Difference between revisions of "CSC352 MapReduce/Hadoop Class Notes"

From dftwiki3
Jump to: navigation, search
 
(10 intermediate revisions by the same user not shown)
Line 119: Line 119:
  
 
* '''Each map task runs the user-defined map function for each record of a split'''.
 
* '''Each map task runs the user-defined map function for each record of a split'''.
 +
  
 
* Hadoop does its best to run the map task on the node where the split resides, '''but it is not always the case'''.
 
* Hadoop does its best to run the map task on the node where the split resides, '''but it is not always the case'''.
Line 133: Line 134:
  
 
== Examples of Data Flows==
 
== Examples of Data Flows==
 +
Taken from <ref name="hadoopGuide" />
  
 
<center>
 
<center>
Line 167: Line 169:
  
 
<center>[[Image:wordcountMapReduceBlockDiagram.png]] </center>
 
<center>[[Image:wordcountMapReduceBlockDiagram.png]] </center>
 +
  
 
===The Map Function, simplified===
 
===The Map Function, simplified===
Line 183: Line 186:
 
   emit (word, sum)
 
   emit (word, sum)
  
 +
===The Whole Program===
  
===The Map and Reduce Java Blocks===
+
[[Hadoop WordCount.java | WordCount.java]]
 
 
<source lang="java">
 
  public static class MapClass extends MapReduceBase
 
    implements Mapper<LongWritable, Text, Text, IntWritable> {
 
  
    private final static IntWritable one = new IntWritable(1);
 
    private Text word = new Text();
 
 
    public void map(LongWritable key, Text value,
 
                    OutputCollector<Text, IntWritable> output,
 
                    Reporter reporter) throws IOException {
 
      String line = value.toString();
 
      StringTokenizer itr = new StringTokenizer(line);
 
      while (itr.hasMoreTokens()) {
 
        word.set(itr.nextToken());
 
        output.collect(word, one);
 
      }
 
    }
 
  }
 
 
  /**
 
  * A reducer class that just emits the sum of the input values.
 
  */
 
  public static class Reduce extends MapReduceBase
 
    implements Reducer<Text, IntWritable, Text, IntWritable> {
 
 
    public void reduce(Text key, Iterator<IntWritable> values,
 
                      OutputCollector<Text, IntWritable> output,
 
                      Reporter reporter) throws IOException {
 
      int sum = 0;
 
      while (values.hasNext()) {
 
        sum += values.next().get();
 
      }
 
      output.collect(key, new IntWritable(sum));
 
    }
 
  }
 
</source>
 
  
 
<br />
 
<br />
Line 229: Line 197:
 
[[Image:ComputerLogo.png|100px|right]]
 
[[Image:ComputerLogo.png|100px|right]]
 
;Lab Experiment 1
 
;Lab Experiment 1
:Jump to the first Hadoop/MapReduce  [[Hadoop_Tutorial_1_--_Running_WordCount | Lab #1]]!
+
:Jump to the first Hadoop/MapReduce  [[Hadoop_Tutorial_1_--_Running_WordCount | Lab #1]]! Run all the sections up to, but not including Section 4.
 
</greenbox>
 
</greenbox>
  
Line 421: Line 389:
 
</pre></code>
 
</pre></code>
 
|}
 
|}
 +
 +
=Compiling Your Own Version of the WordCount Program=
 +
 +
* This is illustrated and explained in Section 4 of  [[Hadoop_Tutorial_1_--_Running_WordCount#Running_Your_Own_Version_of_WordCount.java Tutorial #1 | Tutorial #1: Compiling your own version of WordCoung.java]]
 +
 +
=How does hadoop on 6 compare to Linux on 1?=
 +
 +
* This is very interesting! 
 +
 +
<greenbox>
 +
[[Image:ComputerLogo.png|100px|right]]
 +
;Lab Experiment 2
 +
:Jump to the Section 5 of the  [[Hadoop_Tutorial_1_--_Running_WordCount | Hadoop Lab #1]] and see how Hadoop compares with basic Linux for Ulysses, and for Ulysses plus 5 other books
 +
 +
 +
</greenbox>
 +
<br />
 +
<br />
 +
 +
;Question 1
 +
: Comment on the timing you observe, for 1 book, and for 6 books.
 +
 +
;Question 2
 +
: There a 4 large files in the HDFS, in '''wikipages/block/'''.  Each is approximately 180 MByte in size.  Run another experiment and  compare the execution time of hadoop on the 4 files (~3/4 GByte) and of one of the Linux boxes on the same 4 files using Linux commands.  Compare the execution times again.
 +
=Generating Task Timelines=
 +
 +
<br />
 +
<br />
 +
<greenbox>
 +
[[Image:ComputerLogo.png|right |100px]]
 +
;Lab Experiment #3:
 +
: [[Hadoop Tutorial 1.1 -- Generating Task Timelines | Tutorial 1.1]] on generating '''Timelines'''.
 +
 +
</greenbox>
 +
<br />
 +
<br />
 +
 +
=Debugging/Testing using Counters=
 +
 +
Section 6 of [[Hadoop_Tutorial_1_--_Running_WordCount#Counters | Tutorial #1]] shows how to create counters.  Hadoop Counters are special variables that are gathered after each task runs and the values are accumulated and reported at the end and during the computation.  They are useful for counting quantities such as amount of data processed, number of tasks executed, etc.
 +
 +
<br />
 +
<br />
 +
<greenbox>
 +
[[Image:ComputerLogo.png|right |100px]]
 +
;Lab Experiment #4:
 +
: [[Hadoop_Tutorial_1_--_Running_WordCount#Counters | Tutorial 1 on Counters]].  Create counters in your Java version of WordCount and count the number of Map tasks and the number of Reduce tasks.
 +
 +
</greenbox>
 +
<br />
 +
<br />
 +
 +
 +
=Running WordCount in Python=
 +
 +
<br />
 +
<br />
 +
<greenbox>
 +
[[Image:ComputerLogo.png|right |100px]]
 +
;Lab Experiment #5:
 +
: [[Hadoop Tutorial 2 -- Running WordCount in Python | Tutorial 2]] on running Python programs with MapReduce/Hadoop.
 +
 +
</greenbox>
 +
<br />
 +
<br />
 +
  
 
=References=
 
=References=
Line 440: Line 474:
 
<br />
 
<br />
 
<br />
 
<br />
[[Category:CSC352]][[Category:MapReduce]][[Category:Hadoop]]
+
[[Category:CSC352]][[Category:Class Notes]][[Category:MapReduce]][[Category:Hadoop]]

Latest revision as of 08:16, 6 April 2010


This section is only visible to computers located at Smith College