CSC352 Red-Black Trees in Java
--D. Thiebaut (talk) 20:02, 25 September 2013 (EDT)
/*************************************************************************
* Compilation: javac RedBlackTree.java
* Execution: java RedBlackTree < input.txt
* Dependencies: System.In.java System.out.java
* Data files: http://algs4.cs.princeton.edu/33balanced/tinyST.txt
*
* A symbol table implemented using a left-leaning red-black BST.
* This is the 2-3 version.
*
* % more tinyST.txt
* S E A R C H E X A M P L E
*
* % java RedBlackTree < tinyST.txt
* A 8
* C 4
* E 12
* H 5
* L 11
* M 9
* P 10
* R 3
* S 0
* X 7
*
* http://algs4.cs.princeton.edu/33balanced/RedBlackBST.java.html
*************************************************************************/
import java.util.ArrayList;
import java.util.NoSuchElementException;
public class RedBlackTree<Key extends Comparable<Key>, Value> {
private static final boolean RED = true;
protected static final boolean BLACK = false;
protected Node root; // root of the BST
// BST helper node data type
class Node {
private Key key; // key
private Value val; // associated data
private Node left, right; // links to left and right subtrees
boolean color; // color of parent link
private int N; // subtree count
public Node(Key key, Value val, boolean color, int N) {
this.key = key;
this.val = val;
this.color = color;
this.N = N;
left = right = null;
}
}
/*************************************************************************
* Node helper methods
*************************************************************************/
// is node x red; false if x is null ?
private boolean isRed(Node x) {
if (x == null)
return false;
return (x.color == RED);
}
// number of node in subtree rooted at x; 0 if x is null
private int size(Node x) {
if (x == null)
return 0;
return x.N;
}
/*************************************************************************
* Size methods
*************************************************************************/
// return number of key-value pairs in this symbol table
public int size() {
return size(root);
}
// is this symbol table empty?
public boolean isEmpty() {
return root == null;
}
public RedBlackTree<Integer, Segment> deepCopy() {
RedBlackTree<Integer, Segment> copy = new RedBlackTree<Integer, Segment>();
for (Key key : keys())
copy.put((Integer) key, ((Segment) get(key)).deepCopy());
return copy;
}
public int noItems() {
return noItems(root);
}
public int noItems(Node x) {
if (x == null)
return 0;
int sum = 0;
sum += noItems(x.left);
sum += noItems(x.right);
return sum + 1;
}
/*************************************************************************
* Standard BST search
*************************************************************************/
// value associated with the given key; null if no such key
public Value get(Key key) {
return get(root, key);
}
// value associated with the given key in subtree rooted at x; null if no
// such key
private Value get(Node x, Key key) {
while (x != null) {
int cmp = key.compareTo(x.key);
if (cmp < 0)
x = x.left;
else if (cmp > 0)
x = x.right;
else
return x.val;
}
return null;
}
/*************************************************************************
* DT's Helper Methods
*************************************************************************/
public Value getGreaterThan(Key key) {
return getGreaterThan(root, key);
}
private Value getGreaterThan(Node x, Key key) {
Value lastLargerValue = null;
while (x != null) {
int cmp = key.compareTo(x.key);
if (cmp < 0) {
lastLargerValue = x.val;
x = x.left;
} else if (cmp >= 0)
x = x.right;
else {
// return lastLargerValue;
}
}
return lastLargerValue;
}
public Value getGreaterThanOrEqual(Key key) {
return getGreaterThanOrEqual(root, key);
}
private Value getGreaterThanOrEqual(Node x, Key key) {
Value lastLargerValue = null;
while (x != null) {
int cmp = key.compareTo(x.key);
if (cmp < 0) {
lastLargerValue = x.val;
x = x.left;
} else if (cmp > 0) {
x = x.right;
} else {
return x.val;
}
}
return lastLargerValue;
}
public Value getLessThanOrEqual(Key key) {
return getLessThanOrEqual(root, key);
}
private Value getLessThanOrEqual(Node x, Key key) {
Value lastSmallerValue = null;
while (x != null) {
int cmp = key.compareTo(x.key);
if (cmp < 0) {
x = x.left;
} else if (cmp > 0) {
lastSmallerValue = x.val;
x = x.right;
} else {
return x.val;
}
}
return lastSmallerValue;
}
public Value getLessThan(Key key) {
return getLessThan(root, key);
}
private Value getLessThan(Node x, Key key) {
Value lastSmallerValue = null;
while (x != null) {
int cmp = key.compareTo(x.key);
if (cmp <= 0) {
x = x.left;
} else if (cmp > 0) {
lastSmallerValue = x.val;
x = x.right;
} else {
return x.val;
}
}
return lastSmallerValue;
}
// the Segments between lo and hi, as an Iterable
public Iterable<Value> valuesBetweenKeys(Key lo, Key hi) {
Queue<Value> queue = new Queue<Value>();
valuesBetweenKeys(root, queue, lo, hi);
return queue;
}
// add the keys between lo and hi in the subtree rooted at x
// to the queue
private void valuesBetweenKeys(Node x, Queue<Value> queue, Key lo, Key hi) {
if (x == null)
return;
int cmplo = lo.compareTo(x.key);
int cmphi = hi.compareTo(x.key);
if (cmplo < 0)
valuesBetweenKeys(x.left, queue, lo, hi);
if (cmplo <= 0 && cmphi >= 0)
queue.enqueue(x.val);
if (cmphi > 0)
valuesBetweenKeys(x.right, queue, lo, hi);
}
/*************************************************************************
* Standard search
*************************************************************************/
// is there a key-value pair with the given key?
public boolean contains(Key key) {
return (get(key) != null);
}
// is there a key-value pair with the given key in the subtree rooted at x?
private boolean contains(Node x, Key key) {
return (get(x, key) != null);
}
/*************************************************************************
* Red-black insertion
*************************************************************************/
// insert the key-value pair; overwrite the old value with the new value
// if the key is already present
public void put(Key key, Value val) {
root = put(root, key, val);
root.color = BLACK;
assert check();
}
// insert the key-value pair in the subtree rooted at h
protected Node put(Node h, Key key, Value val) {
if (h == null)
return new Node(key, val, RED, 1);
int cmp = key.compareTo(h.key);
if (cmp < 0)
h.left = put(h.left, key, val);
else if (cmp > 0)
h.right = put(h.right, key, val);
else
h.val = val;
// fix-up any right-leaning links
if (isRed(h.right) && !isRed(h.left))
h = rotateLeft(h);
if (isRed(h.left) && isRed(h.left.left))
h = rotateRight(h);
if (isRed(h.left) && isRed(h.right))
flipColors(h);
h.N = size(h.left) + size(h.right) + 1;
return h;
}
// insert the key-value pair; overwrite the old value with the new value
// if the key is already present
/*************************************************************************
* Red-black deletion
*************************************************************************/
// delete the key-value pair with the minimum key
public void deleteMin() {
if (isEmpty())
throw new NoSuchElementException("BST underflow");
// if both children of root are black, set root to red
if (!isRed(root.left) && !isRed(root.right))
root.color = RED;
root = deleteMin(root);
if (!isEmpty())
root.color = BLACK;
assert check();
}
// delete the key-value pair with the minimum key rooted at h
private Node deleteMin(Node h) {
if (h.left == null)
return null;
if (!isRed(h.left) && !isRed(h.left.left))
h = moveRedLeft(h);
h.left = deleteMin(h.left);
return balance(h);
}
// delete the key-value pair with the maximum key
public void deleteMax() {
if (isEmpty())
throw new NoSuchElementException("BST underflow");
// if both children of root are black, set root to red
if (!isRed(root.left) && !isRed(root.right))
root.color = RED;
root = deleteMax(root);
if (!isEmpty())
root.color = BLACK;
assert check();
}
// delete the key-value pair with the maximum key rooted at h
private Node deleteMax(Node h) {
if (isRed(h.left))
h = rotateRight(h);
if (h.right == null)
return null;
if (!isRed(h.right) && !isRed(h.right.left))
h = moveRedRight(h);
h.right = deleteMax(h.right);
return balance(h);
}
// delete the key-value pair with the given key
public void delete(Key key) {
if (!contains(key)) {
System.err.println("symbol table does not contain " + key);
return;
}
// if both children of root are black, set root to red
if (!isRed(root.left) && !isRed(root.right))
root.color = RED;
root = delete(root, key);
if (!isEmpty())
root.color = BLACK;
assert check();
}
// delete the key-value pair with the given key rooted at h
private Node delete(Node h, Key key) {
assert contains(h, key);
if (key.compareTo(h.key) < 0) {
if (!isRed(h.left) && !isRed(h.left.left))
h = moveRedLeft(h);
h.left = delete(h.left, key);
} else {
if (isRed(h.left))
h = rotateRight(h);
if (key.compareTo(h.key) == 0 && (h.right == null))
return null;
if (!isRed(h.right) && !isRed(h.right.left))
h = moveRedRight(h);
if (key.compareTo(h.key) == 0) {
Node x = min(h.right);
h.key = x.key;
h.val = x.val;
// h.val = get(h.right, min(h.right).key);
// h.key = min(h.right).key;
h.right = deleteMin(h.right);
} else
h.right = delete(h.right, key);
}
return balance(h);
}
/*************************************************************************
* red-black tree helper functions
*************************************************************************/
// make a left-leaning link lean to the right
private Node rotateRight(Node h) {
assert (h != null) && isRed(h.left);
Node x = h.left;
h.left = x.right;
x.right = h;
x.color = x.right.color;
x.right.color = RED;
x.N = h.N;
h.N = size(h.left) + size(h.right) + 1;
return x;
}
// make a right-leaning link lean to the left
private Node rotateLeft(Node h) {
assert (h != null) && isRed(h.right);
Node x = h.right;
h.right = x.left;
x.left = h;
x.color = x.left.color;
x.left.color = RED;
x.N = h.N;
h.N = size(h.left) + size(h.right) + 1;
return x;
}
// flip the colors of a node and its two children
private void flipColors(Node h) {
// h must have opposite color of its two children
assert (h != null) && (h.left != null) && (h.right != null);
assert (!isRed(h) && isRed(h.left) && isRed(h.right))
|| (isRed(h) && !isRed(h.left) && !isRed(h.right));
h.color = !h.color;
h.left.color = !h.left.color;
h.right.color = !h.right.color;
}
// Assuming that h is red and both h.left and h.left.left
// are black, make h.left or one of its children red.
private Node moveRedLeft(Node h) {
assert (h != null);
assert isRed(h) && !isRed(h.left) && !isRed(h.left.left);
flipColors(h);
if (isRed(h.right.left)) {
h.right = rotateRight(h.right);
h = rotateLeft(h);
}
return h;
}
// Assuming that h is red and both h.right and h.right.left
// are black, make h.right or one of its children red.
private Node moveRedRight(Node h) {
assert (h != null);
assert isRed(h) && !isRed(h.right) && !isRed(h.right.left);
flipColors(h);
if (isRed(h.left.left)) {
h = rotateRight(h);
}
return h;
}
// restore red-black tree invariant
private Node balance(Node h) {
assert (h != null);
if (isRed(h.right))
h = rotateLeft(h);
if (isRed(h.left) && isRed(h.left.left))
h = rotateRight(h);
if (isRed(h.left) && isRed(h.right))
flipColors(h);
h.N = size(h.left) + size(h.right) + 1;
return h;
}
/*************************************************************************
* Utility functions
*************************************************************************/
// height of tree; 0 if empty
public int height() {
return height(root);
}
private int height(Node x) {
if (x == null)
return 0;
return 1 + Math.max(height(x.left), height(x.right));
}
/*************************************************************************
* Ordered symbol table methods.
*************************************************************************/
// the smallest key; null if no such key
public Key min() {
if (isEmpty())
return null;
return min(root).key;
}
// the smallest key in subtree rooted at x; null if no such key
private Node min(Node x) {
assert x != null;
if (x.left == null)
return x;
else
return min(x.left);
}
// the largest key; null if no such key
public Key max() {
if (isEmpty())
return null;
return max(root).key;
}
// the largest key in the subtree rooted at x; null if no such key
private Node max(Node x) {
assert x != null;
if (x.right == null)
return x;
else
return max(x.right);
}
// the largest key less than or equal to the given key
public Key floor(Key key) {
Node x = floor(root, key);
if (x == null)
return null;
else
return x.key;
}
// the largest key in the subtree rooted at x less than or equal to the
// given key
private Node floor(Node x, Key key) {
if (x == null)
return null;
int cmp = key.compareTo(x.key);
if (cmp == 0)
return x;
if (cmp < 0)
return floor(x.left, key);
Node t = floor(x.right, key);
if (t != null)
return t;
else
return x;
}
// the smallest key greater than or equal to the given key
public Key ceiling(Key key) {
Node x = ceiling(root, key);
if (x == null)
return null;
else
return x.key;
}
// the smallest key in the subtree rooted at x greater than or equal to the
// given key
private Node ceiling(Node x, Key key) {
if (x == null)
return null;
int cmp = key.compareTo(x.key);
if (cmp == 0)
return x;
if (cmp > 0)
return ceiling(x.right, key);
Node t = ceiling(x.left, key);
if (t != null)
return t;
else
return x;
}
// the key of rank k
public Key select(int k) {
if (k < 0 || k >= size())
return null;
Node x = select(root, k);
return x.key;
}
// the key of rank k in the subtree rooted at x
private Node select(Node x, int k) {
assert x != null;
assert k >= 0 && k < size(x);
int t = size(x.left);
if (t > k)
return select(x.left, k);
else if (t < k)
return select(x.right, k - t - 1);
else
return x;
}
// number of keys less than key
public int rank(Key key) {
return rank(key, root);
}
// number of keys less than key in the subtree rooted at x
private int rank(Key key, Node x) {
if (x == null)
return 0;
int cmp = key.compareTo(x.key);
if (cmp < 0)
return rank(key, x.left);
else if (cmp > 0)
return 1 + size(x.left) + rank(key, x.right);
else
return size(x.left);
}
/***********************************************************************
* Range count and range search.
***********************************************************************/
// all of the keys, as an Iterable
public Iterable<Key> keys() {
return keys(min(), max());
}
// the keys between lo and hi, as an Iterable. lo and hi are included in the
// returned
// iterable if they are part of the keys.
public Iterable<Key> keys(Key lo, Key hi) {
Queue<Key> queue = new Queue<Key>();
// if (isEmpty() || lo.compareTo(hi) > 0) return queue;
keys(root, queue, lo, hi);
return queue;
}
// add the keys between lo and hi in the subtree rooted at x
// to the queue
private void keys(Node x, Queue<Key> queue, Key lo, Key hi) {
if (x == null)
return;
int cmplo = lo.compareTo(x.key);
int cmphi = hi.compareTo(x.key);
if (cmplo < 0)
keys(x.left, queue, lo, hi);
if (cmplo <= 0 && cmphi >= 0)
queue.enqueue(x.key);
if (cmphi > 0)
keys(x.right, queue, lo, hi);
}
// number keys between lo and hi
public int size(Key lo, Key hi) {
if (lo.compareTo(hi) > 0)
return 0;
if (contains(hi))
return rank(hi) - rank(lo) + 1;
else
return rank(hi) - rank(lo);
}
/*************************************************************************
* Check integrity of red-black BST data structure
*************************************************************************/
private boolean check() {
if (!isBST())
System.out.println("Not in symmetric order");
if (!isSizeConsistent())
System.out.println("Subtree counts not consistent");
if (!isRankConsistent())
System.out.println("Ranks not consistent");
if (!is23())
System.out.println("Not a 2-3 tree");
if (!isBalanced())
System.out.println("Not balanced");
return isBST() && isSizeConsistent() && isRankConsistent() && is23()
&& isBalanced();
}
// does this binary tree satisfy symmetric order?
// Note: this test also ensures that data structure is a binary tree since
// order is strict
private boolean isBST() {
return isBST(root, null, null);
}
// is the tree rooted at x a BST with all keys strictly between min and max
// (if min or max is null, treat as empty constraint)
// Credit: Bob Dondero's elegant solution
private boolean isBST(Node x, Key min, Key max) {
if (x == null)
return true;
if (min != null && x.key.compareTo(min) <= 0)
return false;
if (max != null && x.key.compareTo(max) >= 0)
return false;
return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
}
// are the size fields correct?
private boolean isSizeConsistent() {
return isSizeConsistent(root);
}
private boolean isSizeConsistent(Node x) {
if (x == null)
return true;
if (x.N != size(x.left) + size(x.right) + 1)
return false;
return isSizeConsistent(x.left) && isSizeConsistent(x.right);
}
// check that ranks are consistent
private boolean isRankConsistent() {
for (int i = 0; i < size(); i++)
if (i != rank(select(i)))
return false;
for (Key key : keys())
if (key.compareTo(select(rank(key))) != 0)
return false;
return true;
}
// Does the tree have no red right links, and at most one (left)
// red links in a row on any path?
private boolean is23() {
return is23(root);
}
private boolean is23(Node x) {
if (x == null)
return true;
if (isRed(x.right))
return false;
if (x != root && isRed(x) && isRed(x.left))
return false;
return is23(x.left) && is23(x.right);
}
// do all paths from root to leaf have same number of black edges?
private boolean isBalanced() {
int black = 0; // number of black links on path from root to min
Node x = root;
while (x != null) {
if (!isRed(x))
black++;
x = x.left;
}
return isBalanced(root, black);
}
// does every path from the root to a leaf have the given number of black
// links?
private boolean isBalanced(Node x, int black) {
if (x == null)
return black == 0;
if (!isRed(x))
black--;
return isBalanced(x.left, black) && isBalanced(x.right, black);
}
/*****************************************************************************
* Test client
*****************************************************************************/
public static void main(String[] args) {
RedBlackTree<Integer, Segment> st = new RedBlackTree<Integer, Segment>();
st.put(2, new Segment(2, 4));
st.put(7, new Segment(7, 1));
st.put(1, new Segment(1, 2));
st.put(9, new Segment(9, 3));
st.put(13, new Segment(13, 2));
for (int x : st.keys())
System.out.println(x + " --> " + st.get(x));
for (int i = 0; i < 20; i++) {
Segment x = st.getGreaterThanOrEqual(i);
System.out.println(x + " greater than or equal to " + i);
}
System.out.println("\n\n");
for (int i = 0; i < 20; i++) {
Segment x = st.getLessThanOrEqual(i);
System.out.println(x + " less than or equal to " + i);
}
System.out.println("\n\n");
for (int i = 0; i < 20; i++) {
Segment x = st.getGreaterThan(i);
System.out.println(x + " greater than " + i);
}
System.out.println("\n\n");
for (int i = 0; i < 20; i++) {
Segment x = st.getLessThan(i);
System.out.println(x + " less than " + i);
}
for (int x : st.keys(3, 12)) {
System.out.println("st.keys(3,12) --> " + x);
}
}
}