CSC111 Python Programs Fall 2015

From dftwiki3
Revision as of 10:45, 2 November 2015 by Thiebaut (talk | contribs) (Dice: Definining Classes)
Jump to: navigation, search

--D. Thiebaut (talk) 10:34, 18 September 2015 (EDT)


Wed., 9/16/15


# displayWeek.py
# D. Thiebaut
# displays a schedule for the five days of the week

length = eval( input( "Length of bar? " ) )

print( "-" * length )
for day in [ "Mo:", "Tu:", "We:", "Th:", "Fr:" ]:
    print( day )
    #print( "  :" * 2)
    print( "  :" )
    print( "-" * length )


Friday, 9/18/15


# displayGrade.py
# D. Thiebaut
#
# prompts user for information and
# grade.
# display user's grade in graph, along with
# class average (constant)


# constant information
classAvg = 80

# user input.  Get info from user
fName = "Al"
lName = "K"
Id    = "990123456"
final = 90


#--- Format information and display ---
# create the bar 
bar = "+" + 48*"-" + "+"
lenBar = len( bar )

# compute the number of dashes
noSpaces = lenBar - len( fName ) -len(lName )-len(Id) - 6
spaces = " " * noSpaces

# create the scale
scale = "      00...10...20...30...40...50...60...70...80...90...100"

# display the information
print( bar )
print( "|" + fName, lName, spaces, Id, "|" )
print( bar )
print()
print( scale )
# the length of the bar for the bar-graph, in number of characters
# is 1/2 the actual grade.  So divide the grade by half to get the
# number of chars.  We use // to get the integer part of the result
print( "grade:", (final//2) * "#" )
print( "class:", (classAvg//2) * "#" )


Monday, 9/21/15


Version 1 of Teller Machine program

# tellerMachine.py
# D. Thiebaut
# A program that simulates a teller machine, where user enters an amount of
# dollars, and program figures out the number of bills to return.

# get the amount 
amount = eval( input( "Please enter amount: " ) )
amount = int( amount )
print()

# break down into bills
no20s = amount // 20       # how many 20s go into amount
amount = amount % 20    # what is left over after giving out 20s go back into amount

no10s = amount // 10
amount = amount % 10

no5s = amount //5
no1s = amount % 5

# display the results
print( "Amount withdrawn = ", amount )
print( "Please lift your keyboard and find: " )
print( no20s, "$20-bill(s)" )
print( no10s, "$10-bill(s)" )
print( no5s, "$5-bill(s)" )
print( no1s, "$1-bill(s)" )


Version 2, submitted by Shirui Cheng, who figured out that it was a perfect opportunity to use a loop!

# Teller machine simulator
# Shirui Cheng

# get the input
amount = eval(input ("How much money do you want to withdraw? "))

# break down in $20-, $10-, $5-, and $1-bills
# and print the result at every step
for bill in (20, 10, 5, 1):
    no = amount // bill
    amount = amount % bill
    print (no, "$", bill, "bill(s)")


Wednesday, 9/23/15


# averageAge.py
# D. Thiebaut
#
# Example of how one would go about computing
# the average value of a list of numbers.
#
def main():

    # initialize variables
    sum = 0
    count = 0

    # loop through a list of ages and compute the total sum
    # of the ages, and the number of values in the list.
    for age in [20, 19, 21, 20, 21, 29, 17]:
        sum = sum + age
        count = count + 1

    # compute the average, displays quantities of interest
    print( "-" * 30 )
    print( "average = ", sum/count )

main()


Accumulating Strings


# stringPatterns.py
# D. Thiebaut
# print a string of 5 alternating patterns.

def main():
    # define 2 different patterns
    pat1 = "**"
    pat2 = "++"

    # create an empty string
    result = ""

    # loop 5 times (we want a string of 5 alternating patterns)
    for i in range( 5 ):
        # add a new pattern to the string
        result = result + pat1

        # switch the patterns around
        pat1, pat2 = pat2, pat1

    # done with the loop!  Print string of patterns
    print( result )

main()


Friday, 9/25/15


# averageAge.py
# D. Thiebaut
#
# Example of how one would go about debugging a simple
# program and reveal how the loop works.
#
def main():

    # initialize variables
    sum = 0
    count = 0
    print( "sum = {0:1} count = {1:1}".format( sum, count ) )
    input()

    # loop through a list of ages and compute the total sum
    # of the ages, and the number of values in the list.
    for age in [20, 19, 21, 20, 21, 29, 17]:
        sum = sum + age
        count = count + 1
        print( "age = {0:5} sum = {1:5} count = {2:5}".format( age, sum, count ) )
        input()

    # compute the average, displays quantities of interest
    print( "-" * 30 )
    print( "sum = ", sum )
    print( "count = ", count )
    print( "average = ", sum/count )

main()



Wed., 9/30/15


# exercises 9/30/15

def main():
    # Exercise #1
    fName = "SOPHIA"
    lName = "smith"

    fullName = fName + " " + lName

    print( fullName.title().center( 60 ) )
    print( "\n", "-"*60, "\n\n", sep="" )
   
    # Exercise #2
    # Define the string with multiple lines
    book = """Ulysses
    James Joyce
    Stately, plump Buck Mulligan came from the stairhead, 
    bearing a bowl of lather on which
    a mirror and a razor lay crossed. 
    """

    # split the book into a list of lines
    lines = book.splitlines()

    # assign different lines to variables
    bookTitle = lines[0]
    author = lines[1]
    sentence = lines[2] + lines[3] + lines[4]
    # this next statement is too sophisticated for now
    #sentence = " ".join( lines[2: ] )

    # display the result
    print( bookTitle.upper().center( 60 ) )
    print( author.title().center( 60 ) )
    print( )
    print( sentence )

main()


Fri., 10/2/15


# Using split()
# -------------------------
poem = """Chocolate
Chocolate is the first luxury.
It has so many things wrapped up in it:
Deliciousness in the moment,
childhood memories,
and that grin-inducing
feeling of getting a reward for being good.
--Mariska Hargitay"""

# display each line centered in 60 spaces.
# first line all uppercase.
# last line right justified in 60 spaces.

lines = poem.split( "\n" )
#print( lines )

# -----------------------------------------------------------------------
# (remove the triple double-quotes to energize the code section)
print( lines[0].upper().center(60) )

for line in lines[1: ]:
    print( line.center( 60 ) )

# -----------------------------------------------------------------------
print( "-" * 60 )

lines[0] = lines[0].upper()
for line in lines[0:3]+lines[4:]:
    print( line.center(60) )


Another Example


# -------------------------
# Another Example
# -------------------------


def printBar():
    print( 60 * '-' )


def sayHello():
    print( )
    print( "Hello, and welcome!" )
    print( )


def main():
    for i in range( 10 ):
        printBar() 
    sayHello()
    printBar()

main()


Happy Birthday


# ------------------------------------------
# Sing Happy Birthday to some Minions
# ------------------------------------------

def singHappyBirthday( minion ):
    print( "Happy birthday to you\n" * 2, end="" )
    print( "Happy birthday, dear", minion )
    print( "Happy birthday to you" )
    print()
    
def main():
    #singHappyBirthday( "Dave" )
    #singHappyBirthday( "Stuart" )
    minions = "Dave, Stuart, Jerry, Jorge, Tim, Mark, Phil, Kevin,  Jon"

    minions = minions.split( ", " )
    #print( minions )
    
    for minion in minions:
        singHappyBirthday( minion.strip() )
        
main()


Mon. 10/5/15


Converting Temperatures


# F  = C * 9 / 5 + 32
def convert( c ):
    return int( c * 9/5 + 32 )


def main():
    for C in [ 0, 32, 100 ] :
        fahr = convert(  C )
        print( fahr )


main()


Transforming dates


def singHappyBirthday( minion ):
    print( "minion = ", minion )
    #print( "Happy birthday to you\n" * 2, end="" )
    #print( "Happy birthday, dear", minion )
    #print( "Happy birthday to you" )
    #print()

def worker0( ):
    return "clap " *  10  

def worker1( num1 ):
    return num1 * 2 + 1 

def worker2( n ):
    return n % 10 

def worker3( p ):
    p = worker1( p )
    p = worker2( p )
    return p 
    
def dateConvert( date ):
    """converts a date in the form "2 Jan 2010" into
    a date of the form 01022010"
    """
    # split the string into day, month, and year
    fields = date.split()
    day = fields[0]
    month = fields[1]
    year = fields[2]

    #print( day, month, year )

    # if the day is less than 10, add a 0 in front of it
    day = ( '0' + day )[-2: ]
    
    #print( day, month, year )

    # find where the month is located in a string of 3-letter
    # months.  If the string is "Jan", then the location will
    # be 0.  If the string is "Feb", then the location will be 3,
    # etc.
    months = "janfebmaraprmayjunjulaugsepoctnovdec"
    index  = months.find( month.lower() )

    # divide by 3 to find the index in the form 0, 1, 2,... 11.
    # and add 1 to make this 1, 2,... 12
    monthDigit = index//3 + 1

    # transform this digit into a string, with a 0 in front
    # in case the digit is less than 10.
    monthDigit = "{0:02}".format( monthDigit )
    
    #print( day, month, year, monthDigit )

    # return the formatted string
    return "{0:1}{1:1}{2:1}".format( monthDigit, day, year )


def main():

    for date in [ "1 Jan 2010", "2 Mar 1900", "31 Dec 2015" ]:
        print( dateConvert( date ) )

    
main()
  • Output:


01012010
03021900
12312015


Fri. 10/9/15


Once More: the Teller Machine program

def getAmount():
    amount = eval( input( "Amount? " ) )
    return abs( amount )

def breakDown( amount ):
    no20s, amount = amount // 20, amount % 20
    no10s, amount = amount // 10, amount % 10
    no5s, amount   = amount // 5, amount % 5
    no1s = amount

    return no20s, no10s, no5s, no1s

def display(orgAmount, No20s, No10s, No5s, No1s ):
    print( orgAmount, No20s, No10s, No5s, No1s )
    return 
    
def main():
    # get amount from user
    amount = getAmount( )
    orgAmount = amount    # keep value of original amount
    
    # get Number of $20-, $10, $5-, and $1-bills
    No20s, No10s, No5s, No1s = breakDown( amount )

    # display result
    display( orgAmount, No20s, No10s, No5s, No1s )

main()


Flipping DNA


def getSentence(  ):
    sentence = input( "Enter a list of words: " )

    words = sentence.split( )
    for i in range( len( words ) ):
        #print( "i = ", i, "words = ", words )
        #print( "words[i] = ", words[i] )
        #print( "words[i].capitalize() = ", words[i].capitalize() )
        words[i] = words[i].capitalize()
        #print( "i = ", i, "words = ", words )
        #print()
        
    return words

def flip( DNA ):
    newDNA = DNA.replace( "A", "t" ).replace( "T", "a" )
    newDNA = newDNA.replace( "G", 'c' ).replace( "C", 'g' )
    return newDNA.upper()
        
def main():

    listWords = getSentence( )
    print( "list = ", listWords )

    print( "AAACGTTTAG", flip( "AAACGTTTAG" ), sep="\n" )
    
main()


Wed 10/14/15


dempolls.raw


<html>
<head>
<title>
Democratic Polls
</title>
</head>
<body>
<h1>Results</h1>
<data />
</body>
</html>


dempolls.data


Biden 19.1
Chafee 0.6
Clinton 44.4
Lessig 0.0
O'Malley 1.0
Sanders 25.1
Webb 1.2


createDynamicWebPage.py


# createDynamicWebPage.py
# D. Thiebaut
# create dynamic Web page


import datetime  # get a library that will allow
                 # us to print today's date.

# getTextFrom(): given a file name, opens the
# file, gets its contents as a string, and return
# it.
def getTextFrom( fileName ):
    file = open( fileName, "r" )
    text = file.read()
    file.close()
    return text

def main():

    # get the raw html file
    html = getTextFrom( "dempolls.raw" )

    # get the raw data file
    candidates = getTextFrom( "dempolls.data" )

    # replace <data /> tag with the data just
    # read in the raw html file.
    today = datetime.datetime.today().strftime("%m/%d/%Y")
    newString = today + "<br />" + candidates
    html = html.replace( "<data />", newString )

    # store new html to file
    file = open( "dempolls.html", "w" )
    file.write( html )
    file.close()

    # tell the user that process is over
    print( "File dempolls.html created, and in your directory!" )
    
main()


Wed. 10/21/15


graphicsDemo.py


# graphicsDemo.py
# D. thiebaut
# A demo program using the graphics library to make a ball
# move on the graphic window.

from graphics import *
from random import *

def main():
    # open the graphic window
    win = GraphWin("My Circle", 600, 600)

    # put some text in the middle of the window
    label = Text( Point( 300, 300 ),
                  "CSC111 Graphics Demo" )
    label.draw( win )
    
    # draw a circle
    x = 50
    y = 50
    r = 20
    c = Circle( Point( x, y ), r )
    red = randint( 0, 255 )
    green = randint( 0, 255 )
    blue = randint( 0, 255 )
    color = color_rgb( red, green, blue )
    c.setFill( color )
    c.draw( win )
    dx = 3
    dy = 0

    for i in range( 1000 ):
        # pick random color
        red = randint( 0, 255 )
        green = randint( 0, 255 )
        blue = randint( 0, 255 )
        color = color_rgb( red, green, blue )
        c.setFill( color )

        # move
        c.move( dx, dy )

        # see if bounce off walls
        center = c.getCenter()
        x = center.getX()
        if x > 600-r or x < 0+r:
            dx = -dx
        #win.getMouse()

        # move label
        label.move( 1, -1 )
        
    # wait for user to click in window
    win.getMouse() 

    # close the window
    win.close()

main()


Mon. 11/2/15


=Exception, Version 1


# getInput: returns an integer larger
# than 0.  Expected to be robust…

def getInput():
  while True:
      x = int( input( "Enter a positive int:  " ) )        
      if  x >= 0:
          return x
      print( "invalid input.  Please reenter" )


def main():
   num = getInput()
   print( "you entered", num )

main()


=Exception, Version 2


# getInput: returns an integer larger
# than 0.  Expected to be robust…

def getInput():
  while True:
      try:
          x = int( input( "Enter a positive int:  " ) )
      except ValueError:
          print( "Invalid number.  Please reenter" )
          continue
        
      if  x >= 0:
          return x
      print( "invalid input.  Please reenter" )


def main():
   num = getInput()
   print( "you entered", num )

main()


Quadratic Equation with Exceptions


import math

def ZelleExample():
    print( "solution to quadratic equation" )
    try:
        a, b, c = eval( input( "Enter 3 coefficients (a, b, c): " ) )
        disc = math.sqrt( b*b - 4*a*c )
        root1 = (-b + disc )/ (2*a)
        root2 = (-b - disc )/ (2*a)
        print( "solutions: ", root1, roo2 )
    except NameError:
        print( "You didn't enter 3 numbers!" )
    except TypeError:
        print( "Your input contained invalid numbers" )
    except SyntaxError:
        print( "Forgot a comma between the numbers? " )
    except ValueError:
        print( "No real roots, negative discriminant" )
    except:
        print( "Something went wrong..." )

def main():
    ZelleExample()

main()


Dice: Definining Classes


# DiceExample.py
# D. Thiebaut
# our first program where we define a class.
#
# The class implement a die, with some number
# of sides, and a way to "roll" and show a new
# number (value) up top.

# libraries
import random

# a class for a die
class Die:
    def __init__( self, n ):
         self.noSides = n
         self.value      = 1

    def roll( self ):
         self.value = random.randrange( 1, self.noSides+1 )

    def getValue( self ):
         return self.value


def main():
    # Create 2 dice, one with 6 sides, one with 8
    d1 = Die( 6 )
    d2 = Die( 8 )

    # Roll both dice
    d1.roll( )
    d2.roll( )

    # display their value
    print( "Die 1: ",  d1.getValue() )
    print( "Die 2: ",  d2.getValue() )

main()


# cats.py
# Demo program for creating a class
# for cat objects.  Cats have several
# properties:
#   - name (string)
#   - whether vaccinated or not(boolean: True means vaccinated.)
#   - age (integer)
#   - breed (string)
#

class Cat:
    def __init__(self, na, vacc, br, ag ):
        self.name = na
        self.vaccinated = vacc
        self.breed = br
        self.age = ag

    def isVaccinated( self ):
        if self.vaccinated == True:
            return True
        else:
            return False

    def getName( self ):
        return self.name
    
def main():
    # Minou, 3, vac, stray
    cat1 = Cat( "Minou", True, "Stray", 3 )

    if cat1.isVaccinated():
        print( cat1.getName(), "is vaccinated" )
    else:
        print( cat1.getName(), "is not vaccinated" )

main()