Difference between revisions of "CSC270 GenerateTruthTable.py"

From dftwiki3
Jump to: navigation, search
(Python 3.X Version)
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
One can use python (or any other language) to easily generate truth tables.  This is a simple way to test a hypothesis, or to verify special cases in design situations.  Don't hesitate to use this approach to save time and generate accurate results.
+
--[[User:Thiebaut|D. Thiebaut]] ([[User talk:Thiebaut|talk]]) 11:48, 15 January 2016 (EST)
<code><pre>
+
----
 +
<br />
 +
One can use python (or Java, or any other language) to easily generate truth tables.  Programming provides a simple way to test a hypothesis, or to verify special cases in design situations.  Don't hesitate to use this approach to save time and generate accurate results.
 +
<br />
 +
=Python 3.X Version=
 +
<br />
 +
::<source lang="python">
  
 
# truthtable.py   
 
# truthtable.py   
Line 42: Line 48:
  
  
</pre></code>
+
</source>
 
+
<br />
 
The output is show below:
 
The output is show below:
 
+
<br />
<code><pre>
+
::<source lang="text">
  
 
   a  b  c  |  f  g  h
 
   a  b  c  |  f  g  h
Line 61: Line 67:
  
  
</pre></code>
+
</source>
 +
<br />
 +
 
 +
=Java Version=
 +
<br />
 +
::<source lang="java">
 +
class TruthTable {
 +
    static boolean f( boolean a, boolean b, boolean c ) {
 +
return ( a & (! b) ) | c;
 +
    }
 +
    static boolean g( boolean a, boolean b, boolean c ) {
 +
return !a | !b | !c;
 +
    }
 +
 
 +
    static boolean  h( boolean a, boolean b, boolean c ) {
 +
return a | ! b;
 +
    }
 +
 
 +
    static String s( boolean a ) {
 +
// return ((a==true)?  "T":  "F" );  // use this if you want T and F output
 +
return ((a==true)?  "1":  "0" );   
 +
    }
 +
 
 +
    public static void main( String[] args ) {
 +
System.out.println( "  a  b  c  |  f  g  h" );
 +
System.out.println( "-----------+---------" );
 +
for (int a =0; a <= 1; a++ )
 +
    for (int b=0; b <= 1; b++ )
 +
for (int c=0; c<=1; c++ ) {
 +
    boolean aa = (a==1)? true: false;
 +
    boolean bb = (b==1)? true: false;
 +
    boolean cc = (c==1)? true: false;
 +
    System.out.println(
 +
  String.format( "%3s%3s%3s  |%3s%3s%3s",
 +
s(aa), s(bb), s(cc),
 +
s(f( aa, bb, cc )),
 +
s(g( aa, bb, cc )),
 +
s(h( aa, bb, cc )) ) );
 +
}
 +
    }
 +
 
 +
}
 +
</source>
 +
<br />
 +
Output
 +
<br />
 +
::<source lang="text">
 +
  a  b  c  |  f  g  h
 +
-----------+---------
 +
  0  0  0  |  0  1  1
 +
  0  0  1  |  1  1  1
 +
  0  1  0  |  0  1  0
 +
  0  1  1  |  1  1  0
 +
  1  0  0  |  1  1  1
 +
  1  0  1  |  1  1  1
 +
  1  1  0  |  0  1  1
 +
  1  1  1  |  1  0  1
 +
</source>
 +
<br />
 +
<br />
 +
<br />
 +
<br />
 +
<br />
 +
<br />
 +
<br />
 +
<br />
 +
<br />
 +
<br />
 +
<br />
 +
[[Category:CSC270]][[Category:Python]][[Category:Java]]

Latest revision as of 12:48, 15 January 2016

--D. Thiebaut (talk) 11:48, 15 January 2016 (EST)



One can use python (or Java, or any other language) to easily generate truth tables. Programming provides a simple way to test a hypothesis, or to verify special cases in design situations. Don't hesitate to use this approach to save time and generate accurate results.

Python 3.X Version


# truthtable.py  
# D. Thiebaut
# how a simple python program can generate the
# truth table of a boolean function
#
# 3 functions of 3 variables are shown here:
#       _
# f = a.b + c
#     _   _   _
# g = a + b + c
#         _
# h = a + b

def f( a, b, c ):
    return ( a and (not b) ) or c

def g( a, b, c ):
    return (not a) or (not b) or (not c)

def h( a, b, c ):
    return a or not b

def main():
    print( "  a  b  c  |  f  g  h" )
    print( "-----------+---------" )
    for a in [ 0, 1 ]:
        for b in [ 0, 1 ]:
            for c in [ 0, 1 ]:
                print( "%3d%3d%3d  |%3d%3d%3d" % 
                      ( a, b, c,
                        f( a, b, c ),
                        g( a, b, c ),
                        h( a, b, c ) ) )

main()


The output is show below:

  a  b  c  |  f  g  h
-----------+---------
  0  0  0  |  0  1  1
  0  0  1  |  1  1  1
  0  1  0  |  0  1  0
  0  1  1  |  1  1  0
  1  0  0  |  1  1  1
  1  0  1  |  1  1  1
  1  1  0  |  0  1  1
  1  1  1  |  1  0  1


Java Version


class TruthTable {
    static boolean f( boolean a, boolean b, boolean c ) {
	return ( a & (! b) ) | c;
    }
    static boolean g( boolean a, boolean b, boolean c ) {
	return !a | !b | !c;
    }

    static boolean  h( boolean a, boolean b, boolean c ) {
	return a | ! b;
    }

    static String s( boolean a ) {
	// return ((a==true)?  "T":  "F" );   // use this if you want T and F output
	return ((a==true)?  "1":  "0" );    
    }

    public static void main( String[] args ) {
	System.out.println( "  a  b  c  |  f  g  h" );
	System.out.println( "-----------+---------" );
	for (int a =0; a <= 1; a++ ) 
	    for (int b=0; b <= 1; b++ )
		for (int c=0; c<=1; c++ ) {
		    boolean aa = (a==1)? true: false;
		    boolean bb = (b==1)? true: false;
		    boolean cc = (c==1)? true: false;
		    System.out.println( 
			  String.format( "%3s%3s%3s  |%3s%3s%3s",
					 s(aa), s(bb), s(cc), 
					 s(f( aa, bb, cc )),
					 s(g( aa, bb, cc )),
					 s(h( aa, bb, cc )) ) );
		}
    }

}


Output

  a  b  c  |  f  g  h
-----------+---------
  0  0  0  |  0  1  1
  0  0  1  |  1  1  1
  0  1  0  |  0  1  0
  0  1  1  |  1  1  0
  1  0  0  |  1  1  1
  1  0  1  |  1  1  1
  1  1  0  |  0  1  1
  1  1  1  |  1  0  1