CSC111 Python Programs Fall 2015
--D. Thiebaut (talk) 10:34, 18 September 2015 (EDT)
Contents
Wed., 9/16/15
# displayWeek.py # D. Thiebaut # displays a schedule for the five days of the week length = eval( input( "Length of bar? " ) ) print( "-" * length ) for day in [ "Mo:", "Tu:", "We:", "Th:", "Fr:" ]: print( day ) #print( " :" * 2) print( " :" ) print( "-" * length )
Friday, 9/18/15
# displayGrade.py # D. Thiebaut # # prompts user for information and # grade. # display user's grade in graph, along with # class average (constant) # constant information classAvg = 80 # user input. Get info from user fName = "Al" lName = "K" Id = "990123456" final = 90 #--- Format information and display --- # create the bar bar = "+" + 48*"-" + "+" lenBar = len( bar ) # compute the number of dashes noSpaces = lenBar - len( fName ) -len(lName )-len(Id) - 6 spaces = " " * noSpaces # create the scale scale = " 00...10...20...30...40...50...60...70...80...90...100" # display the information print( bar ) print( "|" + fName, lName, spaces, Id, "|" ) print( bar ) print() print( scale ) # the length of the bar for the bar-graph, in number of characters # is 1/2 the actual grade. So divide the grade by half to get the # number of chars. We use // to get the integer part of the result print( "grade:", (final//2) * "#" ) print( "class:", (classAvg//2) * "#" )
Monday, 9/21/15
Version 1 of Teller Machine program
# tellerMachine.py # D. Thiebaut # A program that simulates a teller machine, where user enters an amount of # dollars, and program figures out the number of bills to return. # get the amount amount = eval( input( "Please enter amount: " ) ) amount = int( amount ) print() # break down into bills no20s = amount // 20 # how many 20s go into amount amount = amount % 20 # what is left over after giving out 20s go back into amount no10s = amount // 10 amount = amount % 10 no5s = amount //5 no1s = amount % 5 # display the results print( "Amount withdrawn = ", amount ) print( "Please lift your keyboard and find: " ) print( no20s, "$20-bill(s)" ) print( no10s, "$10-bill(s)" ) print( no5s, "$5-bill(s)" ) print( no1s, "$1-bill(s)" )
Version 2, submitted by Shirui Cheng, who figured out that it was a perfect opportunity to use a loop!
# Teller machine simulator # Shirui Cheng # get the input amount = eval(input ("How much money do you want to withdraw? ")) # break down in $20-, $10-, $5-, and $1-bills # and print the result at every step for bill in (20, 10, 5, 1): no = amount // bill amount = amount % bill print (no, "$", bill, "bill(s)")
Wednesday, 9/23/15
# averageAge.py # D. Thiebaut # # Example of how one would go about computing # the average value of a list of numbers. # def main(): # initialize variables sum = 0 count = 0 # loop through a list of ages and compute the total sum # of the ages, and the number of values in the list. for age in [20, 19, 21, 20, 21, 29, 17]: sum = sum + age count = count + 1 # compute the average, displays quantities of interest print( "-" * 30 ) print( "average = ", sum/count ) main()
Accumulating Strings
# stringPatterns.py # D. Thiebaut # print a string of 5 alternating patterns. def main(): # define 2 different patterns pat1 = "**" pat2 = "++" # create an empty string result = "" # loop 5 times (we want a string of 5 alternating patterns) for i in range( 5 ): # add a new pattern to the string result = result + pat1 # switch the patterns around pat1, pat2 = pat2, pat1 # done with the loop! Print string of patterns print( result ) main()
Friday, 9/25/15
# averageAge.py # D. Thiebaut # # Example of how one would go about debugging a simple # program and reveal how the loop works. # def main(): # initialize variables sum = 0 count = 0 print( "sum = {0:1} count = {1:1}".format( sum, count ) ) input() # loop through a list of ages and compute the total sum # of the ages, and the number of values in the list. for age in [20, 19, 21, 20, 21, 29, 17]: sum = sum + age count = count + 1 print( "age = {0:5} sum = {1:5} count = {2:5}".format( age, sum, count ) ) input() # compute the average, displays quantities of interest print( "-" * 30 ) print( "sum = ", sum ) print( "count = ", count ) print( "average = ", sum/count ) main()
Wed., 9/30/15
# exercises 9/30/15 def main(): # Exercise #1 fName = "SOPHIA" lName = "smith" fullName = fName + " " + lName print( fullName.title().center( 60 ) ) print( "\n", "-"*60, "\n\n", sep="" ) # Exercise #2 # Define the string with multiple lines book = """Ulysses James Joyce Stately, plump Buck Mulligan came from the stairhead, bearing a bowl of lather on which a mirror and a razor lay crossed. """ # split the book into a list of lines lines = book.splitlines() # assign different lines to variables bookTitle = lines[0] author = lines[1] sentence = lines[2] + lines[3] + lines[4] # this next statement is too sophisticated for now #sentence = " ".join( lines[2: ] ) # display the result print( bookTitle.upper().center( 60 ) ) print( author.title().center( 60 ) ) print( ) print( sentence ) main()
Fri., 10/2/15
# Using split() # ------------------------- poem = """Chocolate Chocolate is the first luxury. It has so many things wrapped up in it: Deliciousness in the moment, childhood memories, and that grin-inducing feeling of getting a reward for being good. --Mariska Hargitay""" # display each line centered in 60 spaces. # first line all uppercase. # last line right justified in 60 spaces. lines = poem.split( "\n" ) #print( lines ) # ----------------------------------------------------------------------- # (remove the triple double-quotes to energize the code section) print( lines[0].upper().center(60) ) for line in lines[1: ]: print( line.center( 60 ) ) # ----------------------------------------------------------------------- print( "-" * 60 ) lines[0] = lines[0].upper() for line in lines[0:3]+lines[4:]: print( line.center(60) )
Another Example
# ------------------------- # Another Example # ------------------------- def printBar(): print( 60 * '-' ) def sayHello(): print( ) print( "Hello, and welcome!" ) print( ) def main(): for i in range( 10 ): printBar() sayHello() printBar() main()
Happy Birthday
# ------------------------------------------ # Sing Happy Birthday to some Minions # ------------------------------------------ def singHappyBirthday( minion ): print( "Happy birthday to you\n" * 2, end="" ) print( "Happy birthday, dear", minion ) print( "Happy birthday to you" ) print() def main(): #singHappyBirthday( "Dave" ) #singHappyBirthday( "Stuart" ) minions = "Dave, Stuart, Jerry, Jorge, Tim, Mark, Phil, Kevin, Jon" minions = minions.split( ", " ) #print( minions ) for minion in minions: singHappyBirthday( minion.strip() ) main()
Mon. 10/5/15
Converting Temperatures
# F = C * 9 / 5 + 32
def convert( c ):
return int( c * 9/5 + 32 )
def main():
for C in [ 0, 32, 100 ] :
fahr = convert( C )
print( fahr )
main()
Transforming dates
def singHappyBirthday( minion ):
print( "minion = ", minion )
#print( "Happy birthday to you\n" * 2, end="" )
#print( "Happy birthday, dear", minion )
#print( "Happy birthday to you" )
#print()
def worker0( ):
return "clap " * 10
def worker1( num1 ):
return num1 * 2 + 1
def worker2( n ):
return n % 10
def worker3( p ):
p = worker1( p )
p = worker2( p )
return p
def dateConvert( date ):
"""converts a date in the form "2 Jan 2010" into
a date of the form 01022010"
"""
# split the string into day, month, and year
fields = date.split()
day = fields[0]
month = fields[1]
year = fields[2]
#print( day, month, year )
# if the day is less than 10, add a 0 in front of it
day = ( '0' + day )[-2: ]
#print( day, month, year )
# find where the month is located in a string of 3-letter
# months. If the string is "Jan", then the location will
# be 0. If the string is "Feb", then the location will be 3,
# etc.
months = "janfebmaraprmayjunjulaugsepoctnovdec"
index = months.find( month.lower() )
# divide by 3 to find the index in the form 0, 1, 2,... 11.
# and add 1 to make this 1, 2,... 12
monthDigit = index//3 + 1
# transform this digit into a string, with a 0 in front
# in case the digit is less than 10.
monthDigit = "{0:02}".format( monthDigit )
#print( day, month, year, monthDigit )
# return the formatted string
return "{0:1}{1:1}{2:1}".format( monthDigit, day, year )
def main():
for date in [ "1 Jan 2010", "2 Mar 1900", "31 Dec 2015" ]:
print( dateConvert( date ) )
main()
- Output:
01012010 03021900 12312015
Fri. 10/9/15
Once More: the Teller Machine program
def getAmount():
amount = eval( input( "Amount? " ) )
return abs( amount )
def breakDown( amount ):
no20s, amount = amount // 20, amount % 20
no10s, amount = amount // 10, amount % 10
no5s, amount = amount // 5, amount % 5
no1s = amount
return no20s, no10s, no5s, no1s
def display(orgAmount, No20s, No10s, No5s, No1s ):
print( orgAmount, No20s, No10s, No5s, No1s )
return
def main():
# get amount from user
amount = getAmount( )
orgAmount = amount # keep value of original amount
# get Number of $20-, $10, $5-, and $1-bills
No20s, No10s, No5s, No1s = breakDown( amount )
# display result
display( orgAmount, No20s, No10s, No5s, No1s )
main()
Flipping DNA
def getSentence( ):
sentence = input( "Enter a list of words: " )
words = sentence.split( )
for i in range( len( words ) ):
#print( "i = ", i, "words = ", words )
#print( "words[i] = ", words[i] )
#print( "words[i].capitalize() = ", words[i].capitalize() )
words[i] = words[i].capitalize()
#print( "i = ", i, "words = ", words )
#print()
return words
def flip( DNA ):
newDNA = DNA.replace( "A", "t" ).replace( "T", "a" )
newDNA = newDNA.replace( "G", 'c' ).replace( "C", 'g' )
return newDNA.upper()
def main():
listWords = getSentence( )
print( "list = ", listWords )
print( "AAACGTTTAG", flip( "AAACGTTTAG" ), sep="\n" )
main()
Wed 10/14/15
dempolls.raw
<html>
<head>
<title>
Democratic Polls
</title>
</head>
<body>
<h1>Results</h1>
<data />
</body>
</html>
dempolls.data
Biden 19.1 Chafee 0.6 Clinton 44.4 Lessig 0.0 O'Malley 1.0 Sanders 25.1 Webb 1.2
createDynamicWebPage.py
# createDynamicWebPage.py # D. Thiebaut # create dynamic Web page import datetime # get a library that will allow # us to print today's date. # getTextFrom(): given a file name, opens the # file, gets its contents as a string, and return # it. def getTextFrom( fileName ): file = open( fileName, "r" ) text = file.read() file.close() return text def main(): # get the raw html file html = getTextFrom( "dempolls.raw" ) # get the raw data file candidates = getTextFrom( "dempolls.data" ) # replace <data /> tag with the data just # read in the raw html file. today = datetime.datetime.today().strftime("%m/%d/%Y") newString = today + "<br />" + candidates html = html.replace( "<data />", newString ) # store new html to file file = open( "dempolls.html", "w" ) file.write( html ) file.close() # tell the user that process is over print( "File dempolls.html created, and in your directory!" ) main()
Wed. 10/21/15
graphicsDemo.py
# graphicsDemo.py # D. thiebaut # A demo program using the graphics library to make a ball # move on the graphic window. from graphics import * from random import * def main(): # open the graphic window win = GraphWin("My Circle", 600, 600) # put some text in the middle of the window label = Text( Point( 300, 300 ), "CSC111 Graphics Demo" ) label.draw( win ) # draw a circle x = 50 y = 50 r = 20 c = Circle( Point( x, y ), r ) red = randint( 0, 255 ) green = randint( 0, 255 ) blue = randint( 0, 255 ) color = color_rgb( red, green, blue ) c.setFill( color ) c.draw( win ) dx = 3 dy = 0 for i in range( 1000 ): # pick random color red = randint( 0, 255 ) green = randint( 0, 255 ) blue = randint( 0, 255 ) color = color_rgb( red, green, blue ) c.setFill( color ) # move c.move( dx, dy ) # see if bounce off walls center = c.getCenter() x = center.getX() if x > 600-r or x < 0+r: dx = -dx #win.getMouse() # move label label.move( 1, -1 ) # wait for user to click in window win.getMouse() # close the window win.close() main()
Mon. 11/2/15
Exception, Version 1
# getInput: returns an integer larger # than 0. Expected to be robust… def getInput(): while True: x = int( input( "Enter a positive int: " ) ) if x >= 0: return x print( "invalid input. Please reenter" ) def main(): num = getInput() print( "you entered", num ) main()
Exception, Version 2
# getInput: returns an integer larger # than 0. Expected to be robust… def getInput(): while True: try: x = int( input( "Enter a positive int: " ) ) except ValueError: print( "Invalid number. Please reenter" ) continue if x >= 0: return x print( "invalid input. Please reenter" ) def main(): num = getInput() print( "you entered", num ) main()
Quadratic Equation with Exceptions
import math def ZelleExample(): print( "solution to quadratic equation" ) try: a, b, c = eval( input( "Enter 3 coefficients (a, b, c): " ) ) disc = math.sqrt( b*b - 4*a*c ) root1 = (-b + disc )/ (2*a) root2 = (-b - disc )/ (2*a) print( "solutions: ", root1, roo2 ) except NameError: print( "You didn't enter 3 numbers!" ) except TypeError: print( "Your input contained invalid numbers" ) except SyntaxError: print( "Forgot a comma between the numbers? " ) except ValueError: print( "No real roots, negative discriminant" ) except: print( "Something went wrong..." ) def main(): ZelleExample() main()
Dice: Definining Classes
# DiceExample.py # D. Thiebaut # our first program where we define a class. # # The class implement a die, with some number # of sides, and a way to "roll" and show a new # number (value) up top. # libraries import random # a class for a die class Die: def __init__( self, n ): self.noSides = n self.value = 1 def roll( self ): self.value = random.randrange( 1, self.noSides+1 ) def getValue( self ): return self.value def main(): # Create 2 dice, one with 6 sides, one with 8 d1 = Die( 6 ) d2 = Die( 8 ) # Roll both dice d1.roll( ) d2.roll( ) # display their value print( "Die 1: ", d1.getValue() ) print( "Die 2: ", d2.getValue() ) main()
A program with a class to implement Cat objects
# cats1.py # D. Thiebaut # Our first built-from scratch program involving # classes and objects. # In this program we read a CSV file containing # the definitions of cats, one cat per line. # We extract the name, vaccinated status, breed, # and age of the cat, and save them in a cat # object. the Cat class is used to define how # a cat object behaves. class Cat: def __init__( self, na, vac, bre, ag ): self.name= na self.vaccinated = vac self.breed = bre self.age = ag def isVaccinated( self ): #if self.vaccinated == True: # return True #else: # return False return self.vaccinated def getName( self ): return self.name def main(): # Minou, 3, vac, stray text = """Minou, 3, vac, stray Max, 1, not-vac, Burmese Gizmo, 2, vac, Bengal Garfield, 4, not-vac, Orange Tabby""" catList = [] for line in text.split( "\n" ): words = line.split( "," ) if words[2].find( "not" ) != -1: vac = False else: vac = True age = int( words[1].strip() ) cat = Cat( words[0], vac, words[3], age ) catList.append( cat ) #cat1 = Cat( "Minou", True, "stray", 3 ) for cat in catList: if cat.isVaccinated(): print( cat.name, "is vaccinated" ) else: print( cat.getName(), "is not vaccinated" ) main()
Cats1.csv File
Max, 1, vaccinated, not tattooed, stray Black, 3, not vaccinated, tattooed, stray Gizmo, 2, vaccinated, not tattooed, Bengal Winston, 2, vaccinated, tattooed, Bengal Garfield, 3, vaccinated, not tattooed, Burmese Bob, 4, not vaccinated, tattooed, Orange Tabby Minou, 1, vaccinated, tattooed, stray Silky, 3, not vaccinated, tattooed, Siamese
Wed. 11/04/15
cats1.py
# cats1.py # D. Thiebaut # Our first built-from scratch program involving # classes and objects. # In this program we read a CSV file containing # the definitions of cats, one cat per line. # We extract the name, vaccinated status, breed, # and age of the cat, and save them in a cat # object. the Cat class is used to define how # a cat object behaves. class Cat: def __init__( self, na, vac, bre, ag ): self.name= na self.vaccinated = vac self.breed = bre self.age = ag def isVaccinated( self ): #if self.vaccinated == True: # return True #else: # return False return self.vaccinated def getBreed( self ): return self.breed def getName( self ): return self.name def __str__( self ): if self.vaccinated == True: vacc = "vaccinated" else: vacc = "not vaccinated" return "{0:1}: {1:1} {2:1} {3:1} yrs old".format( self.name, vacc, self.breed, self.age ) def getCatList( fileName ): """parses a collection of lines and creates a list of cat objects.""" file = open( fileName, "r" ) text = file.read() file.close() catList = [] for line in text.split( "\n" ): words = line.split( "," ) if len( words ) != 4: continue if words[2].find( "not" ) != -1: vac = False else: vac = True age = int( words[1].strip() ) cat = Cat( words[0].strip(), vac, words[3].strip(), age ) catList.append( cat ) return catList def main(): fileName = input( "File name? " ) catList = getCatList( fileName ) for cat in catList: print( cat ) for cat in catList: if not cat.isVaccinated() and cat.getBreed()=="stray": print( cat ) return main()
cats2.csv
Minou, 3, vac, stray Max, 1, not-vac, Burmese Gizmo, 2, vac, Bengal Garfield, 4, not-vac, Orange Tabby Smudges, 10, not-vac, stray Minique, 5, vac, French Tabby
Fri. 11/06/15
Wheel1.py
The beginning of a car...
# Graphics with Objects. # Demo program illustrating how we are going to # build a car. # from graphics import * #define global geometry of window WIDTH = 800 HEIGHT = 600 def main(): global WIDTH, HEIGHT win = GraphWin( "Wheel Demo", WIDTH, HEIGHT ) c1 = Circle( Point( WIDTH//2, HEIGHT//2 ), 30 ) c1.draw( win ) win.getMouse() win.close() main()
Car1.py
# Graphics with Objects. # Demo program illustrating how we are going to # build a car. # from graphics import * #define global geometry of window WIDTH = 800 HEIGHT = 600 class Wheel: def __init__( self, center, radius ): self.c1 = Circle( center, radius ) self.c2 = Circle( center, radius//2 ) self.c1.setFill( "black" ) self.c2.setFill( "white" ) def draw( self, win ): self.c1.draw( win ) self.c2.draw( win ) def move( self, dx, dy ): self.c1.move( dx, dy ) self.c2.move( dx, dy ) class Car: def __init__( self, refPoint ): x1 = refPoint.getX() y1 = refPoint.getY() x2 = x1 + 180 y2 = y1 + 60 self.body = Rectangle( Point( x1 , y1 ), Point( x2 , y2 ) ) self.w1 = Wheel( Point( x1+40, y1+60 ), 20 ) self.w2 = Wheel( Point( x1+140, y1+60 ), 20 ) self.body.setFill( "yellow" ) def draw( self, win ): self.body.draw( win ) self.w1.draw( win ) self.w2.draw( win ) def move( self, dx, dy ): self.body.move( dx, dy ) self.w1.move( dx, dy ) self.w2.move( dx, dy ) def main(): """Open a graphic window and puts graphic object(s) on it. Wait for user to click mouse to close. """ global WIDTH, HEIGHT # open window win = GraphWin( "Wheel Demo", WIDTH, HEIGHT ) # Create a list of 10 cars cars = [] # empty list for i in range( 10 ): # create a new car c1 = Car( Point( i*10, i*90 ) ) # draw the car just created c1.draw( win ) # add car just created to the list cars.append( c1 ) dx = 3 # x-direction for movement of cars dy = 0 # y-direction for movement of cars # animation loop while True: # move all the cars in the list for c1 in cars: c1.move( dx, dy ) # if user clicks the mouse, change the # direction of movement. if win.checkMouse() != None: dx = -dx # wait for user to click the mouse to close window win.getMouse() win.close() main()