Difference between revisions of "CSC212 Lab 9 2014"
(→Problem 1) |
(→Problem 1) |
||
Line 76: | Line 76: | ||
::::| 0 if length( array ) == 0 | ::::| 0 if length( array ) == 0 | ||
::::| array[0] if length( array )== 1 | ::::| array[0] if length( array )== 1 | ||
− | ::::| sum( array[0 to mid] + sum( array[mid+1 to N-1] ), where N is the size of the array, and '''mid''' | + | ::::| sum( array[0 to mid] + sum( array[mid+1 to N-1] ), where N is the size of the array, and '''mid''' = N/2 |
Revision as of 14:15, 22 October 2014
--D. Thiebaut (talk) 15:00, 22 October 2014 (EDT)
Recursion
- Use the skeleton program below to write different recursive functions.
public class RecurseSkeleton { private static int[] initSortedArray( int N ) { int[] array = new int[N]; array[0] = 3; for ( int i=1; i<N; i++ ) array[ i ] = array[i-1] + (i*11)*7; return array; } private static int[] initArray( int N ) { int[] array = new int[N]; array[0] = 3; for ( int i=1; i<N; i++ ) array[ i ] = (i+1) * 101 % 23; return array; } private static int fact( int n ) { // stopping condition if ( n==1 ) return 1; // recursive step return n * fact( n-1 ); } public static void main(String[] args) { int N = 20; int A[] = initArray( N ); int x, y; x = 5; System.out.println( "fact( " + x + " ) = " + fact( x ) ); } }
Problem 1
- Write a recursive function that will compute the sum of all the elements of the array, following this definition:
- sum( array ) =
- | 0 if length( array ) == 0
- | array[0] if length( array )== 1
- | array[0] + sum( array[1 to N-1] ), where N is the size of the array.
- sum( array ) =
- Write a recursive function that will compute the sum of all the elements of the array, following this definition:
- sum( array ) =
- | 0 if length( array ) == 0
- | array[0] if length( array )== 1
- | array[N-1] + sum( array[0 to N-2] ), where N is the size of the array.
- sum( array ) =
- Write a recursive function that will compute the sum of all the elements of the array, following this definition:
- sum( array ) =
- | 0 if length( array ) == 0
- | array[0] if length( array )== 1
- | sum( array[0 to mid] + sum( array[mid+1 to N-1] ), where N is the size of the array, and mid = N/2
- sum( array ) =