The first question can be answered in the light of the principle of 5.6—to place multiple events
in a temporal succession rather than in (simultaneous) spatial juxtaposition. This means that two
real numbers which go from M into Ica and Jca, will have to go there in two successive steps. This
being so, it is just as well to route each real number first in Ica, and to move it on (within CA) from
Ica to Jca when the next real number comes (from M) into Ica. We restate:

FIGURE 17
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Every real number coming from M
into CA is routed into Ica. At the same
time the real number previously in Ica

is moved on to Jca, and the real num-
ber previously is Jca is necessarily cleared,
i.e. forgotten. It should be noted, that Ica

and Jca can be assumed to contain mem-
ory organs of the type discussed in 7.6.
(cf. Figure 6, there, cf. also the various

dl in the ×,÷,√ , networks in Fig-
ures 9, 13, 15) in which the real numbers
they hold are circulating. Consequently the connections of Ica and Jca in CA are those indicated in
Figure 17: The lines - - - conduct when a real number (from M) enters CA, the lines −− conduct
at all other times. The connections of Ica and Jca with the operating parts of CA are supposed to
branch out from the two terminals −−•. The output Oca connects with the outside (relatively to CA,
i.e. with M) by the line , which conducts when a result leaves CA (for M). The circulating
connections of Oca and its connections with the operating parts of CA are not shown, nor are the
E-elements which control the connections shown (nor, of course, the operating parts of CA). (For
the complete description of CA cf. {}.)
11.2 With the help of Figures 16, 17 the second question is also easily answered. For a transfer
from one part of M to another part of M, going through CA, the portion of the route inside CA
is clearly a transfer from Ica or Jca to Oca. Denoting the real numbers in Ica, Jca by x, y, this
amounts to “combining” x, y to either x or y, since the “result” of any operation performed by CA
(like +,−,×,÷,√ ) is supposed to appear at Oca. This operation is trivial and a special case e.g. of
addition: If x (or y) is wanted it suffices to get zero in the place of y (or x)—i.e. into Ica (or Jca)—
and then apply the operation. On the other hand, however, it seems preferable to introduce these
operations as such: First: “Getting zero into Ica (or Jca)” is unnecessarily time consuming. Second:
The direct transfer from Ica (or Jca) to Oca, which these operations require is easily effected by a
small part of the CA network visualized at the beginning of 11.1. Third: We propose to introduce
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both operations (for Ica as well as for Jca), because it will appear that each can play a separate
useful role in the internal administration of CA (cf. below).

We introduce accordingly two new operations: i and j, corresponding to direct transfers from
Ica or Jca to Oca.

These two operations have these further uses: It will be seen (cf. {}) that the output of CA
(from Oca) can be fed back directly into the input of CA (to Ica, this moves the contents of Ica

into Jca and clears Jca, cf. 11.1). Now assume that Ica, Jca contain the real numbers x, y, and that
i or j is applied, in conjunction with this feedback. Then the contents of Ica, Jca are replaced by
(x, x) or (y, x), i.e. from the point of view of any other two variable operations (+,−,÷, i.e. x + y,
x − y, xy, x

y ) the variables x, y have been replaced by (x, x) or (y, x). Now the latter is an
important manipulation for the unsymmetric operations (x− y, x

y ), and the former is important for
the symmetric operations (x + y, xy) since it leads to doubling and squaring. Both manipulations
are frequent enough in ordinary algebra, to justify a direct treatment by means of the operations i,
j.
11.3 A further necessary operation is connected with the need to be able to sense the sign of a
number, or the order relation between two numbers, and to choose accordingly between two (suitably
given) alternative courses of action. It will appear later, that the ability to choose the first or the
second one of two given numbers u, v depending upon such a relation, is quite adequate to mediate
the choice between any two given alternative courses of action. (cf. {}.) Accordingly, we need an
operation which can do this: Given four numbers x, y, u, v, it “forms” u if x ≥ y and “forms” v
otherwise. (This senses the order relation between x, y. If we put y = 0, it senses the sign of x.)

In this form the operation has four variables: x, y, u, v. (In the sign form it has three variables:
x, u, v.) Now the scheme for the CA network chosen at the beginning of 11.1, which was essentially
that of the divider, had room for two variables only, and this is equally true for the discussion of
the inputs of CA in 11.1. Hence four (or three) variables are too many. Consequently it is necessary
to break our operation up into two variable operations—and then we might as well do this with the
more general (four rather than three variables) form.

It is plausible to begin with a (partial) operation which merely decides whether x ≥ y or x < y
and remembers this, but without taking any action yet. This is best done by forming x − y, and
then remembering its sign digit only, i.e. its first digit (from the left). (cf. 8.1. This digit is 0 for
x− y ≥ 0, i.e. x ≥ y, and it is 1 for x− y < 0, i.e. x < y.) Thus this (partial) operation is essentially
in the nature of a subtraction, and it can therefore present no additional difficulties in a CA which
can subtract. Now it seems best to arrange things so that once this operation has been performed,
CA will simply wait until two new numbers u, v have been moved into Ica, Jca (thus clearing x, y
out—if u, v are to occupy Ica, Jca, respectively, then v must be fed in first and u second), and then
transfer (without any further instructions) u or v into Oca (i.e. perform i or j) according to whether
the sign digit referred to above was 0 or 1.

We introduce accordingly such an operation: s. It is most convenient to arrange things so that
after x, y have occupied Ica, Jca, a subtraction is ordered and provisions made that the result x− y
should remain in Oca. Then x, y must be displaced from Ica, Jca by u, v and s ordered. s will
sense whether the number in Oca is ≥ 0 or < 0 (i.e. x ≥ y or x < y), clear it from Oca, and “form”
accordingly u or v in Oca. The operation preceding s need, by the way, not be subtraction: It might
be addition or i or j. Accordingly the number in Oca, which provides the criterion for s will not
be x − y, but x + y, or (x or y). {missing text} i.e. s will form u or v according to whether the
multiplication or the division {missing text}, and the former might indeed be sometimes useful. For
details of these operations cf. {}.
11.4 Combining the conclusions of 10.2, 10.4, 11.2, 11.3 a list of eight operations of CA obtains:

+,−,×,÷,
√

, i, j, s.

To these, two more will have to be added because of the necessity of converting numbers between the
binary and the decimal systems, as indicated at the end of 5.2. Thus we need a decimal-to-binary
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conversion and a binary-to-decimal conversion:

db, bd.

The networks which carry out these two operations will be discussed in {Section not incl}.
This concludes for the moment the discussion of CA. We have enumerated the ten operations

which it must be able to perform. The questions of 7.8, the general control problems of 11.1, and
the specific networks for db, bd still remain to be disposed of. But it is better to return to these after
various other characteristics of the device have been decided upon. We postpone therefore their
discussion and turn now to other parts of the device.

12.0 CAPACITY OF THE MEMORY M. GENERAL PRINCIPLES

12.1 We consider next the third specific part: the memory M.
Memory devices were discussed in 7.5, 7.6, since they are needed as parts of the ×,÷ networks

(cf. 7.4, 7.7 for ×, 8.3 for ÷, 10.2 for √ ) and hence of CA itself (cf. the beginning of 11.1). In
all these cases the devices considered had a sequential or delay character, which was in most cases
made cyclical by suitable terminal organs. More precisely:

The blocks lk and dl (k) in 7.5, 7.6 are essentially delays, which hold a stimulus that
enters their input for a time kt, and then emit it. Consequently they can be converted into cyclical
memories, which hold a stimulus indefinitely, and make it available at the output at all times which
differ from each other by multiples of kt. It suffices for this purpose to feed the output back into
the input: lk or dl (k) . Since the period kt contains k fundamental periods t, the

capacity of such a memory device is k stimuli. The above schemes lack the proper input, clearing
and output facilities, but these are shown in Figure 6. It should be noted that in Figure 6 the cycle
around lk goes through one more E-element, and therefore the period of this device is actually
(k + 1)t, and its capacity correspondingly k + 1 stimuli. (The lk of Figure 5 may, of course, be
replaced by a dl (k) , cf. 7.6.)

Now it is by no means necessary that memory be of this cyclical (or delay) type. We must
therefore, before making a decision concerning M, discuss other possible types and the advantages
and disadvantages of the cyclical type in comparison with them.
12.2 Preceding this discussion, however, we must consider the capacity which we desire in M. It is
the number of stimuli which this organ can remember, or more precisely, the number of occasions
for which it can remember whether or not a stimulus was present. The presence or absence of a
stimulus (at a given occasion, i.e. on a given line in a given moment) can be used to express the
value 1 or 0 for a binary digit (in a given position). Hence the capacity of a memory is the number
of binary digits (the values of) which it can retain. In other words:

The (capacity) unit of memory is the ability to retain the value of one binary digit.
We can now express the “cost” of various types of information in these memory units.
Let us consider first the memory capacity required to store a standard (real) number. As

indicated in 7.1, we shall fix the size of such a number at 30 binary digits (at least for most uses,
cf. {}). This keeps the relative rounding-off errors below 2−30, which corresponds to 10−9, i.e. to
carrying 9 significant decimal digits. Thus a standard number corresponds to 30 memory units. To
this must be added one unit for its sign (cf. the end of 9.2) and it is advisable to add a further unit
in lieu of a symbol which characterizes it as a number (to distinguish it from an order, cf. {14.1}).
In this way we arrive at 32 = 25 units per number.

The fact that a number requires 32 memory units, makes it advisable to subdivide the entire
memory in this way: First, obviously, into units, second into groups of 32 units, to be called minor
cycles. (For the major cycles cf. {14.5}.) Each standard (real) number accordingly occupies precisely
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one minor cycle. It simplifies the organization of the entire memory, and various synchronization
problems of the device along with it, if all other constants of the memory are also made to fit into
this subdivision into minor cycles.

Recalling the classification (a)–(h) of 2.4 for the presumptive contents of the memory M, we
note: (a), according to our present ideas, belongs to CA and not to M (it is handled by dl I to
dl IV , cf. the beginning of 11.1); (c)–(g), and probably (h), also consist of standard numbers; (b)

on the other hand consists of the operation instructions which govern the functioning of the device,
to be called standard orders. It will therefore be necessary to formulate the standard orders in such
a manner that each one should also occupy precisely one minor cycle, i.e. 32 units. This will be done
in {15.0}.
12.3 We are now in a position to estimate the capacity requirements of each memory type (a)–(h)
of 2.4.

Ad (a): Need not be discussed since it is taken care of in CA (cf. above). Actually, since it
requires dl I to dl IV , each of which must hold essentially a standard number, i.e. 30 units (with
small deviations, cf. {}), this corresponds to ≈ 120 units. Since this is not in M, the organization
into minor cycles does not apply here, but we note that ≈ 120 units correspond to ≈ 4 minor cycles.
Of course some other parts of CA are memory organs too, usually with capacities of one or a few
units: e.g. the discriminators of Figures 8 and 12. The complete CA actually contains {missing
text} more dl organs, corresponding to {missing text} units, i.e. {missing text} minor cycles
(cf. {}).

Ad (b): The capacity required for this purpose can only be estimated after the form of all
standard orders has been decided upon, and several typical problems have been formulated—“set
up”—in that terminology. This will be done in {}. It will then appear, that the capacity requirements
of (b) are small compared to those of some of (c)–(h), particularly to those of (c).

Ad (c): As indicated loc. cit., we count on function tables of 100–200 entries. A function table
is primarily a switching problem, and the natural numbers of alternatives for a switching system
are the powers of 2. (cf. {}.) Hence 128 = 27 is a suitable number of entries. Thus the relative
precision obtained directly for the variable is 2−7. Since a relative precision of 2−30 is desired for
the result, and (2−7)4 > 2−30, (2−7)5 , 2−30, the interpolation error must be fifth order, i.e. the
interpolation biquadratic. (One might go to even higher order interpolation, and hence fewer entries
in the function table. However, it will appear that the capacity requirements of (c) are, even for 128
entries, small compared e.g. to those of (d)–(h).) With biquadratic interpolation five table values are
needed for each interpolation: Two above and two below the rounded off variable. Hence 128 entries
allow actually the use of 124 only, and these correspond to 123 intervals, i.e. a relative precision of
123−1 for the variable. However even 123−5 , 2−30 (by a factor—25).

Thus a function table consists of 128 numbers, i.e. it requires a capacity of 128 minor cycles.
The familiar mathematical problems hardly ever require more than five function tables (very rarely
that much), i.e. a capacity of 640 minor cycles seem to be a safe overestimate of the capacity required
for (c).

Ad (d): These capacities are clearly less than or at most comparable to those required by (e).
Indeed the initial values are the same thing as the intermediate values of (f), except that they belong
to the first value of t. And in a partial differential equation with n + 1 variables, say x1, . . . , xn and
t, the intermediate values of a given t—to be discussed under (e)—as well as the initial values or the
totality of all boundary values for all t correspond all three to n-dimensional manifolds (in the n+1
-dimensional space) of x1, . . . , xn and t; hence they are likely to involve all about the same number
of data.

Another important point is that the initial values and the boundary values are usually given—
partly or wholly—by a formula or by a moderate number of formulae. I.e., unlike the intermediate
values of (e), they need not be remembered as individual numbers.

Ad (e): For a partial differential equation with two variables, say x and t, the number of inter-
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mediate values for a given t is determined by the number of x lattice points used in the calculation.
This is hardly ever more than 150, and it is unlikely that more than 5 numerical quantities should
be associated with each point.

In typical hydrodynamical problems, where x is a Lagrangian label-coordinate, 50–100 points
are usually a light estimate, and 2 numbers are required at each point: A position-coordinate and
a velocity. Returning to the higher estimate of 150 points and 5 numbers at each point gives 750
numbers, i.e. it requires a capacity of 750 minor cycles. Therefore 1,000 minor cycles seem to be a
safe overestimate of the capacity required for (e) in two variable (x and t) problems.

For a partial differential equation with three variables, say x, y and t, the estimate is harder to
make. In hydrodynamical problems, at least, important progress could be made with 30 x 30 or 40 x
20 or similar numbers of x, y lattice points—say 1,000 points. Interpreting x, y again as Lagrangian
labels shows that at least 4 numbers are needed at each point: Two position coordinates and two
velocity components. We take 6 numbers per point to allow for possible other non hydrodynamical
quantities. This gives 6,000 numbers, i.e. it requires a capacity of 6,000 minor cycles for (e) in
hydrodynamical three variable (x, y and t) problems.

It will be seen (cf. {}), that a memory capacity of 6,000 minor cycles—i.e. of 200,000 units—is
still conveniently feasible but that essentially higher capacities would be increasingly difficult to
control. Even 200,000 units produce somewhat of an unbalance—i.e. they make M bigger than the
other parts of the device put together. It seems therefore unwise to go further, and to try to treat
four variable (x, y, z and t) problems.

It should be noted that two variable (x and t) problems include all linear or circular symmetric
plane or spherical symmetric spatial transient problems, also certain general plane or cylinder sym-
metric spatial stationary problems (they must be hyperbolic, e.g. supersonic, t is replaced by y).
Three variable problems (x, y and t) include all spatial transient problems. Comparing this enu-
meration with the well known situation of fluid dynamics, elasticity, etc., shows how important each
one of these successive stages is: Complete freedom with two variable problems; extension to four
variable problems. As we indicated, the possibilities of the practical size for M draw the natural
limit for the device contemplated at present between the second and the third alternatives. It will
be seen that considerations of duration place the limit in the same place (cf. {}).

Ad (f): The memory capacities required by a total differential equation with two variables
{missing text}—i.e. to the lower estimate of (e).

Ad (g): As pointed out in (g) in 2.4, these problems are very similar to those of (e), except that
the variable t now disappears. Hence the lower estimate of (e) (1,000 minor cycles) applies when a
system of (at most 5) one-variable functions (of x) is being sought by successive approximation or
relaxation methods, while the higher estimate of (c) (6,000 minor cycles) applies when a system of
(at most 6) two-variable functions (of x, y) is being sought. Many problems of this type, however,
deal with one function only—this cuts the above estimates considerably (to 200 or 1,000 minor
cycles). Problems in which only a system of individual constants is being sought by successive
approximations require clearly smaller capacities: They compare to the preceding problems like (f)
to (e).

Ad (h): These problems are so manifold, that it is difficult to plan for them systematically at
this stage.

In sorting problems any device not based on freely permutable record elements (like punchcards)
has certain handicaps (cf. {}), besides this subject can only be adequately treated after an analysis
of the relation of M and of R has been made (cf. 2.9 and {}). It should be noted, however, that
the standard punchcard has place for 80 decimal digits, i.e. 9 9-digit decimal numbers, that is 9
numbers in our present sense, i.e. 9 minor cycles. Hence the 6,000 minor cycles considered in (e)
correspond to a sorting capacity of ≈ 700 fully used cards. In most sorting problems the 80 columns
of the cards are far from fully used—this may increase the equivalent sorting capacity of our device
proportionately above 700. This means, that the device has a non negligible, but certainly not
impressive sorting capacity. It is probably only worth using on sorting problems of more than usual
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mathematical complexity.

In statistical experiments the memory requirements are usually small: Each individual problem
is usually of moderate complexity, each individual problem is independent (or only dependent by a
few data) from its predecessors; and all that need be remembered through the entire sequence of
individual problems are the numbers of how many problems successively solved had their results in
each one of a moderate number of given distinct classes.

12.4 The estimates of 12.3 can be summarized as follows: The needs of (d)–(h) are alternative,
i.e. they cannot occur in the same problem. The highest estimate reached here was one of 6,000
minor cycles, but already 1,000 minor cycles would permit to treat many important problems. (a)
need not be considered in M. (b) and (c) are cumulative, i.e. they may add to (d)–(h) in the same
problem. 1,000 minor cycles for each, i.e. 2,000 together, seem to be a safe overestimate. If the
higher value 6,000 is used in (d)–(h), these 2,000 may be added for (b)–(c). If the lower value 1,000
is used in (d)–(h), it seems reasonable to cut the (b)–(c) capacity to 1,000 too. (This amounts
to assuming fewer function tables and somewhat less complicated “set ups.” Actually even these
estimates are generous, cf. {}.) Thus total capacities of 8,000 or 2,000 minor cycles obtain.

It will be seen that it is desirable to have a capacity of minor cycles which is a power of two
(cf. {}). This makes the choices of 8,000 or 2,000 minor cycles of a convenient approximate size:
They lie very near to powers of two. We consider accordingly these two total memory capacities:
8, 196 = 213 or 2, 048 = 211 minor cycles, i.e. 262, 272 = 218 or 65, 536 = 216 units. For the
purposes of the discussions which follow we will use the first higher estimate.

This result deserves to be noted. It shows in a most striking way where the real difficulty, the
main bottleneck, of an automatic very high speed computing device lies: At the memory. Compared
to the relative simplicity of CA (cf. the beginning of 11.1 and {15.6}), and to the simplicity of CC
and of its “code” (cf. {14.1} and {15.3}), M is somewhat impressive: The requirements formulated
in 12.2, which were considerable but by no means fantastic, necessitate a memory M with a capacity
of about a quarter million units! Clearly the practicality of a device as is contemplated here depends
most critically on the possibility of building such an M, and on the question of how simple such an
M can be made to be.

12.5 How can an M of a capacity of 218 ≈ 250, 000 units be built?

The necessity of introducing delay elements of very great efficiency, as indicated in 7.5, 7.6, and
12.1, becomes now obvious: One E-element, as shown in Figure 4, has a unit memory capacity, hence
any direct solution of the problem of construction of M with the help of E-elements would require
as many E-elements as the desired capacity of M—indeed, because of the necessity of switching and
gating about four times more (cf. {}). This is manifestly impractical for the desired capacity of ≈
250,000—or, for that matter, for the lower alternative in 12.4, of ≈ 65,000.

We therefore return to the discussion of the cyclical or delay memory, which was touched upon
in 12.1. (Another type will be considered in 12.6.)

Delays dl (k) can be built with great capacities k, without using any E-elements at all. This
was mentioned in 7.6, together with the fact that even linear electric circuits of this type exist.
Indeed, the contemplated t of about one microsecond requires a circuit passband of 3–5 megacycles
(remember Figure 1.!) and then the equipment required for delays of 1–3 microseconds—i.e. k =
1, 2, 3—is simple and cheap, and that for delays up to 30–35 microseconds—i.e. k = 30, . . . , 35—is
available and not unduly expensive or complicated. Beyond this order of k, however, the linear
electric circuit approach becomes impractical.

This means that the delays →−, →−→−, →−→−→−, which occur in all E-networks of Figures
3–15 can be easily made with linear circuits. Also, that the various dl of CA (cf. Figures 9,
13, 15, and the beginning of 11.1), which should have k values ≈ 30, and of which only a moderate
number will be needed (cf. (a) in 12.3), can be reasonably made with linear circuits. For M itself,
however, the situation is different.

M must be made up of dl organs, of a total capacity ≈ 250,000. If these were linear
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circuits, of maximum capacity ≈ 30 (cf. above), then ≈ 8,000 such organs would be required, which
is clearly impractical. This is also true for the lower alternative of 12.4, capacity ≈ 65,000, since
even then ≈ 2,000 such organs would be necessary.

Now it is possible to build dl organs which have an electrical input and output, but not a
linear electrical circuit in between, with k values up to several thousand. Their nature is such, that a
4 stage amplification is needed at the output, which, apart from its amplifying character, also serves
to reshape and resynchronize the output pulse. I.e. the last stage gates the clock pulse (cf. 6.3) using
a non linear part of a vacuum tube characteristic which goes across the cutoff; while all other stages
effect ordinary amplifications, using linear parts of vacuum tube characteristics. Thus each one of
these dl requires 4 vacuum tubes at its output, it also requires 4 E-elements for switching and
gating (cf. {}). This gives probably 10 or fewer vacuum tubes per dl organ. The nature of
these dl organs is such that a few hundred of them can be built and incorporated into one
device without undue difficulties—although they will then certainly constitute the greater part of
the device (cf. {12.4}).

Now the M capacity of 250,000 can be achieved with such dl devices, each one having
a capacity 1,000–2,000, by using 250–125 of them. Such numbers are still manageable (cf. above),
and they require about 8 times more, i.e. 2,500–1,250 vacuum tubes. This is a considerable but
perfectly practical number of tubes—indeed probably considerably lower than the upper limit of
practicality. The fact that they occur in identical groups of 10 is also very advantageous. (For
details cf. {}.) It will be seen that the other parts of the device of which CA and CC are electrically
the most complicated, require together , 1, 000 vacuum tubes (cf. {}). Thus the vacuum tube
requirements of the device are controlled essentially by M, and they are of the order of 2,000–3,000
(cf. loc. cit. above). This confirms the conclusion of 12.4, that the decisive part of the device,
determining more than any other part its feasibility, dimensions and cost, is the memory.

We must now decide more accurately what the capacity of each dl organ should be—within
the limits which were found to be practical. A combination of a few very simple viewpoints leads to
such a decision.
12.6 We saw above that each dl organ requires about 10 associated vacuum tubes, essentially
independently of its length. (A very long dl might require one more stage of amplification,
i.e. 11 vacuum tubes.) Thus the number of dl organs, and not the total capacity, determines
the number of vacuum tubes in M. This would justify using as few dl organs as possible, i.e. of
as high individual capacity as possible. Now it would probably be feasible to develop dl ’s of
the type considered with capacities considerably higher than the few thousand mentioned above.
There are, however, other considerations which set a limit to increases of dl .

In the first place, the considerations at the end of 6.3 show that the definition of dl ’s delay
time must be a fraction t′ of t (about 1

5 – 1
2 ), so that each stimulus emerging from dl may gate

the correct clock pulse for the output. For a capacity k, i.e. a delay kt, this is relative precision 5k –
2k, which is perfectly feasible for the device in question when k ≈ 1, 000, but becomes increasingly
uncertain when k increases beyond 10,000. However, this argument is limited by the consideration
that as the individual dl capacity increases correspondingly fewer such organs are needed, and
therefore each one can be made with correspondingly more attention and precision.
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FIGURE 18

SGAdl⊃

A: AMPLIFICATION

SG: SWITCHING & GATING

Next there is another more sharply limiting consideration. If each dl has the capacity
k, then 250,000

k of them will be needed,
and 250,000

k amplifying switching and gat-
ing vacuum tube aggregates are necessary.
Without going yet into the details of these
circuits, the individual dl and its as-
sociated circuits can be shown schemati-
cally in Figure 18. Note, that Figure 6
showed the block SG in detail but the
block A not at all. The actual arrange-
ment will differ from Figure 6 in some
details, even regarding SG, cf. {}. Since

dl is to be used as a memory its output must be fed back—directly or indirectly—into its input.
In an aggregate of many dl organs—which M is going to be—we have a choice to feed each

dl back into itself, or to have longer cycles of dl ’s: Figure 19 (a) and (b), respectively.

FIGURE 19a. b.

dl A SG

dl A SG

dl A SG

dl A SG

dl A SG

dl A SG

It should be noted, that (b) shows a cycle which has a capacity that is a multiple of the individual
dl ’s capacity—i.e. this is a way to produce a cycle which is free of the individual dl ’s

capacity limitations. This is, of course, due to the reforming of the stimuli traversing this aggregate
at each station A. The information contained in the aggregate can be observed from the outside
at every station SG, and it is also here that it can be intercepted, cleared, and replaced by other
information from the outside. (For details cf. {}.) Both statements apply equally to both schemes
(a) and (b) of Figure 19. Thus the entire aggregate has its inputs, outputs, as well as its switching
and gating controls at the stations SG—it is here that all outside connections for all these purposes
must be made.

To omit an SG in the scheme (a) would be unreasonable: It would make the corresponding
dl completely inaccessible and useless. In the scheme (b), on the other hand, all SG but one

could be omitted (provided that all A are left in place): The aggregate would still have at least
one input and output that can be switched and gated and it would therefore remain organically
connected with the other parts of the device—the outside, in the sense used above.

We saw in the later part of 12.5, that each A and each SG required about the same number of
vacuum tubes (4), hence the omission of an SG represents a 50% saving on the associated equipment
at that junction.

Now the number of SG stations required can be estimated. (It is better to think in terms
of scheme (b) of Figure 19 in general, and to turn to (a) only if all SG are known to be present,
cf. above.) Indeed: Let each dl have a capacity k, and let there be an SG after every l of them.
Then the aggregate between any two SG has the capacity k′ = kl. (One can also use scheme (b)
with aggregates of l dl ’s each, and one SG each.) Hence 250,000

k′ SG’s are needed altogether,
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and the switching problem of M is a 250,000
k′ way one. On the other hand every individual memory

unit passes a position SG only at the end of each k′t period. i.e. it becomes accessible to the other
parts of the device only then. Hence if the information contained in it is required in any other part
of the device, it becomes necessary to wait for it—this waiting time being at most k′t, and averaging
1
2k′t.

This means that obtaining an item of information from M consumes an average time 1
2k′t. This

is, of course, not a time requirement per memory unit: Once the first unit has been obtained in
this way all those which follow after it (say one or more minor cycles) consume only their natural
duration, t. On the other hand this variable waiting time (maximum k′t, average 1

2k′t), must be
replaced in most cases by a fixed waiting time k′t, since it is usually necessary to return to the point
in the process at which the information was desired, after having obtained that information—and
this amounts altogether to a precise period k′t. (For details cf. {}.) Finally, this wait k′t is absent if
the part of M in which the desired information is contained follows immediately upon the point at
which that information is wanted and the process continues from there. We can therefore say: The
average time of transfer from a general position in M is k′t.

Hence the value of k′ must be obtained from the general principles of balancing the time
requirements of the various operations of the device. The considerations which govern this particular
case are simple:

In the process of performing the calculations of mathematical problems a number in M will be
required in the other parts of the device in order to use it in some arithmetical operations. It is
exceptional if all these operations are linear, i.e. +,−; normally ×, and possibly ÷,√ will also occur.
It should be noted that substituting a number u into a function f given by a function table, so as to
form f(u), usually involves interpolation—i.e. one × if the interpolation is linear, which is usually not
sufficient, and two to four ×’s if it is quadratic to biquadratic, which is normal. (Cf. e.g. (c) in 12.3.)
A survey of several problems, which are typical for various branches of computing mathematics,
shows that an average of two × (including ÷,√ ) per number obtained from M is certainly not too
high. (For examples cf. {}.) Hence every number obtained from M is used for two multiplication
times or longer, therefore the waiting time required for obtaining it is not harmful as long as it is a
fraction of two multiplication times.

A multiplication time is of the order of 302 times t (cf. 5.3, 7.1 and 12.2, for ÷,√ cf. 5.5)
say 1, 000t. Hence our condition is that k′t must be a fraction of 2, 000t. Thus k′ ≈ 1, 000 seems
reasonable. Now a dl with k ≈ 1, 000 is perfectly feasible (cf. the second part of 12.5), hence
k = k′ ≈ 1, 000, l = 1 is a logical choice. In other words: Each dl has a capacity k ≈ 1, 000
and has an SG associated with it, as shown in Figures 18, 19.

This choice implies that the number of dl ’s required is ≈ 250,000
k ≈ 250 and the number of

vacuum tubes in their associated circuits is about 10 times more (cf. the end of 12.5), i.e. ≈ 2, 500.

12.7 The factorization of the capacity ≈ 250, 000 into ≈ 250 dl organs of a capacity ≈ 1, 000
each can also be interpreted in this manner: The memory capacity 250,000 presents prima facie a
250,000-way switching problem, in order to make all parts of this memory immediately accessible to
the other organs of the device. In this form the task is unmanageable for E-elements (e.g. vacuum
tubes, cf. however 12.8). The above factorization replaces this by a 250-way switching problem,
and replaces, for the remaining factor of 1,000, the (immediate, i.e. synchronous) switching by a
temporal succession—i.e. by a wait of 1, 000t.

This is an important general principle: A c = hk-way switching problem can be replaced by a
k-way switching problem and an h-step temporal succession—i.e. a wait of ht. We had c = 250, 000
and chose k = 1, 000, h = 250. The size of k was determined by the desire to keep h down without
letting the waiting time kt grow beyond one multiplication time. This gave k = 1, 000, and proved
to be compatible with the physical possibilities of a dl of capacity k.

It will be seen, that it is convenient to have k, h, and hence also c, powers of two. The above
values for these quantities are near such powers, and accordingly we choose:
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Total capacity of M: c = 262,144 = 218
Capacity of a dl organ: k = 1,024 = 210
Number of dl organs in M: h = 256 = 28

The two first capacities are stated in memory units. In terms of minor cycles of 32 = 25 memory
units each:

Total capacity of M in minor cycles: c/32 = 8,192 = 213
Capacity of a dl organ in minor cycles: k/32 = 32 = 25

12.8 The discussions up to this point were based entirely on the assumption of a delay memory. It
is therefore important to note that this need not be the only practicable solution for the memory
problem—indeed, there exists an entirely different approach which may even appear prima facie to
be more natural.

The solution to which we allude must be sought along the lines of the iconoscope. This device in
its developed form remembers the state of 400 × 500 = 200,000 separate points, indeed it remembers
for each point more than one alternative. As is well known, it remembers whether each point has
been illuminated or not, but it can distinguish more than two states: Besides light and no light it
can also recognize—at each point—several intermediate degrees of illumination. These memories
are placed on it by a light beam, and subsequently sensed by an electron beam, but it is easy to see
that small changes would make it possible to do the placing of the memories by an electron beam
also.

Thus a single iconoscope has a memory capacity of the same order as our desideratum for
the entire M (≈250,000), and all memory units are simultaneously accessible for input and output.
The situation is very much like the one described at the beginning of 12.5, and there characterized
as impracticable with vacuum tube-like E-elements. The iconoscope comes nevertheless close to
achieving this: It stores 200,000 memory units by means of one dielectric plate: The plate acts
in this case like 200,000 independent memory units—indeed a condenser is a perfectly adequate
memory unit, since it can hold a charge if it is properly switched and gated (and it is at this point
that vacuum tubes are usually required). The 250,000-way switching and gating is done (not by
about twice 250,000 vacuum tubes, which would be the obvious solution, but) by a single electron
beam—the switching action proper being the steering (deflecting) of this beam so as to hit the
desired point on the plate.

Nevertheless, the iconoscope in its present form is not immediately usable as a memory in our
sense. The remarks which follow bring out some of the main viewpoints which will govern the use
of equipment of this type for our purposes.

(a) The charge deposited at a “point” of the iconoscope plate, or rather in one of the elementary
areas, influences the neighboring areas and their charges. Hence the definition of an elementary
area is actually not quite sharp. This is within certain limits tolerable in the present use of the
iconoscope, which is the production of the visual impression of a certain image. It would, however,
be entirely unacceptable in connection with a use as a memory, as we are contemplating it, since
this requires perfectly distinct and independent registration and storage of digital or logical symbols.
It will probably prove possible to overcome this difficulty after an adequate development—but this
development may be not inconsiderable and it may necessitate reducing the number of elementary
areas (i.e. the memory capacity) considerably below 250,000. If this happens, a correspondingly
greater number of modified iconoscopes will be required in M.

(b) If the iconoscope were to be used with 400 × 500 = 200,000 elementary areas (cf. above),
then the necessary switching, that is the steering of the electron beam, would have to be done with
very considerable precision: Since 500 elementary intervals must be distinguished in both directions
of linear deflection, a minimum relative precision of 1

2 × 1
500 = .1% will be necessary in each linear

direction. This is a considerable precision, which is rarely and only with great difficulties achieved
in “electrical analogy” devices, and hence a most inopportune requirement for our digital device.
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A more reasonable, but still far from trivial, linear precision of, say, .5% would cut the memory
capacity to 10,000 (since 100 × 100 = 10,000, 1

2 × 1
100 = .5%).

There are ways to circumvent such difficulties, at least in part, but they cannot be discussed
here.

(c) One main virtue of the iconoscope memory is that it permits rapid switching to any desired
part of the memory. It is entirely free of the awkward temporal sequence in which adjacent memory
units emerge from a delay memory. Now while this is an important advantage in some respects, the
automatic temporal sequence is actually desirable in others. Indeed, when there is no such automatic
temporal sequence, it is necessary to state in the logical instructions which govern the problem
precisely at which location in the memory any particular item of information that is wanted is to be
found. However, it would be unbearably wasteful if this statement had to be made separately for
each unit of memory. Thus the digits of a number, or more generally all units of a minor cycle should
follow each other automatically. Further, it is usually convenient that the minor cycles expressing
the successive steps in a sequence of logical instructions should follow each other automatically.
Thus it is probably best to have a standard sequence of the constituent memory units as the basis
of switching, which the electron beam follows automatically, unless it receives a special instruction.
Such a special instruction may then be able to interrupt this basic sequence, and to switch the
electron beam to a different desired memory unit (i.e. point on the iconoscope plate).

This basic temporal sequence on the iconoscope plate corresponds, of course, to the usual
method of automatic sequential scanning with the electron beam—i.e. to a familiar part of the
standard iconoscope equipment. Only the above mentioned exceptional voluntary switches to other
points require new equipment.

To sum up: It is not the presence of a basic temporal sequence of memory units which constitutes
a weakness of a delay memory as compared to an iconoscope memory, but rather the inability of the
former to break away from this sequence in exceptional cases (without paying the price of a waiting
time, and of the additional equipment required to keep this waiting time within acceptable limits,
cf. the last part of 12.6 and the conclusions of 12.7). An iconoscope memory should therefore conserve
the basic temporal sequence by providing the usual equipment for automatic sequential scanning
with the electron beam, but it should at the same time be able of a rapid switching (deflecting) of
the electron beam to any desired point under special instruction.

(d) The delay organ dl contains information in the form of transient waves, and needs a
feedback in order to become a (cyclical) memory. The iconoscope on the other hand holds information
in a static form (charges on a dielectric plate), and is a memory per se. Its reliable storing ability is,
however, not unlimited in time—it is a matter of seconds or minutes. What further measures does
this necessitate?

It should be noted that M’s main function is to store information which is required while a
problem is being solved, since the main advantage of M over outside storage (i.e. over R, cf. 2.9).
Longer range storage—e.g. of certain function tables like log10, sin, or equations of state, or of
standard logical instructions (like interpolation rules) between problems, or of final results until
they are printed—should be definitely effected outside (i.e. in R, cf. 2.9 and {}). Hence M should
only be used for the duration of one problem and considering the expected high speed of the device
this will in many cases not be long enough to effect the reliability of M. In some problems, however,
it will be too long (cf. {}), and then special measures become necessary.

The obvious solution is this: Let Nt be a time of reliable storage in the iconoscope. (Since Nt is
probably a second to 15 minutes, therefore t = one microsecond gives N ≈ 106 - 109. For N ≈ 109
this situation will hardly ever arise.) Then two iconoscopes should be used instead of one, so that
one should always be empty while the other is in use, and after N periods t the latter should transfer
its information to the former and then clear, etc. If M consists of a greater number of iconoscopes,
say k, this scheme of renewal requires k + 1, and not k iconoscopes. Indeed, let I0, I1, . . . , Ik be
these iconoscopes. Let at a given moment Ii be empty, and I0, . . . , Ii−1, Ii+1, . . . , Ik in use. After

N
k+1 periods t, Ii+1 should transfer its information to Ii and then clear (for i = k replace i + 1 by
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0). Thus Ii+1 takes over the role of Ii. Hence if we begin with I0, then this process goes through a
complete cycle I1, I2, . . . , Ik and back to I0 in k+1 steps of duration N

k+1 t each, i.e. of total duration
Nt. Thus all I0, I1, . . . , Ik are satisfactorily renewed. A more detailed plan of these arrangements
would have to be based on a knowledge of the precise orders of magnitude of N and k. We need
not do this here. We only wish to emphasize this point: All these considerations bring a dynamical
and cyclical element into the use of the intrinsically static iconoscope—it forces us to treat them in
a manner somewhat comparable to the manner in which a delay (cyclical memory) treats the single
memory units.

From (a)–(d) we conclude this: It is very probable that in the end the iconoscope memory will
prove superior to the delay memory. However this may require some further development in several
respects, and for various reasons the actual use of the iconoscope memory will not be as radically
different from that of a delay memory as one might at first think. Indeed, (c) and (d) show that the
two have a good deal in common. For these reasons it seems reasonable to continue our analysis on
the basis of a delay memory although the importance of the iconoscope memory is fully realized.

13.0 ORGANIZATION OF M

13.1 We return to the discussion of a delay memory based on the analysis and the conclusions of 12.6
and 12.7. It is best to start by considering Figure 19 again, and the alternatives which it exhibits.
We know from 12.7 that we must think in terms of 256 = 28 organs dl , of capacity 1, 024 = 210
each. For a while it will not be necessary to decide which of the two alternatives, Figure 19 (a) or
(b), (or which combination of both) will be used. (For the decision cf. {}.) Consequently we can
replace Figure 19 by the simpler Figure 18.

The next task is, then, to discuss the terminal organs A and SG. A is a 4 stage amplifier,
about which more was said in 12.5. The function of A is solely to restore the pulse emerging from

dl to the shape and intensity with which it originally entered dl . Hence it should really
be considered a part of dl proper, and there is no occasion to analyze it in terms of E-elements.
SG, on the other hand, is a switching and gating organ and we should build it up from E-elements.
We therefore proceed to do this.
13.2 The purpose of SG is this: At those moments (i.e. periods τ) when other parts of the device
(i.e. CC, CA and perhaps I, O) are to send information into the dl to which this SG is attached,
or when they are to receive information from it, SG must establish the necessary connections—at
such moments we say that SG is on. At those moments when neither of these things is required,
SG must route the output of its dl back into the input of its (or its other) dl , according
to the approximate alternative of Figure 19—at such moments we say that SG is off. In order to
achieve this it is clearly necessary to take two lines from C (and I, O) to this SG: One to carry the

dl output to C, and one to bring the dl input from C. Since at any given time (i.e. period
τ) only one SG will be called upon for these connections with C, i.e. be on (remember the principle
of 5.6!) there need only be one such pair of connecting lines, which will do for all 256 SG’s. We
denote these two lines by Lo and Li, respectively. Now the scheme of Figure 18 can be made more
detailed, as shown in Figure 20.
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FIGURE 20

dl⊃
c

A
b

SG
a

Lo Li

o

i

s

As indicated, Lo is the line connecting the outputs of all SG’s to C and Li is the line connecting
C to the inputs of all SG’s. When SG is off, its connections o, i with Lo, Li are interrupted, its
output goes to a, this being permanently connected to the input c of the proper dl , according to
Figure 19 (a) or (b). When SG is on, its connections with a are interrupted, its output goes through
o to Lo and so to C, while the pulses coming from C over Li go into i which is now connected with a,
so that these stimuli get now to a and from there to the proper dl input (cf. above). The line
s carries the stimuli which put SG on or off—clearly each SG must have its individual connection s
(while Lo, Li are common.)
13.3 Before we consider the E-network of SG, one more point must be discussed. We allowed for
only one state when SG is on, whereas there are actually two: First, when SG forwards information
from M to C; second, when SG forwards information from C to M. In the first case the output of SG
should be routed into Lo, and also into a, while no Li connection is wanted. In the second case Li

should be connected to a (and hence to the proper dl input by the corresponding permanent
connection of a). This information takes the place of the information already in M, which would
have normally gone there (i.e. the output of SG which would have gone to a if SG had remained off),
hence the output of SG should go nowhere, i.e. no Lo connection is wanted. (This is the process of
clearing. For this treatment of clearing cf. {}) To sum up: Our single arrangement for the on state
differs from what is needed in either of these two cases. First case: a should be connected to the
output of SG, and not to Li. Second case: a should lead nowhere, not to Lo.

Both maladjustments are easily corrected. In the first case it suffices to connect Lo not only
to the organ of C which is to receive its information, but also to Li—in this manner the output of
SG gets to a via Lo, the connection of Lo with Li. In the second case it suffices to connect Lo to
nothing (except its i’s)—in this manner the output of a goes into Lo, but then nowhere.

In this way the two above supplementary connections of Lo and Li convert the originally unique
on state of SG to be the first or the second case described above. Since only one SG is on at any one
time (cf. 13.2) these supplementary connections are needed only once. Accordingly we place them
into C, more specifically into CC, where they clearly belong. If we had allowed for two different on
states of SG itself, then it would have been necessary to locate the E-network, which establishes the
two corresponding systems of connections, into SG. Since there are 256 SG’s and only one CC, it is
clear that our present arrangement saves much equipment.
13.4 We can now draw the E-network of SG, and also the E-network in CC which establishes the
supplementary connections of Lo and Li discussed in 13.3.
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FIGURE 21
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Actually SG will have to be redrawn
later (cf. {}), we now give its preliminary
form: SG′ in Figure 21. When s is not
stimulated the two 2© are impassable to
stimuli, while © is, hence a stimulus en-
tering at b goes on to a, while o and i
are disconnected from b and a. When s is
stimulated the two 2© become passable,
while © is blocked, hence b is now con-
nected to o and i to a. Hence SG′ is on
in the sense of 13.2 while s is stimulated,
and it is off at all other times. The triple
delay on © is necessary for this reason:
When SG′ is on, a stimulus needs one period τ to get from b to o, i.e. to Lo (cf. 13.3 and the end of
this Section 13.4), and one to get from Li, i.e. from i (cf. Figure 20) to a—that is, it takes 3τ from b
to a. It is desirable that the timing should be the same when SG′ is off, i.e. when the stimulus goes
via © from b to a—hence a triple delay is needed on ©.

FIGURE 22
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The supplementary connections of Lo

and Li are given in Figure 22. When
r is not stimulated the two © are pass-
able to stimuli; while 2© is not, hence a
stimulus entering at Lo is fed back into
Li and appears also at Ci, which is sup-
posed to lead to C. When r is stimulated
the two © are blocked, while 2© becomes
passable, hence a stimulus entering at Co,
which is supposed to come from C, goes
on to Li, and Lo is isolated from all con-
nections. Hence SCL3 produces the first
state of 13.3 when r is not stimulated, and
the second state when r is stimulated. We
also note that in the first case a stimulus
passes from Lo to Li with a delay τ (cf. the timing question of SG′, discussed above).

13.5 We must next give our attention to the line s of Figure 20 and 21: As we saw in the first
part of 13.4, it is the stimulation of s which turns SG on. Hence, as was emphasized at the end
of 13.2, each SG must have its own s—i.e. there must be 256 such lines s. Turning a desired SG
on, then, amounts to stimulating its s. Hence it is at this point that the ≈ 250-way—precisely
256-way—switching problem commented upon in 12.7 presents itself.

More precisely: It is to be expected that the order to turn on a certain SG—say No. K—will
appear on two lines in CC reserved for this purpose in this manner: One stimulus on the first line
expresses the presence of the order as such, while a sequence of stimuli on the second line specifies
the number k desired. k runs over 256 values, it is best to choose these as 0, 1, . . . , 255, in which
case k is the general 8-digit binary integer. Then k will be represented by a sequence of 8 (possible)
stimuli on the second line, which express (by their presence or absence), in their temporal succession,
k’s binary digits (1 or 0) from right to left. The stimulus expressing the order as such must appear
on the first line (cf. above) in some definite time relation to these stimuli on the second line—as will
be seen in {}, it comes immediately after the last digit.

Before going on, we note the difference between these 8 (binary) digit integers k and the 30
(binary) digit real numbers (lying between 0 and 1, or, with sign, between −1 and 1), the standard
real numbers of 12.2. That we consider the former as integers, i.e. with the binary point at the right
of the 8 digits, while in the latter the binary point is assumed to be to the left of the 30 digits,
is mainly a matter of interpretation (cf. {}). Their difference in lengths, however, is material: A
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standard real number constitutes the entire content of a 32 unit minor cycle, while an 8 digit k is
only part of an order which makes up such a minor cycle. (cf. {}.)

14.0 CC AND M

14.1 Our next aim is to go deeper into the analysis of CC. Such an analysis, however, is dependent
upon a precise knowledge of the system of orders used in controlling the device, since the function of
CC is to receive these orders, to interpret them, and then either to carry them out, or to stimulate
properly those organs which will carry them out. It is therefore our immediate task to provide a
list of the orders which control the device, i.e. to describe the code to be used in the device, and to
define the mathematical and logical meaning and the operational significance of its code words.

Before we can formulate this code, we must go through some general considerations concerning
the functions of CC and its relation to M.

The orders which are received by CC come from M, i.e. from the same place where the numerical
material is stored. (Cf. 2.4 and 12.3 in particular (b).) The content of M consists of minor cycles
(cf. 12.2 and 12.7), hence by the above each minor cycle must contain a distinguishing mark which
indicates whether it is a standard number or an order.

The orders which CC receives fall naturally into these four classes: (a) orders for CC to instruct
CA to carry out one of its ten specific operations (cf. 11.4); (b) orders for CC to cause the transfer
of a standard number from one place to another; (c) orders for CC to transfer its own connection
with M to a different point in M, with the purpose of getting its next order from there; (d) orders
controlling the operation of the input and the output of the device (i.e. I of 2.7 and O of 2.8).

Let us now consider these classes (a)–(d) separately. We cannot at this time add anything to
the statements of 11.4 concerning (a) (cf. however {}). The discussion of (d) is also better delayed
(cf. {}). We propose, however, to discuss (b) and (c) now.

14.2 Ad (b): These transfers can occur within M, or within CA, or between M and CA. The first
kind can always be replaced by two operations of the last kind, i.e. all transfers within M can be
routed through CA. We propose to do this, since this is in accord with the general principle of 5.6
(cf. also the discussion of the second question in 11.1), and in this way we eliminate all transfers of
the first kind. Transfers of the second kind are obviously handled by the operating controls of CA.
Hence those of the last kind alone remain. They fall obviously into two classes: Transfers from M to
CA and transfers from CA to M. We may break up accordingly (b) into (b′) and (b′′), corresponding
to these two operations.

14.3 Ad (c): In principle CC should be instructed, after each order, where to find the next order
that it is to carry out. We saw, however, that this is undesirable per se, and that it should be
reserved for exceptional occasions, while as a normal routine CC should obey the orders in the
temporal sequence in which they naturally appear at the output of the DLA organ to which CC is
connected. (cf. the corresponding discussion for the iconoscope memory, (c) in 12.8.) There must,
however, be orders available, which may be used at the exceptional occasions referred to, to instruct
CC to transfer its connection to any other desired point in M. This is primarily a transfer of this
connection to a different DLA organ (i.e. a dl organ in the sense of 12.7). Since, however, the
connection actually wanted must be with a definite minor cycle, the order in question must consist of
two instructions: First, the connection of CC is to be transferred to a definite DLA organ. Second,
CC is to wait there until a definite τ -period, the one in which the desired minor cycle appears at
the output of this DLA, and CC is to accept an order at this time only.

Apart from this, such a transfer order might provide that, after receiving and carrying out the
order in the desired minor cycle, CC should return its connection to the DLA organ which contains
the minor cycle that follows upon the one containing the transfer order, wait until this minor cycle
appears at the output, and then continue to accept orders from there on in the natural temporal
sequence. Alternatively, after receiving and carrying out the order in the desired minor cycle, CC
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should continue with that connection, and accept orders from there on in the natural temporal
sequence. It is convenient to call a transfer of the first type a transient one, and one of the second
type a permanent one.

It is clear that permanent transfers are frequently needed, hence the second type is certainly
necessary. Transient transfers are undoubtedly required in connection with transferring standard
numbers (orders (c′) and (c′′), cf. the end of 14.2 and in more detail in 14.4 below). It seems very
doubtful whether they are ever needed in true orders, particularly since such orders constitute only
a small part of the contents of M (cf. (b) in 12.3), and a transient transfer order can always be
expressed by two permanent transfer orders. We will therefore make all transfers permanent, except
those connected with transferring standard numbers, as indicated above.

14.4 Ad (b) again: Such a transfer between CA and a definite minor cycle in M (in either direction,
corresponding to (b′) or (b′′), cf. the end of 14.2) is similar to a transfer affecting CC in the sense
of (c), since it requires establishing a connection with the desired DLA organ, and then waiting for
the appearance of the desired minor cycle at the output. Indeed, since only one connection between
M and CC (actually CC or CA, i.e. C) is possible at one time, such a number transfer requires
abandoning the present connection of CC with M, and then establishing a new connection, exactly
as if a transfer affecting CC in the sense of (c) were intended. Since, however, actually no such
transfer of CC is desired, the connection of CC with its original DLA organ must be reestablished,
after the number transfer has been carried out, and the waiting for the proper minor cycle (that one
following in the natural temporal sequence upon the transfer order) is also necessary. I.e. this is a
transient transfer, as indicated at the end of 14.3.

It should be noted that during a transient transfer the place of the minor cycle which contained
the transfer order must be remembered, since CC will have to return to its successor. I.e. CC must
be able to remember the number of the DLA organ which contains this minor cycle, and the number
of τ periods after which the minor cycle will appear at the output. (cf. for details {}.)
14.5 Some further remarks:

First: Every permanent transfer involves waiting for the desired minor cycle, i.e. on the average
for half a transit through a DLA organ, 512 periods τ . A transient transfer involves two such waiting
periods, which add up exactly to one transit through a DLA organ, 1,024 periods τ . One might
shorten certain transient transfers by appropriate timing tricks, but this seems inadvisable, at least
at this stage of the discussion, since the switching operation itself (i.e. changing the connection of
CC) may consume a nonnegligible fraction of a minor cycle and may therefore interfere with the
timing.

Second: It is sometimes desirable to make a transfer from M to CA, or conversely, without any
waiting time. In this case the minor cycle in M, which is involved in this transfer, should be the one
immediately following (in time and in the same DLA organ) upon the one containing the transfer
order. This obviously calls for an extra type of immediate transfer in addition to the two types
introduced in 14.3. This type will be discussed more fully in {15.3}.

Third: The 256 DLA organs have numbers 0, 1, . . . , 255, i.e. all 8-digit binary numbers. It is
desirable to give the 32 minor cycles in each DLA organ equally fixed numbers 0, 1, . . . , 31 i.e. all
5-digit binary numbers. Now the DLA organs are definite physical objects, hence their enumeration
offers no difficulties. The minor cycles in a given DLA organ, on the other hand, are merely moving
loci, at which certain combinations of 32 possible stimuli may be located. Alternatively, looking
at the situation at the output end of the DLA organ, a minor cycle is a sequence of 32 periods τ ,
this sequence being considered to be periodically returning after every 1,024 periods τ . One might
say that a minor cycle is a 32τ “hour” of a 1,024τ “day,” the “day” thus having 32 “hours.” It
is now convenient to fix one of these “hours,” i.e. minor cycles, as zero or {“first”} and let it be
at the same time at the outputs of all 256 DLA organs of M. We can then attribute each “hour”,
i.e. minor cycle, its number 0, 1, . . . , 31, by counting from there. We assume accordingly that such
a convention is established—noting that the minor cycles of any given number appear at the same
time at the outputs of all 256 DLA organs of M.



First Draft of a Report on the EDVAC 39

Thus each DLA organ has now a number µ = 0, 1, . . . , 255 (or 8-digit binary), and each minor
cycle in it has a number ρ = 0, 1, . . . , 31 (or 5-digit binary). A minor cycle is completely defined
within M by specifying both numbers µ, ρ. Due to these relationships we propose to call a DLA
organ a major cycle.

Fourth: As the contents of a minor cycle make their transit across a DLA organ, i.e. a major
cycle, the minor cycles number ρ clearly remains the same. When it reaches the output and is then
cycled back into the input of a major cycle the number ρ is still not changed (since it will reach
the output again after 1,024 periods τ , and we have synchronism in all DLA organs, and a 1,024 τ
periodicity, cf. above), but µ changes to the number of the new major cycle. For individual cycling,
the arrangement of Figure 19 (a), this means that µ, too, remains unchanged. For serial cycling,
the arrangement of Figure 19 (b), this means that µ usually increases by 1, except that at the end
of such a series of, say, s major cycles it decreases by s − 1.

These observations about the fate of a minor cycle after it has appeared at the output of its
major cycle apply as such when that major cycle is undisturbed, i.e. when it is off in the sense of 13.2.
When it is on, in the same sense, but in the first case of 13.3, then our observations are obviously
still valid—i.e. they hold as long as the minor cycle is not being cleared. When it is being cleared,
i.e. in the second case of 13.3, then those observations apply to the minor cycle which replaces the
one that has been cleared.

15.0 THE CODE

15.1 The considerations of 14.0 provide the basis for a complete classification of the contents of M,
i.e. they enumerate a system of successive disjunctions which give together this classification. This
classification will put us into the position to formulate the code which effects the logical control of
CC, and hence of the entire device.

Let us therefore restate the pertinent definitions and disjunctions.

The contents of M are the memory units, each one being characterized by the presence or
absence of a stimulus. It can be used to represent accordingly the binary digit 1 or 0, and we will at
any rate designate its content by the binary digit i = 1 or 0 to which it corresponds in this manner.
(cf. 12.2 and 12.5 with 7.6.) These units are grouped together to form 32-unit minor cycles, and
these minor cycles are the entities which will acquire direct significance in the code which we will
introduce. (cf. 12.2.) We denote the binary digits which make up the 32 units of a minor cycle,
in their natural temporal sequence, by i0, i1, i2, . . . , i31. The minor cycles with these units may be
written I = (i0, i1, i2, . . . , i31) = (iv).

Minor cycles fall into two classes: Standard numbers and orders. (cf. 12.2 and 14.1.) These two
categories should be distinguished from each other by their respective first units (cf. 12.2) i.e. by
the value of i0. We agree accordingly that i0 = 0 is to designate a standard number, and i0 = 1 an
order.

15.2 The remaining 31 units of a standard number express its binary digits and its sign. It is in the
nature of all arithmetical operations, specifically because of the role of carry digits, that the binary
digits of the numbers which enter into them must be fed in from right to left, i.e. those with the
lowest positional values first. (This is so because the digits appear in a temporal succession and not
simultaneously, cf. 7.1. The details are most simply evident in the discussion of the adder in 7.2.)
The sign plays the role of the digit farthest left, i.e. of the highest positional value (cf. 8.1). Hence
it comes last, i.e. i31 = 0 designates the + sign and i31 = 1 the − sign. Finally by 9.2 the binary
point follows immediately after the sign digit, and the number ξ thus represented must be moved
mod 2 into the interval −1, 1. That is ξ = i31i30i29 · · · i1 =

∑
v=1 31iv2v − 31 (mod 2), −1 ≤ ξ < 1.

15.3 The remaining 31 units of an order, on the other hand, must express the nature of this order.
The orders were classified in 14.1 into four classes (a)–(d), and these were subdivided further as
follows: (a) in 11.4, (b) in 14.2, (b) and (c) in 14.3, 14.4, and the second remark in 14.5. Accordingly,
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the following complete list of orders obtains:

(α) Orders for CC to instruct CA to carry out one of its ten specific operations enumerated in
11.4. (This is (a) in 14.1.) We designate these operations by the numbers 0, 1, 2, · · · , 9 in the order
in which they occur in 11.4, and thereby place ourselves into the position to refer to any one of
them by its number w = 0, 1, 2, · · · , 9, which is best given as a 4-digit binary number (cf. however,
{}). Regarding the origin of the numbers which enter (as variables) into these operations and the
disposal of the result, this should be said: According to 11.4, the former comes from Ica and Jca and
the latter goes to Oca, all in CA (cf. Figures 16, 17), Jca is fed through Ica, and Ica is the original
input and Oca the final output of CA. The feeding into Ica will be described in (β), (γ), (θ) below,
the disposal from Oca will be described in (δ), (ε), (θ) below.

Certain operations are so fast (they can be handled so as to consume only the duration of a
minor cycle) that it is worthwhile to bypass Oca when disposing of their result. (cf. {}.)

The provisions for clearing Ica and Jca were described in 11.4. Regarding the clearing of Oca

this ought to be said: It would seem natural to clear Oca each time after its contents have been
transferred into M (cf. below). There are, however, cases when it is preferable not to transfer out
from Oca, and not to clear the contents of Oca. Specifically: In the discussion of the operation s in
11.3 it turned out to be necessary to hold in this manner in Oca the result of a previous operation
−. Alternatively, the previous operation might also be +, i, j, or even ×, (cf. there). Another
instance: If a multiplication xy is carried out, with an Oca which contains, say, z at the beginning
of the operation, then actually z + xy will form in Oca (cf. the discussion of multiplication in 7.7).
It may therefore be occasionally desirable to hold the result of an operation, which is followed by a
multiplication, in Oca. Formation of sums

∑
xy is one example of this.

We need therefore an additional digit c = 0, 1 to indicate whether Oca should or should not be
cleared after the operation. We let c = 0 express the former, and c = 1 the latter.

(β) Orders for CC to cause the transfer of a standard number from a definite minor cycle in
M to CA. (This is (b) in 14.1, type (b′) of 14.2.) The minor cycle is defined by the two indices µ, ρ
(cf. the third remark in 14.5). The transfer into CA is, more precisely, one into Ica (cf. (α) above).

(γ) Orders for CC to cause the transfer of a standard number which follows immediately upon
the order, into CA. (This is the immediate transfer of the second remark in 14.5 in the variant which
corresponds to (β) above.) It is simplest to consider a minor cycle containing a standard number (the
kind analyzed in 15.2) as such an order per se. This modifies the statement loc. cit. somewhat: The
standard number in question is next in the minor cycle following immediately upon a minor cycle
which has just given an order to CC, then the number will automatically operate as an immediate
transfer order of the type described. (cf. also the pertinent remarks in (ε) and in (ζ) below.) The
transfer into CA is again one into Ica (cf. (α) or (β) above).

(δ) Orders for CC to cause the transfer of a standard number from CA to a definite minor cycle
in M. (This is (b) in 14.1, type (b′′) in 14.2.) The minor cycle in M is defined by the two indices
µ, ρ, as in (β) above. The transfer from CA is, more precisely, one from Oca—this was discussed,
together with the necessary explanations and qualifications, in (α) above.

(ε) Orders for CC to cause the transfer of a standard number from CA into the minor cycle
which follows immediately upon the one containing this order. (This is the immediate transfer,
cf. the second remark in 14.5, in the variant which corresponds to (δ) above.) The transfer from CA
is again one from Oca (cf. (α) or (δ) above).

In this case the CC connection passes from this transfer order on to the next minor cycle into
which the standard number in question is just being sent. There would be no point in CC now
obeying (γ), and sending this number back into CA—also, there might be timing difficulties. It is
best, therefore, to except this case explicitly from the operation of (γ). i.e.: (γ) is invalid if it follows
immediately upon an (ε).

(θ) Orders for CC to cause the transfer of a standard number from CA into CA. (This is an
operation of CA, the usefulness of which we recognized in 11.2. Cf. also {}.) More precisely, from
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Oca into Ica (cf. (α) above).

(ζ) Orders for CC to transfer its own connection with M to a definite minor cycle (elsewhere)
in M. (This is (c) in 14.1.) The minor cycle in M is defined by the two indices µ, ρ, as in (β) above.

Note that a (β) could be replaced by a (ζ), considering (γ). The only difference is that (ζ) is
a permanent transfer, while (β) is a transient one. This may serve to place additional emphasis on
the corresponding considerations of 14.3 and 14.4.

(η) Orders controlling the operation of the input and the output of the device (i.e. I of 2.7 and
O of 2.8) (This is (d) in 14.1.) As indicated in 14.1, the discussion of these orders is better delayed
(cf. {}).
15.4 Let us now compare the numbers of digits necessary to express these orders with the number
of available digits in a minor cycle—31, as stated at the beginning of 15.3.

To begin with we have in (α)–(η) 8 types of order, to distinguish these from each other requires
3 digits. Next, the types (α)–(ζ) (we postpone (η), cf. above) have these requirements: (α) must
specify the number w, i.e. 4 digits, plus the digit c—all together 5 digits. (β), as well as (δ) and (ζ),
must specify the numbers µ and ρ, i.e. 8 + 5 = 13 digits. (γ) is outside this category. (ε), as well as
(θ), requires no further specifications.

Neither of these uses the 31 available digits very efficiently. Consequently we might consider
putting several such orders into one minor cycle. On the other hand such a tendency to pool orders
should be kept within very definite limits, for the following reasons.

First, pooling several orders into one minor cycle should be avoided, if it requires the simulta-
neous performance of several operations (i.e. violates the principle of 5.6.) Second, it should also be
avoided if it upsets the timing of the operations. Third, the entire matter is usually not important
from the point of view of the total memory capacity: Indeed, it reduces the number of those minor
cycles only, which are used for logical instructions, i.e. for the purpose (b) in 2.4, and these represent
usually only a small fraction of the total capacity of M (cf. (b) in 12.3 and {}). Hence the pooling
of orders should rather be carried out from the point of view of simplifying the logical structure of
the code.

15.5 These considerations discourage pooling several orders of the type (α)—besides this would
often not be logically possible either, without intervening orders of the types (β)–(ζ). Combining
two orders of the types (β), (δ), (ζ) is also dubious from the above points of view, besides it would
leave only 31− 3− 13− 13 = 2 digits free, and this (although it could be increased by various tricks
to 3) is uncomfortably low: It is advisable to conserve some spare capacity in the logical part of the
code (i.e. in the orders), since later on changes might be desirable. (e.g. it may become advisable to
increase the capacity of M, i.e. the number 256 of major cycles, i.e. the number 8 of digits of µ. For
another reason cf. {}.

The best chance lies in pooling an operation order (α) with orders controlling the transfer of
its variables into CA or the transfer of its result out of CA. Both types may involve 13 digit orders
(namely (β) or (δ)), hence we cannot count on pooling (α) with more than one such order (cf. the
above estimate plus the 5 digits required by (α)!). Now one (α) usually requires transferring two
variables into CA, hence the simplest systematical procedure consists in pooling (α) with the disposal
of its result. I.e. (α) with (δ) or (ε) or (θ). It should be noted that every (δ), (ε) (θ), i.e. transfer
from CA, must be preceded by an (α), and every (β), (γ), i.e. transfer into CA, must be followed
by an (α). Indeed, these transfers are always connected with an (α) operation, the only possible
exception would be an M to M transfer, routed through (α), but even this involves an (α) operation
(i or j in 11.4, cf. there and in 11.2). Consequently orders (δ), (ε), (θ) will always occur pooled with
(α), and orders (β), (γ) will always occur alone. (α) too may occasionally occur alone: If the result
of the operation ordered by (α) is to be held in Oca (cf. the last part of (α) in 15.3), then it will
usually not be necessary or desirable to dispose of this result in any other way (cf. the examples
loc. cit.). We shall keep both possibilities open: There may or may not be an additional disposal of
the result, and in the second case (α) will not be pooled with any disposal order. Orders (ζ) are of
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a sufficiently exceptional logical character, to justify that they too always occur alone.
Thus we have—if we disregard (γ), which is in reality a standard number—the 7 following types

of orders: (α) + (δ), (α) + (ε), (α) + (θ), (α), (β), (ζ), (η). They require 5 + 13 = 18, 5, 5, 5, 13,
13 digits (we disregard (η), which will be discussed later) plus 3 digits to distinguish the types from
each other, plus one digit (i0 = 1) to express that an order is involved. Hence the totals are 22, 9,
9, 9, 17, 17 digits. This is an average efficiency of ≈ 50% in utilizing the 32 digits of a minor cycle.
This efficiency can be considered adequate, in view of the third remark of 15.4, and it leaves at the
same time a comfortable spare capacity (cf. the beginning of 15.5).
15.6 We are now in the position to formulate our code. This formulation will be presented in the
following manner:

We propose to characterize all possible minor cycles which may be used by the device. These
are standard numbers and orders, already enumerated and described in 15.1–15.5. In the table
which follows we will specify the four following things for each possible minor cycle: (I) The type,
i.e. its relationship to the classification (α)–(η) of 15.3, and to the pooling procedures of 15.5; (II)
The meaning, as described in 15.1–15.5; (III) The short symbol, to be used in verbal or written
discussions of the code, and in particular in all further analyses of this paper, and when setting
up problems for the device (cf. {}); (IV) The code symbol, i.e. the 32 binary digits i0, i1, i2, . . . , i31
which correspond to the 32 units of the minor cycle in question. However, there will only be partial
statements on this last point at this time, the precise description will be given later (cf. {}).

Regarding the numbers (binary integers) which occur in these symbols, we observe this: These
numbers are µ, ρ, w, c. We will denote their binary digits (in the usual, left to right, order) by
u7, . . . , u0; ρ4, . . . , ρ0;w3, . . . , w0; c.
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(I)
Type

(II)
Meaning

(III)
Short Symbol

(IV)
Code Symbol

Minor cycle
I = (iv) =
(i0i1i2 · · · i31)

Standard
Number
or Order
(γ)

Storage for the number defined by ξ = i31i30 · · · i1 =∑31
v=1 iv2v−31 (mod 2) −1 ≤ ξ < 1. i31 is the sign: 0

for +, 1 for −. If CC is connected to this minor cycle,
then it operates as an order, causing the transfer of
ξ into Ica. This does not apply however if this minor
cycle follows immediately upon an order w → A or
wh → A.

Nξ i0 = 0

Order
(α)+(δ)

Order
(α)+ (ε)

Order
(α)+(θ)

Order
(α)

Order to carry out the operation w in CA and to
dispose of the result. w is from the list of 11.4. These
are the operations of 11.4, with their current numbers
w.decimal and w.binary, and their symbols w:

w.decimal w.binary w w.decimal w.binary w

0 0000 + 5 0101 i
1 0001 − 6 0110 j
2 0010 × 7 0111 s
3 0011 ÷ 8 1000 db
4 0100 √ 9 1001 bd

h means that the result is to be held in Oca. → µρ
means that the result is to be transferred into the
minor cycle ρ in the major cycle µ; → f, that it is
to be transferred into the minor cycle immediately
following upon the order ε; → A, that it is to be
transferred into Ica; no →, that no disposal is wanted
(apart from h).

w → µρ
or
wh → µρ

w → f
or
wh → f

w → A
or
wh → A

wh

i0 = 1

Order
(β)

Order to transfer the number in the minor cycle ρ in
the major cycle µ into Ica.

A ← µρ

Order
(ζ)

Order to connect CC with the minor cycle ρ in the
major cycle µ.

C ← µρ

Remark: Orders w (or wh) → µρ (or f) transfer a standard number ξ from CA into a minor
cycle. If this minor cycle is of the type Nξ (i.e. i0 = 0), then it should clear its 31 digits representing
ξ′, and accept the 31 digits of ξ. If it is a minor cycle ending in µρ (i.e. i0 = 1, order w → µρ or
wh → µρ or A ← µρ or C ← µρ), then it should clear only its 13 digits representing µρ, and accept
the last 13 digits of ξ!


