Difference between revisions of "CSC231 Optional Homework 9 2017"
(→Preparation for Problem 2) |
(→Preparation for Problem 2) |
||
Line 268: | Line 268: | ||
=Preparation for Problem 2= | =Preparation for Problem 2= | ||
<br /> | <br /> | ||
− | Using argc and argv to get command line arguments is standard practice in | + | Using argc and argv to get command line arguments is standard practice in most programming languages (at least the one that can be run from the command line). |
− | We can also do it in assembly. | + | We can also do it in assembly, as well. |
<br /> | <br /> | ||
− | You will need a new version of 231Lib.asm to make this work. Get a fresh new copy | + | You will need a new version of 231Lib.asm to make this work. Get a fresh new copy of the library, please: |
getcopy 231Lib.asm | getcopy 231Lib.asm | ||
− | + | nasm -f elf 231Lib.asm | |
− | Here is a program that gets '''argc''' (the number of arguments on the command line, including the name of the program itself), and '''argv[0]''': | + | Here is a demo program that gets '''argc''' (the number of arguments on the command line, including the name of the program itself), and '''argv[0]''' from the command line: |
<br /> | <br /> | ||
::<source lang="asm"> | ::<source lang="asm"> | ||
Line 295: | Line 295: | ||
section .text | section .text | ||
− | extern _atoi | + | extern _atoi ; note the new function |
extern _printDec | extern _printDec | ||
extern _println | extern _println | ||
Line 324: | Line 324: | ||
</source> | </source> | ||
+ | <br /> | ||
+ | * Compile and run it with a variety of input parameters | ||
+ | |||
+ | 231b@aurora ~ $ nasm -f elf getParams.asm | ||
+ | 231b@aurora ~ $ nasm -f elf getParams.asm | ||
+ | 231b@aurora ~ $ nasm -f elf 231Lib.asm | ||
+ | 231b@aurora ~ $ ld -melf_i386 getParams.o 231Lib.o -o getParams | ||
+ | 231b@aurora ~ $ ./getParams 123 | ||
+ | 2 | ||
+ | 123 | ||
+ | 231b@aurora ~ $ ./getParams 12 hello | ||
+ | 3 | ||
+ | 12 | ||
+ | |||
+ | |||
+ | * When you run the program with command line arguments, such as "123" or "123 hello", getParams prints the number of arguments first, follow by the integer that is entered right after the program name. | ||
+ | |||
+ | ./getParams 123 | ||
+ | |||
+ | : in this case we have 2 words on the command line, "./getParams" and "123", so the first number printed is 2, and "123" is translated from a string to an int by the function '''atoi''', and that's the second number printed. | ||
+ | |||
+ | ./getParams 123 hello | ||
+ | |||
+ | : in this second case, we have 3 words on the command line, so the first number printed is 3, and '''atoi''' transforms "12" into the integer 12, which is the 2nd number printed. | ||
=Problem 2= | =Problem 2= |
Revision as of 14:20, 22 April 2017
--D. Thiebaut (talk) 11:10, 22 April 2017 (EDT)
Page under construction!
Contents
Problem 1: C Functions
Write a C program called funcs.c that contains only C functions. You will need to write an additional file called funcs.h, and the information about what it contains is the section on testing. The functions will be called by an external main program. This is very similar to the the last homework assignment, except then it was done in assembly.
Functions
Your funcs.c program should contain 3 functions: getMin(), zap() and merge().
- getMin()
- Receives 3 ints as parameters and returns the smallest.
- Example
printf( "Min of -10, 1, 10 = %d\n", getMin( -10, 1, 10 ) ); printf( "Min of -10, 1, 10, -20, 2 = %d\n", getMin( getMin( -10, 1, 10 ), -20, 2 ) ); // output: // Min of -10, 1, 10 = -10 // Min of -10, 1, 10, -20, 2 = -20
- zap()
- Receives two strings as parameters and modifies the first one by finding the first
- string in it, and replacing it with dashes.
- Example
char s1[] = "Mississippi Burning"; char s2[] = "Mississippi Burning"; //--- test zap --- printf( "s1 = %s\n", s1 ); zap( s1, "ss" ); printf( "zap(s1) = %s\n", s1 ); printf( "s2 = %s\n", s2 ); zap( s2, "tt" ); printf( "zap(s2) = %s\n", s2 ); // output: // s1 = Mississippi Burning // zap(s1) = Mi--issippi Burning // s2 = Mississippi Burning // zap(s2) = Mississippi Burning
- merge()
- receives 3 arrays of ints. The first two have dimension 5, each, and are sorted. The third one is of dimension 10, and contains random information, i.e. it is not initialized. Merge() takes the ints from both arrays of dimension 5 and merges them into the third array, keeping the ints sorted. You may assume that the first two arrays will always have dimension 5, and the third one will always have dimension 10.
- Example
int A[] = { 1, 2, 3, 10, 11 }; int B[] = { 4, 5, 12, 13, 15 }; int C[10]; merge( A, B, C ); for ( i=0; i<10 && A[i]!=-1; i++ ) printf( "%d, ", C[i] ); printf( "\n" ); // output: // 1, 2, 3, 4, 5, 10, 11, 12, 13, 15,
Merging in Python
For reference, here is how merge would work in Python:
from __future__ import print_function def merge( A, B, C ): """ merges 2 arrays into a 3rd one. The dimensions of the arrays can be any valid integer. C must be a mutable list. """ i = 0 j = 0 k = 0 while i<len(A) and j<len(B): if A[i] < B[j]: C.append( A[i] ) i += 1 else: C.append( B[j] ) j += 1 if i >= len( A) or j >= len( B ): break while i < len( A ): C.append( A[i] ) i += 1 while j < len( B ): C.append( B[j] ) j += 1 def main(): A = [1, 3, 10, 20, 30 ] B = [2, 3, 4, 5, 100 ] C = [] merge( A, B, C ) print( "A = ", A ) print( "B = ", B ) print( "C = ", C ) main() # output # A = [1, 3, 10, 20, 30, 31] # B = [2, 3, 4, 5, 100] # C = [1, 2, 3, 3, 4, 5, 10, 20, 30, 31, 100]
Testing Your Program
Here is a simple example showing how to write two C programs, one containing functions, and one containing a main program, and link them together.
funcDemo.c
// funcDemo.c // D. Thiebaut // demonstration code for illustrating how to link // several C programs. // This program contains only 1 function. // sum() // returns the sum of the 2 ints it gets as parameters. int sum( int a, int b ) { return a + b; }
mainDemo.c
// mainDemo.c // D. Thiebaut // main program that calls the sum() // function from funcDemo.c #include <stdio.h> #include "funcDemo.h" void main() { int a=3, b=10; int c; c = sum( -1, 2000000000 ); printf( "sum( %d, %d ) = %d\n", -1, 2000000000, sum(-1, 2000000000 ) ); printf( "sum( %d, %d ) = %d\n", a, b, sum(a, b) ); printf( "sum( %d, sum( %d, %d ) ) = %d\n", a, 2, b, sum(a, sum( 2, b ) ) ); printf( "sum( %d, %d ) = %d\n", -1, 1, sum(-1, 1) ); }
funcDemo.h
In order to link together funcDemo.c and mainDemo.c, we need a third file, called a header file, that will list all the functions in funcDemo.c, but just the name of the functions and what kind of parameters they take, along with the type of value they return. We'll include this file in mainDemo.c, so that it knows what functions are available "on the outside." For funcDemo.c, the header file funcDemo.h looks like this:
// funcDemo.h // D. Thiebaut // header file for funcDemo.c // int sum( int a, int b );
Compiling Steps
gcc -c funcDemo.c gcc -o funcMain funcMain.c funcDemo.o
- the first execution of the gcc command instructs it to generate an object file (with a .o extension) for funcDemo.c
- the second execution of gcc instructs it to compile funcMain.c, link it with the object file funcDemo.o and output the resulting executable in funcMain.
- to run the program, we simply type:
./funcMain
- and we get the following output:
sum( -1, 2000000000 ) = 1999999999 sum( 3, 10 ) = 13 sum( 3, sum( 2, 10 ) ) = 15 sum( -1, 1 ) = 0
A Test Program for funcs.c
In case this could be useful, here is a test main program to test your functions with, and its output when linked with the solution program containing the functions.
// main.c // D. Thiebaut // Test program for functions of Homework 9. #include <stdio.h> #include <stdlib.h> #include <string.h> #include "funcs.h" void main(){ char s1[] = "Mississippi Burning"; char s2[] = "Mississippi Burning"; int i; //--- test getMin --- printf( "Min of -10, 1, 10 = %d\n", getMin( -10, 1, 10 ) ); printf( "Min of -10, 1, 10, -20, 2 = %d\n", getMin( getMin( -10, 1, 10 ), -20, 2 ) ); //--- test zap --- printf( "s1 = %s\n", s1 ); zap( s1, "ss" ); printf( "zap(s1) = %s\n", s1 ); printf( "s2 = %s\n", s2 ); zap( s2, "tt" ); printf( "zap(s2) = %s\n", s2 ); strcpy( s1, "Mississippi less" ); printf( "s1 = %s\n", s1 ); while ( zap( s1, "ss" ) ) ; printf( "zap(zap(...(s1))) = %s\n", s1 ); //--- test merge --- int A[] = { 1, 2, 3, 10, 11 }; int B[] = { 4, 5, 12, 13, 15 }; int C[10]; merge( A, B, C ); for ( i=0; i<10 && A[i]!=-1; i++ ) printf( "%d, ", C[i] ); printf( "\n" ); }
- output
Min of -10, 1, 10 = -10 Min of -10, 1, 10, -20, 2 = -20 s1 = Mississippi Burning zap(s1) = Mi--issippi Burning s2 = Mississippi Burning zap(s2) = Mississippi Burning s1 = Mississippi less zap(zap(...(s1))) = Mi--i--ippi le-- 1, 2, 3, 4, 5, 10, 11, 12, 13, 15,
Submission
Submit your program in the Homework 9 section, on Moodle.
Preparation for Problem 2
Using argc and argv to get command line arguments is standard practice in most programming languages (at least the one that can be run from the command line).
We can also do it in assembly, as well.
You will need a new version of 231Lib.asm to make this work. Get a fresh new copy of the library, please:
getcopy 231Lib.asm nasm -f elf 231Lib.asm
Here is a demo program that gets argc (the number of arguments on the command line, including the name of the program itself), and argv[0] from the command line:
231b@aurora ~/hw/hw9/hw2 $ !cat ;;; getParams.asm ;;; D. Thiebaut ;;; ;;; gets argc and argv[1] as an int from the command ;;; line. ;;; ;;; To assemble, link, and run: ;;; nasm -f elf getParams.asm ;;; nasm -f elf 231Lib.asm ;;; ld -melf_i386 -o getParams getParams.o 231Lib.o ;;; ./getParams ;;; section .text extern _atoi ; note the new function extern _printDec extern _println global _start _start: ;;; When any assembly language program starts, the operating system ;;; passes it argc and argv through the statck. The esp register ;;; points to argc. at esp+4, is a pointer to the beginning of argv[0], ;;; as a string. At esp+8 is a pointer to the beginning of argv[1], ;;; as a string. mov ebp, esp mov eax, dword[ebp] ; put argc into eax call _printDec ; print it call _println mov eax, dword[ebp+4+4] ; make eax points to arv[1] call _atoi ; convert ascii string to int call _printDec ; print it. call _println ; new line. ;;; exit mov ebx, 0 mov eax, 1 int 0x80
- Compile and run it with a variety of input parameters
231b@aurora ~ $ nasm -f elf getParams.asm 231b@aurora ~ $ nasm -f elf getParams.asm 231b@aurora ~ $ nasm -f elf 231Lib.asm 231b@aurora ~ $ ld -melf_i386 getParams.o 231Lib.o -o getParams 231b@aurora ~ $ ./getParams 123 2 123 231b@aurora ~ $ ./getParams 12 hello 3 12
- When you run the program with command line arguments, such as "123" or "123 hello", getParams prints the number of arguments first, follow by the integer that is entered right after the program name.
./getParams 123
- in this case we have 2 words on the command line, "./getParams" and "123", so the first number printed is 2, and "123" is translated from a string to an int by the function atoi, and that's the second number printed.
./getParams 123 hello
- in this second case, we have 3 words on the command line, so the first number printed is 3, and atoi transforms "12" into the integer 12, which is the 2nd number printed.
Problem 2
Your assignment is to implement a recursive version of the Towers of Hanoi in assembly.
You can use this Python version for inspiration:
# hanoi.py # D. Thiebaut # implements the game of hanoi in python. # uses recursion. # # to run, type # python hanoi.py # at the command line, or run in Idle from __future__ import print_function def moveDisk( source, dest, extra, n ): if n==1: print( "move disk from %s to %s" % ( source, dest ) ) return # more than 1 disk... moveDisk( source, extra, dest, n-1) print( "move disk from %s to %s" % ( source, dest ) ) moveDisk( extra, dest, source, n-1) def main(): moveDisk( "A", "B", "C", 5 ) main()
The output of the program is shown below:
move disk from A to B
move disk from A to C
move disk from B to C
move disk from A to B
move disk from C to A
move disk from C to B
move disk from A to B
move disk from A to C
move disk from B to C
move disk from B to A
move disk from C to A
move disk from B to C
move disk from A to B
move disk from A to C
move disk from B to C
move disk from A to B
move disk from C to A
move disk from C to B
move disk from A to B
move disk from C to A
move disk from B to C
move disk from B to A
move disk from C to A
move disk from C to B
move disk from A to B
move disk from A to C
move disk from B to C
move disk from A to B
move disk from C to A
move disk from C to B
move disk from A to B
Requirements
- Your program will call the recursive function moveDisk and pass it the characters 'A', 'B', 'C' and the number 5, and will display an output similar to the one shown above.
- You may not pass the parameters via registers. Instead you must pass all four parameters through the stack.
- Your program will also output at the end of the output the number of moves that were performed. You may not use a global variable to keep track of the count. If you are not sure how to do this in assembly, modify the python program to make it display the number of moves, then translate the python program in assembly.
Submission